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1 | Introduction

1.1 Motivation

Nowadays, global warming is becoming one of the largest problems in the world. Since the ap-
pearance of industry, climate change effects such as a raise in temperatures, retreat of glaciers and
wildfires are becoming a reality. One of the main factors that harms the environment is traffic in
cities: almost 15% of the greenhouse gas emissions is produced by this sector [1]. This, not only
causes harmful emissions of particles, but also the occupation of large valuable spaces for cities,
among others.

In order to reduce this polluting factor, a shift in the actual mindset needs to be done. An
interesting start point would be abandoning private transportation to give way to other public or
non-polluting means. In favour of this change, it is necessary to improve the public transport service
that is currently being offered. Better time prediction systems, a reduction in the length of journeys
and more comfort for users are some examples of milestones that are required for an improved public
system.

With the appearance of state-of-the-art technologies such as machine learning a lot of opportu-
nities have opened up and some changes can now start to be implemented. Forecasting the traffic
state benefits not only citizens but also companies. Better planned cities or dynamic public trans-
port lines are some examples that would lead to a smarter and greener city. The desire of making
this predictions is starting to become a reality with the appearance of machine learning algorithms.

1.2 Aim

The aim of the thesis is not only to provide a machine learning based solution for early detection
of traffic jams so that in the future migration strategies could be employed but also analyse and
comprehend the potential of the data provided by local Östgötatrafiken buses for the traffic detection.
In other words, the main goal is to propose, implement, test and optimise a machine learning
algorithm based on data collected from regional buses that is able to perform predictions on the
future state of the urban traffic.
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1.3 Research questions

In order to put into words the main goal of the project, forecasting the traffic state, two research
questions were posed. Since the project had two big parts it was clear that there had to be one for
each part. The first one was about the data and with the intention to determine if the collected data
was fit for the problem. The second question referred more to the machine learning part, meaning
to question if this type of networks were able to learn the time dependencies that represented the
data collected.

1. Is public transport real-time speed data a good representative of the traffic state? Does this
data behave as a periodic function?

2. Can a machine learning algorithm predict the future speed based on previous measurements?

1.4 Approach

The approach taken for solving the questions in the section above is developing a neural network
based architecture that can perform as a model to this particular scenario.

There are two main problems that need to be solved. First the implementation of a machine
learning architecture capable of performing predictions based on real-time GTFS data [2]. The
second is the optimisation of such algorithm to achieve the maximum accuracy. The aim is once the
framework has been implemented is to gradually analyse and adjust the network’s hyper-parameters
and chose the ones that provide the best match.

The planned procedure for the thesis is as follows:

Starting on the existing related fields, previous works and procedures, an extensive research
will be performed. This process includes the data acquiescence as well as the implementation of the
needed metrics to adapt it for our project. Also, a broad research will be conducted on machine
learning methods to optimise the approach required. Following, the test evaluation method will be
discussed and critically reviewed to fit with our scenario. Furthermore, in an iterative process, the
methods and algorithms for developing the neural network architecture will be studied, implemented
and tested. Finally, the iterative process will finish with an evaluation and optimisation of the crucial
parameters and with a final system review. At the end, possible further developments and studies
will be mentioned.

1.5 Delimitations

This ten-week project does not aim to reach the definitive solution to traffic congestion predictions.
However, it does intend to provide a first approach to a potential solution from which others can
continue working.
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The forecasts made in this project are only based on speed measurements provided by the local
transport system and does not contemplate other unexpected factors such as road works, accidents
or traffic restrictions. Some ideas are given to implement some upgrades to the solution proposed.

When talking about machine learning, the field is vast and in this project only a small part of
it has been contemplated. More in concrete this project focuses only in the points listed below:

• Supervised learning

• Regression analysis

• Time series predictions with artificial neural networks
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2 | Background

2.1 Intelligent Transport Systems

Intelligent transport systems (ITS) are applications of sensing, analysis, control and communication
engineering in road transportation in order to improve safety, mobility and efficiency. With the aim
to provide innovative services, ITS are applied in many areas such as infrastructure, users, traffic
and mobility management, interfaces with other modes of transport and vehicle communications.
In other words, is the application of technology to the movement of goods and people.

It is an expanding international market, since eventually many driving functionalities are going
to be automated. Consequently, features such as achieving the maximum efficiency or reducing
traffic incidents are to become fundamental.

ITS vary in terms of the technologies applied. From basic systems such as car navigation, traffic
signal control systems, speed cameras and automatic number plate recognition to more complex
applications like road states (deicing systems), assisted parking guidance and many others.

They also include a wide range of applications that process and share information to ease
congestion, improve traffic management, minimise environmental impact and increase the benefits
of transportation to commercial users and the public in general.

There are five main areas of applications. The first type of application is the automation of road
enforcement by using cameras, radars, LIDARs and sensors that control driver infractions committed
while travelling. The clearest example is the speed limit enforcement integrated with the number
plate recognition system. Linked with this application there is the variable speed limit control, which
dynamically changes the road speed regulation depending on the actual state of the traffic. There
is also the management of emergency vehicle systems which tries to optimise the response since the
occurrence of an incident until its resolution. Dynamic traffic light sequence and collision avoidance
systems are the last main areas but there are others too numerous to mention. Together they are
helping smart mobility models to emerge.

Traffic state prediction by analysing vehicles speed is a critically important topic in terms of
Intelligent Transport Systems since it is the base of many other applications where knowing the road
state is essential. In other words, it is essential for bringing smart cities to live.
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2.2 Machine learning

Machine learning is an application from artificial intelligence dedicated to design, analyse and develop
mathematical algorithms and techniques that are capable of making decisions from sets of data
(training data).

Any system that is considered intelligent must have the ability to learn, that is, to automatically
improve with the experience. The programs used are learning systems capable of acquiring high
level knowledge and strategies for problem solving through examples, in a way similar to the human
mind. Tom Mitchell, computer scientist known for his contributions to the advancement of machine
learning, said: "A computer program is said to learn from experience (E) with respect to some class
of tasks (T) and performance measure (P), if its performance at tasks in (T), as measured by (P),
improves with experience (E)"[3].

LSTM networks can learn the features of time series but it is not an easy task, particularly
when there is a short number training values.

2.2.1 Learning methods

Machine learning algorithms are classified according to what the program is expected to learn and
also according to the degree of interaction with the user. There are three main styles: supervised
learning, unsupervised learning, semi-supervised learning and reinforcement learning.

Supervised learning

This type of learning requires a supervisor. The input data used by the model needs to be labelled
with the expected output. These labels for output vector are provided by the supervisor. Often,
these supervisors are humans, but machines can also be used for such labelling[4]. Through iterative
optimisation, supervised learning algorithms learn a function that can be used to predict the output
associated with new inputs unseen by the model.

Supervised learning problems are categorised into regression and classification problems. In a
regression problem, the objective is to predict results within a continuous output, mapping input
variables to some continuous function. In a classification problem, the results predicted consist in
a discrete output. In other words, mapping input variables into discrete categories. This style of
learning provides error measurements. After the prediction has been made, feedback is collected and
and the error is computed.

Below, some examples of supervised learning algorithms:

• Linear regression

• Logistic regression

• Naive Bayes

• Neural Networks

• Similarity learning

• Support Vector Machines
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Unsupervised learning

In unsupervised learning, we lack supervisors[4]. In contrast with the learning method above, un-
supervised learning is provided with a set of training examples that have not been classified nor
labelled. In this case, the algorithm must be able to find similar patterns and structures in the
training data in order to be able to label, group or classify it. Instead of responding to feedback,
these type of algorithms identify the similarities in the data and react based on the presence or
absence of such commonalities in each new piece of data.

Some of the more common used algorithms are the following:

• Clustering

• Anomaly detection

• Neural Networks

• Latent variable models

Semi-supervised learning

Semi-supervised learning algorithms combine the two types of previous algorithms in order to gener-
ate a suitable function or classifier [4]. A combination of marked and mostly unmarked data is used
as a training set. This type of algorithms usually increases the accuracy of unsupervised learning
but without the time and costs needed for supervised learning.

Reinforcement learning

The reinforcement learning method aims at using observations gathered from the interaction with
the environment to take actions that would maximise the reward or minimise the risk[4]. Once
the action taken by the system gets feedback from the surroundings (a gratification or a penalty
depending on whether the action has been successful or not). That is, input information is the result
you get from outside as a response to your actions. It is learned through trial-error and, due to this,
a high number of repetitions is required. Reinforcement learning is mostly used in non-deterministic
and changing environments where good error measurements are difficult or impossible to perform.

Reinforcement learning algorithms include:

• Monte Carlo

• SARSA (State–action–reward–state–action)

• Q-learning

• DQN (Deep Q Network)

2.3 Artificial neural networks

Artificial neural networks, usually noted as ANN, are a paradigm of learning and automatic pro-
cessing inspired by the way the nervous system of animals works. To mimic that behaviour, an
ANN consists in different nodes (artificial neurons) interconnected to transmit signals from one to
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another. The main objective is to get the machines to give answers that are similar to those that
are capable of giving the brain.

As mentioned before, the network consists of connections and everyone of them is assigned a
weight. Each neuron receives a series of inputs and gives and output determined by three main
functions: a input function, an activation function and a transfer function. The objective is to
successfully tune all the different parameters to achieve the desired output.

The neurons are organised in layers, as depicted in figure 2.1. The input layer (Green) is the
one that gives the inputs to the network. Hidden layers (Orange)can take inputs (from the input
layer or from other hidden layers) and multiply its weights by the inputs received. That result will
be passed to the next hidden layer or to the output layer if it is the case. The output layer (Blue)
takes its inputs from the last hidden layer and computes the final network output.

Figure 2.1: Neural network architecture with two hidden layers

There are three main features to be considered when developing a neural network architecture:
the number of neurons in the input layer, the number of hidden layer and its neurons and the neurons
of output layer. The input layer size will be determined by training samples on the database such
as the pixels value of an image or the words of a sentence. Hidden layers do not have a determined
size, it has to be fixed depending on the accuracy of the performance of the network, by adjusting
in every run. Finally, the output layer size will have the same length as our desired output.

Another fundamental aspect when developing a neural network is the training process. After
having set the architecture and having the outputs of the network for a given input, a need for an
algorithm that evaluates how close the value is to the ground truth appears. This information helps
with adapting the weights set on values to get more accurate results for the following iterations. The
way to conduct this problem in machine learning is using loss functions. The loss function measures
the quality of a particular set of parameters based on how well the output of the network agrees
with the ground truth labels in the training data.The loss function does not want to measure the
entire performance of the network against a validation/test dataset. It is used to guide the training
process in order to find a set of parameters that reduce the value of the loss function. With this
appears the training process, which consists in finding a set of parameters which make the loss as
small as possible and then changing parameters at a rate determined by the partial derivatives of
the loss function. The algorithm in charge of this steps is the stochastic gradient descent, which
ideally modifies the parameters in small steps until reaching the minimum during backpropagation
passes.

Depending on how the connections between the neurons are made there are different types
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of networks. The first ones that were developed are called feed forward networks and follow a
similar structure as figure ??. Its connections between nodes do not form a cycle, meaning that the
information only travels in one direction: forward. In contrast, recurrent neural networks (RNN)
have connections that form loops which allow temporal dynamic behaviour. This type of networks
have an internal state also referred as memory and are capable of solving more complex problems
such as handwriting recognition. In other words, sometimes they are able to connect previous
information to the present task.

2.3.1 Long Short-Term Memory networks

Unfortunately, RNN are not capable of making long term relations between the information due
to the gradient descent algorithm used as a learning algorithm when training the network. When
implementing this algorithm, which is used for the optimisation and minimisation of the cost function
of the whole system, the network faces a problem known as vanishing gradient. The gradient descent
becomes increasingly inefficient when the temporal span of the dependencies increases [5].

Long Short-Term Memory networks, also known as LSTM, are a kind of RNN which are capable
of performing this ling-term dependencies between the data. Introduced in 1997 by Hochreiter &
Schmidhuber [6], LSTM networks are well-suited to making predictions based on time series data
since they were explicitly designed to avoid the vanishing gradient problem that faced traditional
RNNs.

All recurrent neural networks have the form of a chain of repeating modules of a neural network.
In standard RNNs they have a simple structure consisting of a single layer. Although LSTMs do
not vary the chain structure, the repeating module has a completely different structure: it consists
in four layers that interact between them.

Figure 2.2: LSTM chain structure

In figure 2.2, each arrow carries a vector from the output of one cell (repeating module) to the
input of the next one. Each blue rectangle represents each neural network layer and the grey circles
represent point-wise operations.

The main idea of LSTMs is the cell state, represented by the top horizontal line. The information
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flows through the entire chain while some linear interactions are performed. These interactions are
called gates and consist in a sigmoid layer and a point-wise operation. The sigmoid layer outputs a
value between zero and one which describes how much of every component should go through. This
cell state is computed as follows:

ft = σ
(
xtU

f + ht−1W
f
)

it = σ
(
xtU

i + ht−1W
i
)

ot = σ
(
xtU

o + ht−1W
o
)

C̃t = tanh
(
xtU

g + ht−1W
g
)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
ht = tanh(Ct) ∗ ot

The first gate, called forget gate (ft), decides what information is no longer required from
the previous the cell state. Matrices W and U contain, respectively, the weights of the input and
recurrent connections. The second regulator, the input gate layer (it), decides which values are
going to be updated and is formed by a sigmoid function and after combined with a tanh layer that
gives potential values that could be added to the state (C̃t). After these two gates the cell state is
updated (Ct), as depicted in the left half of the repeating module of figure ??. Finally, the output
gate (ot) controls the extent to which the value in the cell is used to compute the output activation
of the LSTM unit.

2.4 Measures of performance (MAE, MAPE, RMSE)

There are multiple ways of analysing the performance of a neural network implementation. Time
and accuracy are the main aspects when determining if an application is good enough. The time
constraint can be seen as how long it takes to train a model or the time it takes to answer a query
and so on. The accuracy of a model however, is a measure that determines how good the predictions
performed by a model are.

When choosing an accuracy metric the type of learning needs to be taken into account. Since
time series prediction is a supervised regression learning problem, the metrics need to be for contin-
uous variables.

The main four regression metrics are the following:

Root Mean Squared Error (RMSE)

The root mean squared error represents the sample standard deviation of the differences between
predicted values and observed values (called residuals). RMSE is always non-negative, and a value
of 0 (almost never achieved in practice) would indicate a perfect fit to the data. In general, a lower
RMSE is better than a higher one. The effect of each error is proportional to the size of the square
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error meaning that major errors have a larger effect on the RMSE. However, even after being more
complex and biased towards higher deviation, RMSE is still the default metric of many models
because loss function defined in terms of RMSE is smoothly differentiable and makes it easier to
perform mathematical operations. Mathematically, it is calculated using this formula:

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2

Mean Absolute Error (MAE)

MAE is the average of the absolute difference between the predicted values and observed value. The
MAE is a linear score which means that all the individual differences are weighted equally in the
average. Its range varies from zero to infinity, being zero the ideal value. It is easier to understand
and interpret MAE because it directly takes the average of offsets whereas RMSE penalises the
higher difference more than MAE. The Mean Absolute Error is given by:

MAE =
1

n

n∑
j=1

|yj − ŷj |

Confidence interval

The confidence interval is a range between two values around a sample parameter in which, with
a given probability (or level of confidence), that parameter will be placed in the population. In
other words, a range of values so defined that there is a specified probability that the value of a
parameter lies within it. A sample parameter that is usually determined by the confidence interval
is the average. The desired level of trust is established by the researcher, not determined by the
data properties. More commonly, the confidence level of 95% is used. However, other levels of
confidence can be used, for example, 90% and 99%. At a lower level of confidence the interval
will be more accurate, but a greater error will be made. For determining this interval, the data is
assumed normally-distributed and in our case with known mean and standard deviation.

C z∗

99% 2.576
95% 1.96
90% 1.645

(x̄− z∗ σ√
n
, x̄+ z∗ σ√

n
)

Table 2.1: Confidence interval formula
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2.5 Time series data

A time series is a sequence of data points, observations or values measured at certain times and
ordered accordingly. Usually, but not always, these points are equally spaced in time. Thus it is a
series of discrete data and commonly used in a large range of fields such as statistics, mathematical
finance, signal processing or weather forecasting.

The analysis of this type of data includes methods that help extracting representative informa-
tion regarding its origins, relations or forecasting its behaviour. Time series analysis accounts for
the fact that data points taken over time may have an internal structure (such as autocorrelation,
trend or seasonal variation) that should be accounted for. These methods can be divided in two
classes: frequency-domain and time-domain.

Time series forecasting is an important area of machine learning since time plays a role in
machine learning datasets. When treating a dataset there can be different goals: understanding
it or making predictions. The first one can help achieving the second one but it is not always
required.“In descriptive modeling, or time series analysis, a time series is modeled to determine its
components in terms of seasonal patterns, trends, relation to external factors, and the like. . . .
In contrast, time series forecasting uses the information in a time series (perhaps with additional
information) to forecast future values of that series.” [7] The skill of a time series forecasting model
is determined by its performance at predicting the future.

2.5.1 Neural networks for forecasting

Neural networks are a popular framework when facing supervised learning problems, since a system of
weighted additions and differentiable functions can learn complex relations. Time series predictions
are just one application of where neural networks are currently being used. The pioneer work of
developing and applying backpropagation (chain rule) to forecasting was made by Werbos [8] which
outperformed traditional methods when analysing to short memory series and similar results for
long memory.

LSTMs, although not being its primary application, are often used for time series forecasting
[9]. Some of the most remarked works are using peephole connections, a variation of LSTMs, for
learning temporal distances [10]; stacking LSTM networks to detect anomalies in time series [11] or
modelling periods and missing values in time series [12].

2.6 Related Work (previous ML solutions for traffic predic-
tion)

Zhao et al. [2016] [13] published a paper presenting an algorithm based in machine learning tech-
niques for detecting the freeway traffic state. They propose two speed difference parameters to
study the speed difference and a detection algorithm that makes real-time statements of the traffic
situation. Such algorithm is tested in non-current and current congestion simulated environments
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and the problem is approached as a classification between different traffic states.

An error-feedback recurrent convolutional neural network is proposed as a solution to traffic
speed prediction and congestion source exploration by Wang et al. [2016] [14]. In this article, a
spatio-temporal traffic speeds of contagious road segments are the input to a pre-trained network
as they try to predict abrupt changes in the traffic state in Beijin. They results are compared with
more traditional methods such as Auto Regression Integrated Moving Average (ARIMA) or Support
Vector Machines (SVR).
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3 | Method

In this chapter we present the method used in the experiment that was performed. The goal of
the project was to predict the future traffic state using public data information. Before anything,
the project scenario definition is depicted. To achieve the project goals, a LSTM network has been
implemented, tested and later evaluated. But in order to achieve that the data needs to be pre-
processed to fit the network correctly which implies understanding it. Firstly, the studied scenario
will be defined. Then the data characteristics and its processing will be detailed. Next, a thorough
description of the experiment will be performed, which will contain details of the scenario chosen
and the architecture implemented. Finally, the evaluation method used is going to be explained.

3.1 Scenario

In order to focus the project in specific topics such as the performance of the neural network and
the data analysis a scenario must be define to avoid too broad or too little information.

The bus data provided by Östgötatrafiken belongs to the area of Linköping, where the company
provides service. When defining the scenario, different aspects must be taken into account. First
of all, it can not be a very large area since little population density does not provide enough traffic
situations to be analysed. It is also necessary to consider the flow of vehicles, since a scenario located
on the outskirts of Linköping would not provide sufficient data to form a dataset nor would it be
representative. For these reasons, three main aspects have been taken into account when defining
the stage. Firstly, the figure 3.1a showing the different bus lines offered by Östgötatrafiken since
the amount of data collected was an important factor. Secondly, the position of the bus station
indicated in the figure 3.1b in red, since it is the place with more frequency of lines so that it raises
the number of samples. It should be considered, however, that the station can not be included in
the scenario since buses transmit zero speeds in that area and would deflect real measures. And
finally the location of areas with large numbers of people, marked in blue in figure 3.1b, such as
SAAB Arena and Linköping Konsert & Kongress.

The final scenario latitude and longitude corner points are: [58.41525, 15.64384], [58.41525,
15.61902], [58.40224, 15.64384], [58.40224, 15.61902]. The total area consists on a square surface of
1,45km on the side resulting on a total surface of A = 2, 10km2
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(a) Bus lines service by Östgötatrafiken (b) Final scenario (green) with important locations

Figure 3.1: Scenario definition

3.2 Data mining

In this section three main aspects are going to be illustrated. Firstly, the process of data acquiescence
will be detailed. Secondly, the data processing for building a time series. Finally, the process of
transforming this time series to adapt it to the neural network.

3.2.1 GTFS Real-time Data

GTFS stands for General Transit Feed Specification and is a standard that was developed by
Google. This standard defines a common format for public transportation schedules and associ-
ated geographic information. GTFS feeds allow the flow of transit data between transit agencies
and developers. The feeds are represented in a series of text files that are compressed into a ZIP
file, and include information such as fixed-route schedules, routes, bus stop data among many other.
GTFS datasets are used in a variety of types of applications, including trip planners such as Google
Maps, timetable generation software, mobile applications, tools for transit planning and operations
analysis.

GTFS Real-time is an extension to GTFS. This type of feed lets transit agencies provide con-
sumers with live information about disruptions to their service (stations closed, lines not operating,
important delays, etc.) location of their vehicles, and expected arrival times.

A feed may, although not required to, combine entities of different types. Feeds are served via
HTTP and updated frequently. The file itself is a regular binary file, so any type of web server
can host and serve the file (other transfer protocols might be used as well). Alternatively, web
application servers could also be used which as a response to a valid HTTP GET request will return
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the feed. There are no constraints on how frequently nor on the exact method of how the feed should
be updated or retrieved. Because GTFS Real-time allows presenting the actual status of a fleet, the
feed needs to be updated regularly - preferably whenever new data comes in from the Automatic
Vehicle Location system.

The specification currently supports the following types of information:

• Trip updates

• Service alerts

• Vehicle positions

In this project, the focus has been on the vehicle positioning information.

Vehicle position is used to provide automatically generated information on the location of a
vehicle, such as from a GPS device on board. A single vehicle position should be provided for every
vehicle that is capable of providing it.

The structure of a feed message is simple: a header followed by entities. The data provided
by Östgötatrafiken does not contain all the fields specified by the GTFS real-time standard, since
most of them are optional and not required. The header contains, at least, the GTFS version used,
a timestamp and the size of the information that carries. Each of the following entities can hold the
three items mentioned above, and Östgötatrafiken provides only the latest. Vehicle position contains
fields which provide information about the trip, the position of the vehicle, a timestamp and an id.

3.2.2 Processing feeds

Although all feeds are served through HTTP protocol, the data exchange format in GTFS Real-time
is based on Protocol Buffers. Protocol buffers are a language- and platform-neutral mechanism for
serialising structured data (similar to XML, but smaller, faster, and simpler). The data structure
is defined in a gtfs-realtime.proto file, which then is used to generate source code to easily read and
write your structured data from and to a variety of data streams, using a variety of languages – e.g.
Java, C++ or Python.

Figure 3.2: Feed processing diagram

In order to filter only the important information, a program that follows the steps mentioned
in figure 3.2 has been developed.
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To periodically obtain the relevant data from an instant, the program must run on a loop. This
loop, which then calls the methods for parsing the data, is called every five seconds. This time value
has been chosen in relation with the definition of the scenario, which will be detailed in the following
section. For parsing every data feed, a call retrieving the API URL needs to be made. In order
to acquire the data an API key is needed, this is provided by Trafiklab [15], a community for open
traffic where all the transport API from Sweden are collected. The response is then parsed using
protocol buffers and iterated to save the data required for the experiment.

Not all the downloaded feed is stored, instead it is filtered using the following criteria. Firstly,
only the vehicles inside the area considered at the scenario are evaluated. Then, the interesting
features related to each vehicle are extracted: latitude, longitude, vehicle id, speed and time when
the measurement has been performed. These features are then saved as a line inside a comma-
separated value file. Only those fields related with the traffic have been saved. Others like the
bearing of the vehicle, the id of each entity (not the vehicle) or information about the trip that was
being performed are not considered relevant for this problem.

The data needs to be collected for a long period of time in order to have enough training
examples for the machine learning algorithm to find structure within it. After the gathering the
data, some processing needs to be done in order to feed it to the neural network. This processing has
been done with the Pandas Data Analysis Library: an open source, BSD-licensed library providing
high-performance, easy-to-use data structures and data analysis tools for the Python programming
language [16].

3.2.3 Building a time series

Once all the data is collected, a time series needs to be build. Since the data has been gathered
following a time line there is no need to order the samples. However, an important characteristic
of time series is that the samples are equally spaced. A real-time feed has been saved every five
seconds which in average contains ten speed samples of different vehicles. This instantaneous speed
is not a suited representative of the actual traffic state, since it could have a null value due to a bus
stop or traffic light. Also, there isn’t available data for every hour of the day, since it is limited to
the public transport schedules.

For all the reasons mentioned above, the data needs to be treated again to fit the project needs.
The first thing needed is to group the data regarding different labels: date, weekday, hour, minute
and speed. Then, using MATLAB software, stored in a table with the objective of reaching an
array formed by the average speed of each hour ordered by time. Since the instantaneous data is
not reliable when making predictions, the different samples are grouped by hour and date and then
averaged. As studied in [17], performing a weighted arithmetic mean in the samples samples that
only differ in the minute feature gives an accurate representation of the traffic state. The weighted
arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average),
except that instead of each of the data points contributing equally to the final average, some data
points contribute more than others. In this case this helps accounting for the difference in number
of samples in each minute.
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3.2.4 Time series to supervised learning data

In order to input the data collected to train or test the LSTM network, the dataset must follow
some rules. First of all, since a supervised learning algorithm is being implemented, the data needs
to be labelled. That means going from a list of numbers to a list of input and output patterns. Each
training example of the dataset needs to follow the structure below:

Xt−nts
, Xt−(nts−1), ..., Xt−n1

, Xt, Yt+m1
, ..., Yt+mft−1

, Yt+mft

Being X the input data, Y the output ground truth or labels, n = lag · (1, 2, ..., ts) and m =
lag · (1, 2, ..., ft). Each sample X represents a speed value in a specific time point. The sequence
of inputs represents past observations from which the network will try to learn a connection to
make the predictions Y . This data must be equally spaced in time and in order to define this space
the parameter n is defined. The time-steps, ts, are the number of samples that will receive the
network and lag is the time value difference between them. Similarly, the output features or future
times, ft, are the number of values that the network will predict. A simple example, if we have
a dataset of speed every hour (50 samples total) and the last six hours need to be considered for
predicting the next three we will have a matrix with ts + ft columns and each row will consist
in Xt−6, Xt−5, ..., Xt−1, Xt, Yt+1, Yt+2, Yt+3. It has to be taken into account that even though the
original dataset had 50 training examples the final matrix will not have the same number of rows
since there will be some NaN values that need to be dropped.

3.3 Network architecture

Before deciding to implement a Long Short-Term memory Network, other models used for forecasting
were thoroughly evaluated. In both subsections below, the other type of architectures studied are
detailed.

3.3.1 Feed Forward Networks

The first algorithm studied were Feed Forward Networks (FFN) which were the first ever developed.
In this particular network the information always flows the same way, forward. It has a clear
structure and it is divided by layers. As mentioned in the Background chapter, it starts at the input
layer, depicted in green in figure 2.1, and the information is passed through the next layers with a
specific weight for each link. The sum of the products of the weights and the inputs is calculated
in each node, and if the value is above some threshold (typically 0) the neuron fires and takes the
activated value (typically 1); otherwise it takes the deactivated value (typically -1). After going
through hidden layers the values reach the output layer were the result is obtained. The connection
of the neurons between layers never make cycles or loops. To adjust weights properly, one applies a
general method for non-linear optimisation that is called gradient descent.
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3.3.2 Convolutional Neural Networks

Another of the algorithms studied and considered as a possible solution for the problem presented
were Convolutional Neural Networks. These type of networks share the same general structure as
a FFN with input, hidden and output layers. However they are more complex since instead of just
weighting and adding values more complicated operations are performed. An example of those is
detailed in figure 3.3 below. They are commonly used for processing single data points such as
images since they can extract features of the input matrices. This type of network is capable of
finding more difficult relations between the data provided but it requires large amounts of input
data.

Figure 3.3: Example of a CNN architecture

3.4 Performance evaluation

In order to have a numerical method to determine the performance of the developed model, a baseline
was required.

To determine the quality of the forecasts performed the reference model selected was a arithmetic
mean computed using all the collected speed samples. This average, computed for each hour of the
day, consisted in a 126 sample sequence that represented the 18 samples for each day of the week. For
simplicity, no weekly variations were considered, meaning that four of this sequences concatenated
one after the other represented a month.

This baseline serves as a comparator to the predictions made by the machine learning algorithm.
In order to be able to determine if the outputed results are better or worse than the baseline, both
the Root Mean Squared Error and the Absolute Error have to be computed and compared. If these
errors are lower for the developed implementation then the evaluation is successful.

21



4 | Results

In this chapter the results of the project are presented. As before, it is mainly divided in three
sections consisting in the scenario, the collected data, the choice of architecture implementation and
finally its evaluation.

4.1 Scenario

In order to visualise if the acquired data was relevant for the problem the coordinates that reported
low speed values (lower than 3.5 meters per second) were plotted in a heatmap using the Maps
Javascript API from Google. As it can be seen in figure 4.1, there are enough low-speed values
to train a small neural network. From this picture, we can also see that this samples are mainly
concentrated in Sankt Larsgatan.

Figure 4.1: Heatmap of high traffic areas inside the scenario
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4.2 Data mining

For this project, samples of real-time traffic feeds have been taken every five seconds and each
measurement consisted, on average, in 10 speed samples due to scenario limitations. This resulted in
having 120 samples every minute, which turned to 7,200 samples per hour. It has to be considered
that Östgötatrafiken does not provide bus service between 00:30 and 04:30 during weekdays, so
144,000 samples were gathered each day. In total, 3.423.691 speed measurements were gathered in
a period of six weeks. After applying the previously described processing and computing only hours
between 6:00 AM and 11:00 PM (a total of 18 hours per day), the dataset consisted in 756 speed
samples chronologically ordered.

In figure 4.2 the final time series obtained is depicted:

Figure 4.2: Speed time series dataset

In order to understand better the data being used as the network input, different analyses have
been performed. The first thing studied was the variation of the speed during a day, depicting the
results in the superior plot in figure 4.3 below. In this figure we can see the main differences between
weekdays and weekends. The superior plot shows the changes in the average speed during the course
of the day. It can be seen that Saturdays and Sundays report higher speed values while values from
Monday to Friday are lower. For the later, the local minimum peaks are located at 7:00 AM and 4:00
PM. To numerically have an indicator of the differences between the types of days, the inferior plot
in figure 4.3 has also been added. This graph displays the variance when comparing four different
values. The first one is the variance between the first five days of the week. The second line depicts
the variation between both days of the weekend. It can be noted that both of these lines represent
the lowest variations during the day. For the remaining two lines, the comparison is between the
weekend days. It can ve observed that both share the lowest values for the majority of the hours.
The last two lines represent the study of speed variations of Saturday and Sunday when compared
with other weekdays respectively. These approximately share the same time evolution, reaching its
maximum at 7:00 AM with another local maximum at 4:00 PM.

23



Figure 4.3: Daily speed variation

Due to the chosen scenario area, a list of programmed events at SAAB Arena and Linköping
Konsert & Kongress has been collected. However, since the schedule had still to be made at the
time, both entities combined could not provide dataset large enough to incorporate these features
in the neural network for a more thorough learning process.

In 3.1 the results of the effect on traffic caused by this events are detailed. These results pre-
sented are those where the impact of the events was visible, since many didn’t reflect any variations
respect the usual speed values. In both 4.4a and 4.4b the typical speed of that particular day is
displayed in blue and the other lines show the speed of that same weekday when different events
were scheduled.
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(a) Mean speed during event at 16:00h, 17:30h and
19:00h (b) Mean speed during event at 13:00h and 16:00h

Figure 4.4

4.3 Implementation and evaluation

4.3.1 Machine learning solution

After the analysis of the different forecasting architectures that might have been able to fit our
problem, table 4.1 below summarises the results obtained. The Feed Forward Network is not the
best decision when trying to find relations through time since its information flow does can’t re-
tain temporal relations. Although Convolutional Neural Networks can have a temporal sense, the
architecture performs a better fitting when provided with images as the dataset. Since GTFS feeds
do not provide real-time pictures of the road state that option was also discarded. Succeeding this
comparison, the decision of using Long short-term memory networks has been made. The framework
used has been Keras, an open-source library of artificial neural networks in Python language.

Non-linear
associations

Multivariate
data

Parameters
auto-update Time sensitive Enough data

FFN X X X 7 X
CNN X X X X 7

LSTM X X X X X

Table 4.1: Analysis of four different forecasting models

After deciding the model to be used, two different approaches have been implemented. The
first one is a LSTM network which its architecture consists in a layer of four LSTM neurons followed
by a dense layer of a single neuron that acts as the output. A dense layer is just a regular layer of
neurons in a neural network. Each neuron receives input from all the neurons in the previous layer,
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thus densely connected. The loss function is computed using the mean square error function and
uses the Adam optimiser (Kingma and Ba [2014] [18]). The network trains for 1500 epochs, which
means that the training data computes this number of one forward pass and one backward passes
for each epoch.

The time series data for this case consists in a matrix formed by two columns where the second
one acts as the label by containing the speed of the hour that follows the value of the first column.
In this case, it is clear that the lag value is set to one since we are forecasting the immediately
following value. For this neural network, the dataset has been divided to use 60% as training data
and the remaining 40% as test data.

After computing the predictions for the test data, the root mean squared error resulted with
the confidence interval of (0.480, 0.539) with a confidence level set to 0.95. When it comes to the
mean absolute error the results showed an interval of (0.315, 0.374), with the same confidence. In
figure 4.5 the predicted speeds are shown in orange while the ground truths are displayed in blue.

Figure 4.5: One-hour forecast

The second approach consists in predicting several the speed hours forward. In this case,
forecasting the following nine hours by looking at the previous 18, which correspond to an entire
day. For this network, the input data requires a matrix shaped with 27 columns. Since we look at
the values chronologically without missing any, the lag is also set to one. For this case, due to the
smaller size dataset after the data processing, initial NaN values are set to zero for the network to
learn as starting values. This way, the final dataset ends being a matrix shaped (756, 27).

This network consists in a six neuron LSTM layer followed also by a nine neuron dense layer
that acts as output, one for each prediction. The main difference of the LSTM layer from the
first approach consist in the input shape and the forecasting values, since the loss function and the
optimiser remain the same. The training of this network has been performed with an epoch value
of 1000 with one single batch of training data .
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Table 4.2 shows the RMSE confidence intervals for each future hour forecast, while table 4.3
shows the same intervals for MAE.

t+1 (0.491, 0.543)
t+2 (0.660, 0.738)
t+3 (0.718, 0.793)

t+4 (0.786, 0.865)
t+5 (0.858, 0.948)
t+6 (0.905, 0.996)

t+7 (1.000, 1.094)
t+8 (1.109, 1.216)
t+9 (1.108, 1.226)

Table 4.2: RMSE confidence intervals for each future prediction

t+1 (0.304, 0.363)
t+2 (0.436, 0.503)
t+3 (0.487, 0.558)

t+4 (0.504, 0.594)
t+5 (0.622, 0.721)
t+6 (0.626, 0.725)

t+7 (0.700, 0.798)
t+8 (0.794, 0.901)
t+9 (0.851, 0.969)

Table 4.3: MAE confidence intervals for each future prediction

In figure 4.6 some samples of the predictions performed by the network are shown in red. Only
some of them are displayed for clarity since showing all of them would make it impossible to see the
labelled data. The red line consists in the nine different forecasts made after the network receives
an input of 18 samples. As it can be seen, the first three hours match with little difference to the
ground truth whereas the further in time the prediction are made the error is increases significantly.

Figure 4.6: Nine-hour forecast
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4.3.2 Baseline comparison

After developing both, the machine learning algorithm and the simple statistical model that served
as the baseline, the results were plotted and properly compared using the RSME and absolute error
errors. In picture 4.7 below we can see the average performed per day that formed the baseline (in
orange) used for evaluating the model developed. In blue, we can see the ground truth.

Figure 4.7: Baseline compared to the real speed data collected

When comparing the baseline to the results obtained by the Long Short-Term Memory neural
network implementation used in the first approach (where the predictions were made only one hour in
the future) the figure below (4.8) was obtained. In blue is displayed the absolute error of the machine
learning algorithm while in orange the baseline error. The error is displayed for each of the test
data sample. Given the results obtained with the nine hour in the future forecast, this comparison
is useful for the first hour prediction. The absolute error comparison between the baseline and the
other hours are not shown but it can be easily seen that the forecast perform much worse than the
baseline.
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Figure 4.8: Computed baseline and predictions absolute error
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5 | Discussion

In this chapter the methodology used during the whole project and the results obtained are to be
commented. The first part being criticised is the scenario limitations set for the project and the
impact that had on the results. Secondly to be discussed are the data used for building the time
series and the results given by the output of the LSTM network implementation. Also, the choice
of this type of solution and its limitations will be taken into account. Finally, ethical and societal
aspects related to the work are going to be studied.

5.1 Results

5.1.1 Scenario

Studying a subarea of Linköping municipality was essential to put some limits to the project. The
choice of this scenario 3.1 allowed filtering data that could have compromised the final dataset for
being too on the outskirts of the city and always measuring higher values. However, as it can be
seen on the heatmap 4.1 it could have also been smaller and more focused on Sankt Larsgatan, the
main street when considering the public transport lines. This way, the load of data to process would
be smaller and while still containing the low speed values necessary for the congestion labels. It also
can be seen that traffic jams do not occur frequently in Linköping, probably because it is a small
city with lots of facilities when it comes to other means of transport more environmentally friendly
such as cycling, taking the train or the bus. For this reason, conducting this same study in another
location with higher density of private vehicles would be interesting to see if there is any variation
of the final results.

5.1.2 Data

When it comes to the data used, the main factor to be studied is that it comes from the real-time
feeds sent by the local Östgötatrafiken buses. One of the main aspects was the validation that these
feeds were representative enough of the traffic state, since speed zero values were reported when the
bus approached its stop. It can be seen in the superior plot of 4.3 the ’W’ shape of the expected
normal speed behaviour with the morning peak relating to the movement of getting to workplaces
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and the evening peak of going back home. The values in-between these peaks are slightly low than
what was expected and one cause may be the bus stops mentioned before. The values obtained
for the daily mean speed of the weekends is higher than weekdays, which is also coherent. When
studying the variation between the samples, shown in the inferior plot in 4.3, the only time frame
that stands out of the ordinary is the interval from 10:00 PM to 00:00 AM since the only relation
with low variance values is when comparing Sundays with weekdays. These differences are neither
good nor bad in terms of reflecting the traffic state. However, having these unrelated changes in
speed values may lead to more difficulties when the network tries to establish a temporal relation.

In order to make more accurate predictions the attempt of adding other datasets rather than
the speed data provided by Östgötatrafiken was made. Even though the data collected was not
enough, the events scheduled for the data collection period were only seven, an analysis was made
to see if these had a real impact on the city traffic state and if it could be useful to gather a
normal size dataset to better the performance of the machine learning algorithm. This impact is
displayed in figure 4.4. In 4.4a, the effect is minimum, since there were three events scheduled for
that day in either Konsert & Kongress or SAAB Arena and only the ones at 16:00h and 19:00h
show a small decrease in speed. However, in 4.4b we can see that there was a programmed event
that had a huge impact on the traffic state, since the speed values started decreasing more than an
hour before the event at 13:00h and recovered normal values after its start. These results show that
the events organised at these venues do not always have an important effect of the traffic flow but
they sometimes do, meaning that an updated machine learning solution might be able to learn these
relations and extract some conclusions to make more accurate predictions.

5.1.3 Implementation and evaluation

The choice of Long Short-Term Memory networks for developing a solution for this project was
sensible after the analysis of the other types of neural networks. In more detail, Feed Forward
networks are not able to retain the time related dependencies of the time series fed to the network,
an aspect crucial for this specific problem since time is a key factor in traffic congestions. The
other algorithm studied, Convolutional Neural Networks, were also discarded since they were mainly
developed for image processing and require a hugh amount of data, a bigger one that all the data
that was collected during a six week period.

If we analyse the results obtained with the first machine learning approach we can see in figure
4.5 that the prediction matches almost perfectly with the labels of the test data. It is important
to notice that the forecast almost fits the real value except in unexpected changes like this last
peak. This small underfit can be caused by two main things. The first one is that the network
might be unable to learn unprecedented changes and the second one that in this specific time frame
there weren’t enough data samples to compute an average representative enough of the state. This
translates that the network may not be always able to predict sudden high or low changes (real or
not) in speed but it is a good predictor for the usual state. If we look at the RMSE or MAE we can
see that the values are not really high. In this case, it is more understandable to look at the mean
absolute error since it directly translates to error in speed units (m/s), so the in average the error of
the algorithm is around 0.345 meters per second, which equals to 1.242 kilometers per hour which
is not a significance value when determining if there is a dense traffic state or not.

When comparing this results to the baseline wee can see that the LSTM model is capable of
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detecting changes that a normal mean could. Some variations such a as a day or week with a
higher traffic influence would not be detected with the simple statistical model since it never varies
over weeks. Due to this better adjustments to the real reported values, in general the error of the
machine learning algorithm is lower than the baseline as it is displayed in figure 4.8. However, the
time limitation did not make it possible but it would be really interesting comparing the solution
implemented in this project with a more advanced statistical method to see if it still performs worse
since the difference between these errors is not much.

When analysing the second approach, the nine-hour prediction based on the previous 18 hours,
the results are coherent: the error increases the further in time the prediction is trying to be made.
Although at first sight the results don’t seem to be promising, it is important to notice that the
error of the first hour prediction remains approximately the same as the one obtained with the first
LSTM approach. This means that the network does not need a whole day of samples to predict a
single hour.

5.2 The work in a wider context

Using new technologies such as machine learning does not only provide economical benefits but can
also contribute to other equally important aspects. Some of the main examples that this project has
an impact on are the reduction of local pollution levels where the dense traffic spots are located or
the improvement of the efficiency of the local public transport system. By reducing the local levels
of pollution, we can help improve the quality of life of the people in the surroundings of the most
congested areas. By improving the efficiency of the local public transport system, we might help
in the user shifting from private means of transportation to other more sustainable options. When
climate change is one of the current threads, small improvements like these can make a difference.
Another important aspect is that having a more connected, precise and efficient transport system is
key when moving forward to the smart city concept.

Another aspect to consider is the acquiescence of the data used. The feeds provided by Östgö-
tatrafiken come from local buses. This data is not directly linkable with an individual, meaning that
anonymity is preserved. Although having more data would make a grate improvement to the results,
it always needs to be taken into account its precedence. A balance must be maintained between the
amount of data used to obtain the best predictions and the privacy of users. For example, collecting
sensory data from private vehicles would be a great source of measures, but it would also mean
losing anonymity and an invasion of user privacy.
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6 | Conclusion

After the completion of this project some main conclusions can be extracted. The first one relates
to the first part of the project: the data acquisition and analysis. The main one is related to the
first research question posed at the beginning of this thesis: Is public transport real-time speed
data a good representative of the traffic state? Does this data behave as a periodic function?. The
answer found is clear, the data reported by the local Östgötatrafiken buses is representative of the
traffic state but only in places where the service is provided. This data behaves periodically as what
is expected for a normal traffic flow and clearly shows the main differences between daytime and
nighttime and also between each day of the week, reflecting the working schedules and the inactivity
periods.

The second conclusion is linked with the second part of the project and also to the second and
last research question: Can a machine learning algorithm predict the future speed based on previous
measurements?. The answer is positive, a Long Short-Term Memory Network can predict future
traffic speeds better that a normal statistical average would. However, it has also been seen that
that the further in time the prediction is made the greater the error committed, and then using an
average to predict the future speed provides a better result than the neural network output.

6.1 Future work

One last important conclusion drawn from this project is that there is still a lot of work that can be
made to improve the results obtained. The addition of other datasets for more accurate forecasts is
one of the clearest examples. From my experience, trying to collect a near scheduled events dataset
as I tried or adding others such as weather conditions or scheduled road works would definitely
improve the results. Another option for obtaining more precise forecasts is the enlargement of the
speed dataset to enable the auto-update of the network parameters, meaning that the network would
be able to learn at the same time that the test data is provided.

Other more general future work aspects to consider would be using this results or even an
improved version to implement real city changes such as dynamic public transport lines that avoid
areas where traffic jams have been forcasted or with dynamic fares such as discounted prices when
the traffic load is high to promote a wider use of public transport as a greener and sustainable way.
These data can also be used in other aspects such as city planning for avoiding congestion spots or
better understanding of the traffic patterns.
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