110 research outputs found

    Conversational Machine Comprehension: a Literature Review

    Full text link
    Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers.Comment: Accepted to COLING 202

    Generating Effective Sentence Representations: Deep Learning and Reinforcement Learning Approaches

    Get PDF
    Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Many Natural Language applications are powered by machine learning models performing a large variety of underlying tasks. Recently, deep learning approaches have obtained very high performance across many NLP tasks. In order to achieve this high level of performance, it is crucial for computers to have an appropriate representation of sentences. The tasks addressed in the thesis are best approached having shallow semantic representations. These representations are vectors that are then embedded in a semantic space. We present a variety of novel approaches in deep learning applied to NLP for generating effective sentence representations in this space. These semantic representations can either be general or task-specific. We focus on learning task-specific sentence representations, where often these tasks have a good amount of overlap. We design a set of general purpose and task specific sentence encoders combining both word-level semantic knowledge and word- and sentence-level syntactic information. As a method for the former, we perform an intelligent amalgamation of word vectors using modern deep learning modules. For the latter, we use word-level knowledge, such as parts of speech, spelling, and suffix features, and sentence-level information drawn from natural language parse trees which provide the hierarchical structure of a sentence together with grammatical relations between the words. Further expertise is added with reinforcement learning which guides a machine learning model through a reward-penalty game. Rather than just striving for good performance, we always try to design models that are more transparent and explainable. We provide an intuitive explanation about the design of each model and how the model is making a decision. Our extensive experiments show that these models achieve competitive performance compared with the currently available state-of-the-art generalized and task-specific sentence encoders. All but one of the tasks dealt with English language texts. The multilingual semantic similarity task required creating a multilingual corpus for which we provide a novel semi-supervised approach to make artificial negative samples in the presence of just positive samples

    Deep neural networks for identification of sentential relations

    Get PDF
    Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks.Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher Intelligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt\-säch\-lich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens für NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergebnisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erkennen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen, der sich von dem bekannten Attention-Mechanismus für recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort für multi-choice question answering hauptsächlich von Phrasen\-a\-lignie\-rungen stärkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwächeren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des Verständnisses eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks

    A Natural Proof System for Natural Language

    Get PDF

    Neural-based Knowledge Transfer in Natural Language Processing

    Get PDF
    In Natural Language Processing (NLP), neural-based knowledge transfer, which is to transfer out-of-domain (OOD) knowledge to task-specific neural networks, has been applied to many NLP tasks. To further explore neural-based knowledge transfer in NLP, in this dissertation, we consider both structured OOD knowledge and unstructured OOD knowledge, and deal with several representative NLP tasks. For structured OOD knowledge, we study the neural-based knowledge transfer in Machine Reading Comprehension (MRC). In single-passage MRC tasks, to bridge the gap between MRC models and human beings, which is mainly reflected in the hunger for data and the robustness to noise, we integrate the neural networks of MRC models with the general knowledge of human beings embodied in knowledge bases. On the one hand, we propose a data enrichment method, which uses WordNet to extract inter-word semantic connections as general knowledge from each given passage-question pair. On the other hand, we propose a novel MRC model named Knowledge Aided Reader (KAR), which explicitly uses the above extracted general knowledge to assist its attention mechanisms. According to the experimental results, KAR is comparable in performance with the state-of-the-art MRC models, and significantly more robust to noise than them. On top of that, when only a subset (20%-80%) of the training examples are available, KAR outperforms the state-of-the-art MRC models by a large margin, and is still reasonably robust to noise. In multi-hop MRC tasks, to probe the strength of Graph Neural Networks (GNNs), we propose a novel multi-hop MRC model named Graph Aided Reader (GAR), which uses GNN methods to perform multi-hop reasoning, but is free of any pre-trained language model and completely end-to-end. For graph construction, GAR utilizes the topic-referencing relations between passages and the entity-sharing relations between sentences, which is aimed at obtaining the most sensible reasoning clues. For message passing, GAR simulates a top-down reasoning and a bottom-up reasoning, which is aimed at making the best use of the above obtained reasoning clues. According to the experimental results, GAR even outperforms several competitors relying on pre-trained language models and filter-reader pipelines, which implies that GAR benefits a lot from its GNN methods. On this basis, GAR can further benefit from applying pre-trained language models, but pre-trained language models can mainly facilitate the within-passage reasoning rather than cross-passage reasoning of GAR. Moreover, compared with the competitors constructed as filter-reader pipelines, GAR is not only easier to train, but also more applicable to the low-resource cases. For unstructured OOD knowledge, we study the neural-based knowledge transfer in Natural Language Understanding (NLU), and focus on the neural-based knowledge transfer between languages, which is also known as Cross-Lingual Transfer Learning (CLTL). To facilitate the CLTL of NLU models, especially the CLTL between distant languages, we propose a novel CLTL model named Translation Aided Language Learner (TALL), where CLTL is integrated with Machine Translation (MT). Specifically, we adopt a pre-trained multilingual language model as our baseline model, and construct TALL by appending a decoder to it. On this basis, we directly fine-tune the baseline model as an NLU model to conduct CLTL, but put TALL through an MT-oriented pre-training before its NLU-oriented fine-tuning. To make use of unannotated data, we implement the recently proposed Unsupervised Machine Translation (UMT) technique in the MT-oriented pre-training of TALL. According to the experimental results, the application of UMT enables TALL to consistently achieve better CLTL performance than the baseline model without using more annotated data, and the performance gain is relatively prominent in the case of distant languages
    corecore