35,430 research outputs found

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Business Process Management Education in Academia: Status, challenges, and Recommendations

    Get PDF
    In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Mining Event Logs to Support Workflow Resource Allocation

    Full text link
    Workflow technology is widely used to facilitate the business process in enterprise information systems (EIS), and it has the potential to reduce design time, enhance product quality and decrease product cost. However, significant limitations still exist: as an important task in the context of workflow, many present resource allocation operations are still performed manually, which are time-consuming. This paper presents a data mining approach to address the resource allocation problem (RAP) and improve the productivity of workflow resource management. Specifically, an Apriori-like algorithm is used to find the frequent patterns from the event log, and association rules are generated according to predefined resource allocation constraints. Subsequently, a correlation measure named lift is utilized to annotate the negatively correlated resource allocation rules for resource reservation. Finally, the rules are ranked using the confidence measures as resource allocation rules. Comparative experiments are performed using C4.5, SVM, ID3, Na\"ive Bayes and the presented approach, and the results show that the presented approach is effective in both accuracy and candidate resource recommendations.Comment: T. Liu et al., Mining event logs to support workflow resource allocation, Knowl. Based Syst. (2012), http://dx.doi.org/ 10.1016/j.knosys.2012.05.01

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Creating, Doing, and Sustaining OER: Lessons from Six Open Educational Resource Projects

    Get PDF
    The development of free-to-use open educational resources (OER) has generated a dynamic field of widespread interest and study regarding methods for creating and sustaining OER. To help foster a thriving OER movement with potential for knowledge-sharing across program, organizational and national boundaries, the Institute for Knowledge Management in Education (ISKME), developed and conducted case study research programs in collaboration with six OER projects from around the world. Embodying a range of challenges and opportunities among a diverse set of OER projects, the case studies intended to track, analyze and share key developments in the creation, use and reuse of OER. The specific cases include: CurriculumNet, Curriki, Free High School Science Texts (FHSST), Training Commons, Stanford Encyclopedia of Philosophy (SEP), and Teachers' Domain
    • …
    corecore