791 research outputs found

    Affective Facial Expression Processing via Simulation: A Probabilistic Model

    Full text link
    Understanding the mental state of other people is an important skill for intelligent agents and robots to operate within social environments. However, the mental processes involved in `mind-reading' are complex. One explanation of such processes is Simulation Theory - it is supported by a large body of neuropsychological research. Yet, determining the best computational model or theory to use in simulation-style emotion detection, is far from being understood. In this work, we use Simulation Theory and neuroscience findings on Mirror-Neuron Systems as the basis for a novel computational model, as a way to handle affective facial expressions. The model is based on a probabilistic mapping of observations from multiple identities onto a single fixed identity (`internal transcoding of external stimuli'), and then onto a latent space (`phenomenological response'). Together with the proposed architecture we present some promising preliminary resultsComment: Annual International Conference on Biologically Inspired Cognitive Architectures - BICA 201

    SynthoGestures: A Novel Framework for Synthetic Dynamic Hand Gesture Generation for Driving Scenarios

    Full text link
    Creating a diverse and comprehensive dataset of hand gestures for dynamic human-machine interfaces in the automotive domain can be challenging and time-consuming. To overcome this challenge, we propose using synthetic gesture datasets generated by virtual 3D models. Our framework utilizes Unreal Engine to synthesize realistic hand gestures, offering customization options and reducing the risk of overfitting. Multiple variants, including gesture speed, performance, and hand shape, are generated to improve generalizability. In addition, we simulate different camera locations and types, such as RGB, infrared, and depth cameras, without incurring additional time and cost to obtain these cameras. Experimental results demonstrate that our proposed framework, SynthoGestures\footnote{\url{https://github.com/amrgomaaelhady/SynthoGestures}}, improves gesture recognition accuracy and can replace or augment real-hand datasets. By saving time and effort in the creation of the data set, our tool accelerates the development of gesture recognition systems for automotive applications.Comment: Shorter versions are accepted as AutomotiveUI2023 Work in Progress and UIST2023 Poster Paper

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers' trajectories

    Get PDF
    In recent years gesture recognition has become an increasingly interesting topic for both research and industry. While interaction with a device through a gestural interface is a promising idea in several applications especially in the industrial field, some of the issues related to the task are still considered a challenge. In the scientific literature, a relevant amount of work has been recently presented on the problem of detecting and classifying gestures from 3D hands' joints trajectories that can be captured by cheap devices installed on head-mounted displays and desktop computers. The methods proposed so far can achieve very good results on benchmarks requiring the offline supervised classification of segmented gestures of a particular kind but are not usually tested on the more realistic task of finding gestures execution within a continuous hand tracking session.In this paper, we present a novel benchmark, SFINGE 3D, aimed at evaluating online gesture detection and recognition. The dataset is composed of a dictionary of 13 segmented gestures used as a training set and 72 trajectories each containing 3-5 of the 13 gestures, performed in continuous tracking, padded with random hand movements acting as noise. The presented dataset, captured with a head-mounted Leap Motion device, is particularly suitable to evaluate gesture detection methods in a realistic use-case scenario, as it allows the analysis of online detection performance on heterogeneous gestures, characterized by static hand pose, global hand motions, and finger articulation.We exploited SFINGE 3D to compare two different approaches for the online detection and classification, one based on visual rendering and Convolutional Neural Networks and the other based on geometrybased handcrafted features and dissimilarity-based classifiers. We discuss the results, analyzing strengths and weaknesses of the methods, and deriving useful hints for their improvement. (C) 2020 Elsevier Ltd. All rights reserved

    A Study of Boosting based Transfer Learning for Activity and Gesture Recognition

    Get PDF
    abstract: Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.Dissertation/ThesisM.S. Computer Science 201
    • …
    corecore