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a b s t r a c t 

In recent years gesture recognition has become an increasingly interesting topic for both research and 

industry. While interaction with a device through a gestural interface is a promising idea in several ap- 

plications especially in the industrial field, some of the issues related to the task are still considered 

a challenge. In the scientific literature, a relevant amount of work has been recently presented on the 

problem of detecting and classifying gestures from 3D hands’ joints trajectories that can be captured by 

cheap devices installed on head-mounted displays and desktop computers. The methods proposed so far 

can achieve very good results on benchmarks requiring the offline supervised classification of segmented 

gestures of a particular kind but are not usually tested on the more realistic task of finding gestures 

execution within a continuous hand tracking session. 

In this paper, we present a novel benchmark, SFINGE 3D, aimed at evaluating online gesture detec- 

tion and recognition. The dataset is composed of a dictionary of 13 segmented gestures used as a training 

set and 72 trajectories each containing 3–5 of the 13 gestures, performed in continuous tracking, padded 

with random hand movements acting as noise. The presented dataset, captured with a head-mounted 

Leap Motion device, is particularly suitable to evaluate gesture detection methods in a realistic use-case 

scenario, as it allows the analysis of online detection performance on heterogeneous gestures, character- 

ized by static hand pose, global hand motions, and finger articulation. 

We exploited SFINGE 3D to compare two different approaches for the online detection and classifica- 

tion, one based on visual rendering and Convolutional Neural Networks and the other based on geometry- 

based handcrafted features and dissimilarity-based classifiers. We discuss the results, analyzing strengths 

and weaknesses of the methods, and deriving useful hints for their improvement. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Gesture recognition techniques are expected to play an impor-

tant role in future interactive experiences. In many Virtual and

Augmented Reality applications or in the control of robots and

smart objects, gestural interaction could provide a natural way to

interact. Low-cost hand tracking tools like the Leap Motion can

be mounted on the headset or embedded in desktop interfaces,

and software pipelines able to provide hand pose estimation from

RGB and RGBD data are available [1,2] . For this reason, hand ges-
∗ Corresponding author. 

E-mail addresses: cptfmr71@univr.it (A. Caputo), andrea.giachetti@univr.it (A. Gi- 

achetti), franca.giannini@ge.imati.cnr.it (F. Giannini), katia.lupinetti@ge.imati.cnr. 

it (K. Lupinetti), marina.monti@ge.imati.cnr.it (M. Monti), marco.pegoraro_01@ 

studenti.univr.it (M. Pegoraro), andrea.ranieri@ge.imati.cnr.it (A. Ranieri). 

f  

p  

d

m

 

[  

https://doi.org/10.1016/j.cag.2020.07.014 

0097-8493/© 2020 Elsevier Ltd. All rights reserved. 
ure recognition can be treated as a 3D shape analysis method

nd has become an interesting topic for the geometry processing

ommunity. 

Several researchers tried to develop gesture-recognition meth-

ds based on the analysis of the finger joints trajectories and a few

enchmarks to compare the performance of these methods have

een released [3–8] . The major limitations of most of the existing

enchmarks are related to the fact that they measure the perfor-

ance of classifiers working on segmented trajectories and do not

est the methods in a realistic online detection scenario. The dif-

erence is relevant, as, in principle, the methods should be able to

rocess streams of skeletal data continuously also avoiding false

etection and being robust against different types of “non-gesture”

ovements not included in training data (noise). 

An example of unsegmented online detection is proposed in

9] , where the dataset does not include static gestures or typical
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Table 1 

Summary of the benchmarks for 3D hand gesture recognition including finger trajectories data. Static gestures are characterized by a constant hand pose, Coarse by a global 

hand trajectory and Fine by fingers’ articulation. Samp. is the total number of gestures avalilabe in the training and test sets, Seq. is the number of recorded sequences 

including single or multiple gestures and non gesture movements. Hands indicates the number of hands used to perform the gestures and if the gesture is always performed 

with the right hand (R). SFINGE 3D is the first dataset including static, fine and coarse gestures in an online detection task with dictionary-based training. 

Dataset Data included Online task Gesture classes Training set Test set Users Hands 

Static Fine Coarse Samp. Seq. Samp. Seq. 

Shrec 2017 [3] 22 Joints + Depth images No 0 5 9 1960 NA 840 NA 28 1 (R) 

DHG 14/28 [11] 22 Joints + Depth images No 0 5 9 2800 NA NA NA 20 1 (R) 

Handicraft [12] 22 Joints No 0 9 1 210 NA 90 NA 10 2 

ASL [4] Joints, Angles No 18 12 0 780 NA 420 NA 20 1 (R) 

Montalbano [13] Audio, RGBD images, 3D skeleton Yes 0 0 20 7754 393 2742 276 27 2 

LMDHG [9] 46 Joints Yes 0 0 13 ∼455 35 ∼182 14 21 2 

LMHGIf3DVMI [14] 23 Joint Yes 0 5 2 NA ∼ 881 NA ∼ 98 10 1 (R) 

Shrec 2019 [10] 16 Joints + Quaternions Yes 0 0 5 60 60 135 135 13 1 

SFINGE 3D 20 Joints + Quaternions Yes 5 4 4 468 NA 278 72 5 1 
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ingle-handed manipulation gestures and the evaluation protocol

oes not measure false positives. Another one is the SHREC 2019

nline gesture detection track [10] , where the gesture classes to be

etected are limited to coarse ones, characterized by a single tra-

ectory. 

This fact motivated us to propose a novel benchmark especially

esigned for the testing of gesture classifiers that specifically ad-

ress a realistic online scenario. This goal is achieved by providing

n each sequence of the dataset an unsegmented collection of ges-

ures and adopting a specific evaluation protocol for online detec-

ion. In addition, to make the dataset the more general as possi-

le we include different kinds of gesture templates (i.e. static, fine

nd course) in an equal proportion. We also present two different

pproaches to cope with the proposed task, one based on image

endering and Convolutional Neural Networks, the other exploit-

ng a dissimilarity based approach and handcrafted features. The

esults of these methods are promising, show the feasibility of a

rajectory-based online recognizer able to detect different kinds of

estures, but also demonstrate the necessity of further investiga-

ion to make the methods more robust. 

The remaining of this paper is organized as follow:

ection 2 provides an overview on the existing 3D hand dataset

uitable for online gesture recognition; Section 3 illustrates the

roposed collection of data and how it was acquired; while

ection 4 describes two methods applied on the proposed dataset.

ection 5 shows how to use the proposed dataset to evaluate

nd compare online 3D hand gesture recognition methods and

ection 6 discusses the obtained results. Finally, Section 7 con-

ludes the paper. 

. Related work 

Several works addressing online hand gesture recognition pro-

ose their own dataset (e.g. [15–17] ), which not always are pub-

ic and in some cases have a small number of samples. Anyhow,

o evaluate and compare the effectiveness of online 3D hand ges-

ure recognition algorithms, it is essential investing in community

enchmarks. For this reason, in the following, we focus our at-

ention on reviewing benchmarks for 3D hand gesture recognition

ncluding fingers trajectories data that is available to the research

ommunity. A summary and comparison of the discussed methods

s proposed in Table 1 . 

So far, one of the most popular benchmarks is the one from

he SHREC 2017 track on 3D Hand Gesture Recognition [3] , which

s derived from the DHG 14-28 dataset [11] . Both these datasets

eature a dictionary of 14 gestures performed in two ways (using

ust two fingers or the whole hand). The dictionary includes both

oarse (characterized by a global hand trajectory) and fine (char-

cterized by fingers’ articulation) gestures, without any static ges-
ures. The task proposed is the classification of segmented gestures

rom the temporal evolution of a 22 joints hand skeleton. Wei et al.

12] proposed the Handicraft-Gesture dataset, which has been used

n various works. It includes 300 sequences of depth data corre-

ponding to 10 gestures, each one performed three times by 10

ubjects. The considered gestures originate from pottery skills and

re: Poke , Pinch , Pull , Scrape , Slap , Press , Cut , Circle , Key Tap , and

ow . Among them, 8 include either finger’s position or movement

etection, and only one movement involves two hands. The depth

ata is captured with 60 frames per second. For the evaluation the

uthors used the dataset derived by 7 subjects and the data of the

ther 3 subjects for the testing, such that no gesture was already

resent in the training set. Therefore this dataset includes only the

ictionary of gestures. Avola et al. [4] acquired a dataset of 12 dy-

amic gestures and 18 static gestures based on the ASL in order to

valuate the behavior of their proposed method. The gestures were

hosen to represent much of the variations in joint angles and fin-

er positions that occur when the hand performs a gesture. The

ataset is composed of 1200 sequences, coming from 20 different

eople (15 males and 5 females). The sequences from 14 people

ere used to create the training set while sequences of the re-

aining 6 people were used to form the test set. Unfortunately, the

forementioned datasets are not ideal for evaluating online classi-

cation tasks since the collected data is segmented. 

To support the evaluation and comparison of 3D hand gesture

ecognition methods performing online, Caputo et al. provide a set

f 60 trajectories annotated with temporal locations in the SHREC

019 [10] . The task of the dataset is to detect the gesture label

nd its end on a test set of 135 unlabelled trajectories with an on-

ine method. The data were collected from 13 users with a Leap

otion for a total of 195 sequences. For each sequence, users had

o perform one and only one of the following gestures with their

ndex fingertip: Cross , Circle , V-mark , Caret , Square . The dataset in-

ludes the 3D coordinates and quaternion of 22 joints of a hand.

ocusing on the recognition of gestures linked to a vocabulary,

ontalbano gesture dataset [13] combines 13,858 Italian sign ges-

ures in video sequences, considering 20 different classes. Ges-

ures were performed by 27 different participants and data were

cquired through a Kinect 360 sensor with multi-modal informa-

ion present, e.g. RGB, depth, skeleton and audio. The dataset con-

ains 393 sequences for the training set (7.754 gestures), 287 val-

dation sequences (3.362 gestures), and 276 test sequences (2.742

estures). Each sequence lasts between 1 and 2 minutes and con-

ains between 8 and 20 gesture samples. Specializing on a domain-

pecific set of gestures, the Leap Motion Hand Gestures for Inter-

ction with 3D Virtual Music Instruments (LMHGIf3DVMI) dataset

14] has been designed specifically to recognize gestures for the 

ontrol of the performance of a virtual 3D musical instrument.

ith this aim, the dataset considers eight gesture classes ( Palm
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Table 2 

The set of 13 gestures of the proposed dictionary, including static gestures, dynamic gestures characterized by palm trajectory 

only (coarse) and dynamic gestures characterized by fingers’ articulation (fine). 

# Name Type Description 

1 One Static Thumb is raised while all the other fingers are closed 

2 Two Static The index and the middle finger are raised, other fingers are closed 

3 Three Static Index, middle and thumb raised, other fingers closed 

4 Four Static Thumb closed and others fingers raised 

5 OK Static All the fingers are raised, while the index and thumb are closed in order to shape a circle 

6 Pinch Fine The index touches the thumb while the others fingers are closed 

7 Grab Fine All the fingers close together like if they were holding an object 

8 Expand Fine All the fingers raise together 

9 Tap Fine The index moves like if it was pushing a button 

10 Swipe left Coarse The hand moves to left 

11 Swipe right Coarse The hand moves to right 

12 Swipe V Coarse The hand draw a letter v 

13 Swipe O Coarse The hand draw a letter o 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Finger joints captured in the data stream. 
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tapping , Index finger tapping , Thumb finger plucking , Index finger

plucking , Middle finger plucking , Ring finger plucking , Pinky finger

plucking and Unknown ). Data was collected from 10 participants

(5 females and 5 males) using the LM sensor for the eight ges-

ture classes (of the right hand) and is made by a set of 186 fea-

tures including (i) 3D positions of all finger joints, palm center,

wrist and elbow; (ii) 3D velocity vectors for palm center and finger

tips; (iii) 3D vectors of directions for hand and each finger, along

with the 3D vector of the palm normal. Finally, among the avail-

able benchmarks suitable for online purposes, the Leap Motion Dy-

namic Hand Gesture (LMDHG) database [9] contains unsegmented

sequences of hand gestures performed with either one hand ( Point

to , Catch , Shake down , Shake , Draw C , Scroll , Draw Line , Slice , Rotate )

or both hands ( Shake with two hands , Catch with two hands , Point

to with two hands , Zoom ). Data was acquired through a Leap Mo-

tion sensor encoding the 3D coordinates of 46 joint positions (23

for each hand) and involving 21 participants. At the end of each

gesture, the involved participants were asked to perform a “rest”

gesture, i.e. keeping the hands as still as possible in a flat posi-

tion for a few seconds, thus providing a kind of null gesture that

can be used to recognize the ending of a certain movement. This

dataset contains 608 “active” plus 526 “inactive” (i.e. classified as

resting) gesture samples, corresponding to a total of 1134 gestures.

The main limitation of this dataset is, on one hand, that the train-

ing gestures, being performed by many different participants, are

quite noisy and often misinterpreted and wrongly performed by

the participants, in particular with respect to the scant amount of

samples provided. On the other hand, each gesture is interleaved

with a Resting gesture, making the online recognition task less real-

istic. Moreover, most classes have roughly 50 samples, except Point

to with hand raised that presents only 24 samples and Rest , as pre-

viously said, that presents 526 samples. 

Looking at the related work, it is possible to see that the bench-

marks proposed are mostly used to test methods for classification

of segmented gesture. Most of the methods proposed in the lit-

erature and focused on gesture recognition from fingers trajecto-

ries are evaluated on this kind of benchmarks, especially on the

Shrec 2017 dataset (e.g. [4,6,18] ). However, the methods cannot be

applied for online gesture recognition, as they are not trained to

discriminate gestures from non-gesture sequences. The few bench-

marks designed also for online gesture detection are not very pop-

ular and presents some limitations, not including different gesture

types. 

This motivated us to create our novel benchmark, SFINGE 3D,

with a dictionary of gestures that are typical of mid-air interac-

tions, including static and dynamic (both fine and coarse) gestures,

and featuring a specifically designed online detection evaluation

procedure. 
w  
. Dataset and proposed task 

Data was captured through a Leap Motion sensor mounted on

he head of the performing subjects, connected to a PC running

 simple Unity application. The 3D position in the space and the

uaternion associated with the spatial rotation of the palm and of

9 finger joints, shown in Fig. 1 , are captured at the rate of 20

rames per second and stored in text files using the Leap Motion

PI. Users had to perform gestures with the right hand, keeping

he palm in view. 

For our task, we recorded separately a dictionary with the tem-

late of the segmented gestures to be detected and a set of se-

uences with the gestures to be found. The gestures have been

erformed by 5 subjects after a short training. Each sequence was

anually annotated during recording. The start was set when users

tart performing a gesture and the end when users decided to end

he execution. The dictionary is composed of 468 gestures, 36 exe-

utions for each of the 13 classes defined. The classes are described

n Table 2 and depicted in Fig. 2 . 

The gesture classes can be divided in three macro categories:

tatic, coarse and fine. In the static gestures the hand reaches a

eaningful pose and remains in that pose for at least one sec-

nd. Typical examples, included in our collection, are numbers

erformed by raising selected fingers. In the coarse gestures, the

hole hand trajectory characterizes the classes. The movement can
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Fig. 2. Examples of the gestures included in the dataset, rendered based on the captured skeletons. First row: static gestures (1, 2, 3, 4, ok). Second row: fine gestures (grab, 

pinch, tap, expand). Third and fourth rows: coarse gestures (swipe left, swipe right, swipe V, swipe O). 
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1 Especially in the case in which the algorithm object of the benchmark needs 

a wide time window and therefore can only attribute the beginning of the current 
e simple like from right to left or represent a symbol written in

he air like the letter “O”. Finally, in the fine gestures, the action

s determined by the fingers’ movements. For example, in the grab

lass, the fingers close together as if they were holding an object.

ith these three macro-categories, the dataset includes examples

f different actions that may be useful to detect and recognize in

nteractive interfaces. 

Test data are 72 sequences including 3 to 5 gestures belonging

o the classes of the dictionary possibly interleaved with random

nger motion. The task is to recognize each gesture in a sequence

iven the dictionary of classes that can be performed. The algo-

ithms we want to benchmark should be able to detect the hid-

en gestures with a limited delay, indicating the starting frame

nd avoiding false detection. Not having a non-gesture class, the

ask can also be seen as the training of a set of one class classi-

ers aimed to separate the gestures belonging to each single class

rom the non-relevant gestures. 

We designed a specific evaluation estimating the number of

estures correctly detected, the number of the gestures missed, the

umber of false positives and the resulting F score [19] defined as: 
d
F score = 2 

precision · recall 

precision + recall 
(1) 

here precision is the percentage of gestures correctly detected in

he sequences and recall is percentage of relevant gestures in the

equences correctly classified. 

A gesture is considered as correctly detected if (i) the gesture

tart is identified within the time window of the ground truth ges-

ure with a margin of 20 frames at the beginning to allow slightly

arly detections to still be considered correct 1 and (ii) the ges-

ure is labelled in accordance with the ground truth. If a gesture

s detected in the proper frame window but with a different label,

hen we mark the gesture as mislabelled and consider it as a false

ositive, like gestures detected outside the correct gesture frames.

hen a gesture is not detected in the corresponding time window,

e label it as missed (i.e. false negative). 
etection to a t − τwin time. 
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Fig. 3. Pipeline of the view-based hand gesture recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Missing joints reconstruction based on average arm vs. hand proportions. 
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The dataset with the evaluation code are publicly available at

this website: https://github.com/SFINGE3D/DatasetV1 

4. Proposed methods 

The proposed SFINGE 3D bemchmark has been used to evaluate

and compare two methods for the online gesture recognition. The

first method is derived from a recent view-based approach exploit-

ing Convolutional Neural Networks and adapted for online recog-

nition (see Section 4.1 ). The other is based on the idea of training

single class classifiers based on dissimilarity features evaluated on

the provided dictionary (see Section 4.2 ). 

4.1. View-based method 

The first method applied on the SFINGE 3D benchmark adopts

and improves the view-based approach presented in [8] , which is

able to detect gesture movements over time and whose pipeline is

illustrated in Fig. 3 . First, hand gesture data is recorded by using a

Leap Motion sensor (blue box). A 3D gesture visualization contain-

ing temporal information is created by using the joint positions of

the 3D skeleton of the hands (magenta box) as obtained from the

Leap Motion data. Then, from the 3D visualizer, a 2D image is gen-

erated by projecting the obtained 3D points on a view plane (green

box). The created image represents the input of the pre-trained

Convolutional Neural Network (CNN) (yellow box), resulting in a

single softmax layer that directly generates the probability distri-

bution for the reference classes (purple box). The gesture is then

labeled with the class that obtains the maximum probability value

(orange box). Finally, the “user logic” block validates the label only

if its probability is above a certain percentage of confidence (98%

for the SFINGE 3D dataset) and it concatenates consecutive ges-

tures with same labels in a single gesture, also determining the

starting and ending frames (azure box). 

4.1.1. From SFINGE 3D data to 3D joint visualization 

The method proposed in [8] has been developed on the 3D

hand skeleton with 46 joints (23 joints for each hand) created by

exploiting the positions of each finger of the hand (20 joints per

hand), the palm center (1 joint per hand), the wrist (1 joint per

hand) and the elbow (1 joint per hand). To apply the method pro-

posed in [8] on the SFINGE 3D dataset, which encodes 20 joints

out of the 23 necessary for the 3D hand skeleton visualization, it

is necessary to first establish the positions of the missing joints, i.e.

the metacarpal thumb , the wrist and elbow . Note that the method

proposed in [8] uses just the 3D positions of the joints without
onsidering their orientation, then here the method exploits just a

ubset of the data present in the SFINGE 3D dataset. 

These joint positions are approximated assuming that the el-

ow, the wrist, the palm and the middle intermediate joints are

ligned. In addition, we assume that the wrist, the palm and the

iddle intermediate joints are equally distant ( Fig. 4 ); while the

lbow and the wrist joints double the wrist and the middle inter-

ediate joints distance. Then, with these assumptions and defining

he distance between the palm and the middle intermediate joints

s palm_middle_distance , we have defined the missing joints posi-

ions as follows: 

lbow = palm − 4 · palm _ middle _ distance (2)

rist = palm − palm _ middle _ distance (3)

inally, for simplicity, at this stage we set the last lacking joint, i.e.

he metacarpal thumb , equal to the intermediate thumb . 

Once all the necessary joint positions are computed, they are

sed to visualize a 3D skeleton into a programmable 3D environ-

ent obtained by using the VisPy library [20] . 

Spatial and temporal information of each gesture movement are

ncoded by creating a 3D gesture image, where 3D points and

dges are depicted in the virtual space for each finger. The tem-

oral information is encoded by changing the color intensity of the

oints at different time instants: recent positions have more intense

olors, while earlier positions have more transparent colors. 

.1.2. From 3D joints to 2D pattern 

Finally, we create a 2D image every 20 frames (1 s) by project-

ng the 3D points and edges as they are at the last instant of the

raining gesture on a view plane corresponding to the top view,

hich represents hands in a “natural” way as a human usually see

hem. Fig. 5 shows examples of the 2D patterns obtained for the

https://github.com/SFINGE3D/DatasetV1


A. Caputo, A. Giachetti and F. Giannini et al. / Computers & Graphics 91 (2020) 232–242 237 

Fig. 5. Example gestures as displayed by the 3D visualizer. Fingertips traces shows that some gestures are much quicker than others (e.g Tap vs. Swipe V ). 
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ifferent gestures of the SFINGE 3D benchmark. Although this view

oes not contain all the information available in the 3D represen-

ation of the hands, we have found that it is sufficient for a CNN

o classify the set of dynamic gestures under study very accurately.

.1.3. Offline data augmentation 

With the aim of improving the robustness of the method pro-

osed in [8] , additional offline data augmentation through the 3D

isualizer was performed before feeding the network with the im-

ges. 

This need arose from the fact that, in order to be able to detect

estures in a continuous flow of non-segmented hand poses, we

ad to drastically decrease the inference time from the 5 seconds

f the initial method down to the 20 frames (1 s) used to classify

he SFINGE 3D dataset. Having to classify images so frequently also

orced us to vary the cancellation policies of the history of finger-

ips, which now no longer occurs at constant intervals but when

he classification accuracy exceeds 75%. 

Using these inference criteria we noticed that, using the origi-

al training method based only on the online data augmentation

erformed by Fast.ai (see Section 4.1.5 ), the classifier was not able

o detect many short gestures in time (such as expand ), frequently

ncomplete gestures (such as swipe V or swipe O ) or gestures with

 very long and noisy history, mainly due to a failure in detecting

he previous gesture. 

To deal with these issues the training set was enriched with

he images obtained by sampling the gestures more frequently

nd adding noise directly in the 3D visualizer ( Fig. 6 ). Gestures

ere sampled at constant intervals of 25 frames throughout their

rogress and with variable history length from 50 to 400 frames

n 50 frame increments. Furthermore, we added uniform random

oise on the history of the gesture by inserting a random number

f points (between 50 and 400 in increments of 50) to the true

istory of the gesture. The noise is added on a frame by frame

asis, thus it is unrelated with the gesture or with the previous

r next frame in the sequence, much like noise on an analog TV

roadcast correlates with the image or the previous/next frames.

niform random noise makes fingertip traces very difficult for a

lassifier (or for a human being) to see. The classifier therefore be-

omes very good at distinguishing the noise coming from old ges-

ures (structurally easier to eliminate than uniform random noise)

rom the trace of the current gesture, therefore boosting overall

lassification accuracy. 
.1.4. Classification architecture 

The proposed method leverages a pre-trained ResNet-50 [21] ,

 state-of-the-art 2D CNN that has been modified and fine-tuned

o classify the images produced by the 3D visualizer. The ResNet-

0 is very well suited for this kind of problem because this kind

f architecture is pre-trained on ImageNet [22] and it is one of

he fastest at making inference on new images, having one of the

owest FLOPS count among all the architectures available today

23] . Unfortunately, given the modest size of the original LMDHG

ataset, it would not have been possible or useful to train from

cratch a 3D CNN model capable of classifying all the available

nformation coming from the LM sensor. Therefore transfer learn-

ng was performed twice, by first loading the pretrained ImageNet

eights, then training on the LMDHG database and finally fine-

uning on the SFINGE 3D dataset. 

.1.5. The training method 

The training took place using Python code inside Jupyter Note-

ook, leveraging the popular Fast.ai [24] deep learning library

ased on PyTorch. The hardware used was a GPU node of the high-

erformance EOS cluster located within the University of Pavia.

ach of those GPU nodes has a dual Intel Xeon Gold 6130 processor

16 cores, 32 threads each) with 128 GB RAM and 2 Nvidia V100

PUs with 32 GB of video RAM. 

The training was performed on 1920x1080 resolution images

endered by our 3D visualizer, properly sorted in directories ac-

ording to the labels of the training set of the SFINGE 3D dataset

nd then split randomly into training and validation sets with a

0/30 proportion. 

As previously mentioned, the model used for training was a

esNet-50 architecture already pre-trained on ImageNet first and

hen fine-tuned on the LMDHG dataset. Fast.ai convenient APIs al-

ow to download popular pre-trained architectures and weights in

 very simple and automatic way. Fast.ai also automatically modi-

es the model so that the number of neurons in the output layer

orresponds to the number of classes of the current problem, ini-

ializing the new layer with random weights. However, to per-

orm transfer learning from another previously trained model on

he LMDHG database, a small manual intervention was necessary

o mimic what Fast.ai does under the hood: we then loaded the

MDHG model, erased the output layer with 16 neurons and re-

laced it with a new one with 13 untrained neurons to adapt it to

he current problem. 
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Fig. 6. Example of gestures ( Expand and Swipe O ) with noise added as data augmentation directly in the 3D visualizer. 
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The training was performed using the progressive resizing tech-

nique, i.e. performing several rounds of training using the images

in the dataset at increasing resolutions to speed up the early train-

ing phases, have immediate feedback on the potential of the ap-

proach, and to make the model resistant to images at different res-

olutions (i.e. the model generalizes better on the problem and on

hands of different sizes). The specific section in [25] explains very

well the concept of progressive resizing. For our particular prob-

lem, we have chosen the resolutions of 192, 384, 576, and 960 px

(i.e. 1, 2, 3, and 5 tenths of the original 1920 × 1080 px resolution).

Raising the resolution above 1/2 of the original resolution provides

no further improvement in classification accuracy, has high train-

ing costs and makes the network slower at inference time. 2 We

also hooked a few callback functions through the Fast.ai callback

APIs to automatically save the model if the accuracy on the valida-

tion set improved with respect to the previous epoch and to stop

the training if the accuracy was above a predefined threshold, in

this case 0.999, equal to 99.90% accuracy. 

When performing transfer learning from a pre-trained network,

each training round at a given image resolution is usually divided

into two phases, a = convolutional layers are frozen and b = all

layers unfrozen, each made by one or more epochs. For each epoch,

all the training set is fed into the network, one batch at a time,

with each image in the batch being altered by a random number

of online data augmentation transformations of different intensity

or magnitude, performed in real-time by Fast.ai on the CPU. The

online data augmentation transformations that we chose to apply

to the images were: crop, flip left/right, symmetric warp, rotate,

zoom, brightness and contrast. For our problem, we found that

there was no significant improvement in unfreezing the convolu-

tional layers of the ResNet architecture, so we performed only the

training of the last uninitialized layer with fewer epochs and with

larger learning rates. 

All the code and jupyter notebooks described in this section are

available at the following URL. 3 

4.1.6. Inference on the test set 

The test set of the SFINGE 3D dataset is composed of the same

classes as the training set but presenting (i) a continuous stream

of gestures, and (ii) noise between one gesture and the other. For

these reasons, it cannot be processed with a “traditional” inference

approach, since it is very difficult to establish a priori where a ges-

ture begins and ends. In order to apply our method on the SFINGE
2 Because we then have to feed the model with higher resolution images to keep 

the best accuracy possible. 
3 https://github.com/dynamic- hand- gestures-classification/ 

dynamic- hand- gestures-classification 

 

 

 

 

 

D test sequences, we added a “user logic” block at the end of

he pipeline proposed in [8] . This block allows to set thresholds

o make the recognition more robust and to vary the amount of

revious history that is fed to the model in the inference phase.

he “user logic” block also performs other useful functions, such as

reparing the CSV file for performance evaluation and concatena-

ion of consecutive predictions in a single prediction with a frame

nterval which is the sum of the intervals of the individual predic-

ions. 

.2. Dissimilarity-based method 

The second method we applied to the SFINGE 3D dataset re-

ies on the dissimilarity-based classification approach [26] based

n binary classifiers and a sliding window approach for online de-

ection. The idea of dissimilarity-based classification is to charac-

erize each gesture with a set of distances from selected dictionary

lements. This method has shown to be successful in different do-

ains, improving the classification performance when the dissimi-

arities do not separate classes well. 

The vector including all these dissimilarity measurements is

aken as the gesture descriptor, and descriptors of the dictionary

lements have been used to train 13 single-class classifiers able

o discriminate each of the gesture from non-gestures and other

lasses. 

To compute the dissimilarity descriptor for any query gesture,

e proceed as shown in Fig. 7 . First we take a subset of the dic-

ionary as the representation set used to build the dissimilarity

eatures. We used a dense set selecting half of the dictionary el-

ments. Both the dictionary gestures and the query gesture are re-

ampled with spline interpolation to a fixed number of samples

20) equally spaced in time. Furthermore, gesture coordinates are

ranslated to have the starting point of the palm in (0,0,0) . 

Different dissimilarity scores between the query gesture and

he elements of the representation set are then estimated and con-

atenated to create the novel gesture descriptor: 

• palm trajectory dissimilarity: for each gesture of the represen-

tation set, we estimate a dissimilarity value equal to the sum

of the Euclidean distances of the corresponding points in the

query gesture. Given N gestures in the representation set, we

have N features for the query gesture descriptor. 
• hand articulation dissimilarity: for the query gesture and each

gesture of the representation set, we estimated the evolution

of the 9 distances between fingertips keypoints and between

fingertips and the palm keypoint ( Fig. 8 ). We then estimate 9

dissimilarity components as the sums over the corresponding

time samples of the differences between the values of the 9

https://github.com/dynamic-hand-gestures-classification/dynamic-hand-gestures-classification
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Fig. 7. Pipeline for the extraction of gesture representation and dissimilarity wrt the representation set selected from the dictionary. 

Fig. 8. Keypoints and the derived 9 distances used to evaluate the hand articulation 

dissimilarity component used in the method (see text). 

Fig. 9. We train a specific SVM classifier to detect the different dictionary gestures 

against non-gestures (or other gestures). 
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distances in query and representation set gestures. Given N ges-

tures in the representation set, we have thus 9N features for the

query gesture descriptor. 
• palm trajectory length dissimilarity: we added to the set the

difference in length between the query gesture and the repre-

sentation set gestures. 
• palm velocity dissimilarity: for the resampled gestures, we es-

timated the module of the displacement between each sample

and the next one and the sum of the differences of the cor-

responding displacements between the query gesture and the

representation set gestures is the estimated dissimilarity. 

The final dissimilarity vector has therefore 12N elements where

 is the number of elements in the representation set. In our tests,

e set N = 18 and the size of the resulting descriptor is 3024. 

For each gesture, we then train class-specific linear SVM classi-

ers using all the dictionary gestures and an additional set of “idle”

estures synthetically generated from some initial frames of the

ictionary gestures and keeping then the hand approximately fixed

long time. Each classifier is trained using binary labels (gesture

s non-gesture), e.g. we cast the problem as multiple single ges-

ure detection, not requiring a complete non-gesture training set

o cope with non-gesture sequences and false detection. In princi-
le, we could have trained one-class classifiers for the task, but we

ound that the use of binary SVM classifiers trained in this way led

o better results. 

During the online gesture recognition, we use a sliding window

pproach to select fixed-size windows along the test sequence. We

se three values of the windows size, chosen based on the distri-

ution of the lengths of the dictionary gestures. These values are

8, 44 and 50 frames in order to deal with potential differences in

ynamic gestures speed. Windows are moved along the sequence

ith steps of 5 frames; gestures in the windows are resampled in

0 steps, dissimilarity descriptors are estimated and fed into the

ingle class classifiers. For each time step tested, the outputs of the

lassifiers for each window size are collected into an array of votes.

inally, sequences of frames with non-zero votes for a gesture class

nd longer than 1 are detected as gestures of the corresponding

lass. 

The method has been implemented using Matlab R2019b. The

liding window classification with multiple window size has, in

he current implementation a latency of 0.05 sec on a laptop with

n Intel R ©Core TM i7-9750H CPU and 16 Gb RAM, meaning that the

ethod is suitable for real-time applications. 

. Evaluation 

In this section, we present the results of the two methods

hose outputs has been processed with the same evaluation cri-

eria. For each of the 72 sequences, the raw results of the meth-

ds feature a list of gesture detections with the correspond-

ng classes and starting frames. Classification results described in

ection 3 have been then automatically estimated with a Matlab

cript that will be available together with the benchmark data. 

.1. View-based method results 

Fig. 10 (left) shows the classification results for all the detected

estures, like the dissimilarity-based one, not counting false pos-

tives which are instead shown in Table 3 . This method performs

ubstantially better compared to the dissimilarity-based one on the

wipe Left and Swipe Right gestures with 0.87 correct classifica-

ion ratio for both gestures. Pinch and Tap remain critical gestures

t least in terms of correct classifications. This can be explained

y the fact that the Pinch and Tap gestures have a strong move-

ent component on the z axis and far less movement on the x

nd y axes, those best represented by the view captured by the 3D

iewer. Providing also a side view to the classifier could improve

ts classification on these two gestures. The processed data is pre-

ented in Table 3 . The ratio of false positives over the total number

f ground truth gestures is lower compared to the dissimilarity-

ased with a total score of 0.18. The most critical gestures in terms

f false positives for this method are Expand and Swipe Right with

.95 and 1.53 ratios respectively, and they are the major contribu-

ion in raising the method’s false positive average. 
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Fig. 10. Stacked bars chart showing the proportions between correct, misclassified and missed gestures for the view-based method (left) and the dissimilarity-based method 

(right). 

Table 3 

Classification results for the view-based method reporting different ra- 

tios and the F-score both class-by-class and overall. 

View-based method results 

Class Corr./tot Miscl./tot Missed/tot FP/tot F score 

ONE 0.79 0.00 0.21 0.08 0.84 

TWO 0.84 0.04 0.12 0.00 0.91 

THREE 0.76 0.05 0.19 0.00 0.86 

FOUR 0.81 0.04 0.15 0.00 0.89 

OK 0.92 0 0.08 0.00 0.96 

PINCH 0.3 0.15 0.55 0.00 0.46 

GRAB 0.41 0.12 0.47 0.24 0.50 

EXPAND 0.9 0.05 0.05 0.95 0.63 

TAP 0.43 0.09 0.48 0.05 0.58 

LEFT 0.87 0.04 0.09 0.09 0.89 

RIGHT 0.87 0.00 0.13 1.53 0.51 

V 0.63 0.12 0.25 0 0.77 

O 0.96 0.00 0.04 0.04 0.97 

Average 0.74 0.05 0.20 0.18 0.77 

Table 4 

Classification results for the dissimilarity-based method reporting differ- 

ent ratios and the F-score both class-by-class and overall. 

Dissimilarity-based method results 

Class Corr./tot Miscl./tot Missed/tot FP/tot F score 

ONE 1.00 0.00 0.00 0.08 0.96 

TWO 1.00 0.00 0.00 0.00 1.00 

THREE 0.95 0.00 0.05 0.05 0.95 

FOUR 0.96 0.04 0.00 0.23 0.88 

OK 1.00 0.00 0.00 0.04 0.98 

PINCH 0.80 0.20 0.00 0.25 0.78 

GRAB 0.76 0.06 0.18 0.00 0.87 

EXPAND 0.95 0.00 0.05 0.74 0.71 

TAP 0.33 0.10 0.57 0.00 0.50 

LEFT 0.26 0.04 0.70 0.09 0.39 

RIGHT 0.20 0.27 0.53 0.00 0.33 

V 0.69 0.25 0.06 0.69 0.58 

O 0.52 0.37 0.11 0.37 0.55 

Average 0.75 0.10 0.15 0.19 0.77 
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5.2. Dissimilarity-based method results 

Fig. 10 (right), shows the classification results for all the de-

tected gestures, not counting false positives which are instead

shown in Table 4 . This method presents some relevant issues with

few gestures. Tap , Swipe Left and Swipe Right present an elevate

number of missed detections, with a missed ratio of 0.55, 0.66

and 0.35 respectively. More data, including other metrics such as
he number of false positives, the F-score and the average delay

f the detected gesture beginning from the ground truth mark are

eported in Table 4 . The ratio of false positives considering all the

estures scores 0.19. The most critical gestures in terms of false

ositives are Grab , Swipe V and Swipe O . Tap , Swipe Left and Swipe

ight have both a false positive ratio and a correct classification

atio below the average possibly indicating that overall, with this

ethod, detections for these classes rarely trigger. 

. Discussion 

Our benchmark allows for a quick test of gesture recognition by

orking on finger trajectories, including different types of gestures

nd evaluation of a realistic online task. 

The results obtained with the two methods proposed are

romising, but show several issues that need to be addressed in

uture work: 

• the difficulty of handling different types of gestures simultane-

ously, e.g. static/dynamic, coarse/fine; 
• the difficulty in avoiding a significant number of false positives;
• the existence, albeit contained, of thresholding mechanisms

within the two algorithms (therefore not an optimal end-to-end

training of classifiers). 

It is interesting to note that, while the average performance of

he two methods are quite close, in particular no significant differ-

nce was found with a one-way ANOVA analysis on both corrected

lassifications and F-score averages ( p �0.05), they have quite dif-

erent results on specific gestures: the view-based method has

roblems in the classification of gestures in which the main con-

ribution to movement occurs along the z-axis. The dissimilarity-

ased method has problems in the detection of coarse gestures

 Left/Right Swipe ) and the Tap gesture, and seems in general more

ccurate on gestures characterized by gesture articulations. As the

ethod is based on single class classifiers, this suggest that dif-

erent metrics could be applied to compare hand trajectories and

rientation. 

In addition, the view-based method reports a large number of

alse positives on the Expand and Swipe Right gestures (see Fig. 11 ,

eft). While false positives on the former are easily explained by

he fact that, in all respects Expand is an open hand with all five

ngers visible (basically the most common resting position for any

and), on the latter it is more difficult to understand what trig-

ers false detections. Probably the network has learned to classify

 45 ◦ counterclockwise rotation as the start of a Swipe Right ges-

ure which, in reality, may or may not be the prelude to the actual

esture. 
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Fig. 11. Bar charts showing the ratios between false positives and ground truth gestures for the view-based method (left) and the dissimilarity-based method (right). 
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The dissimilarity-based method reports a large number of false

ositives for the coarse Swipe V and Swipe O gestures (see Fig. 11 ,

ight), that can be explained by a poor coarse comparison metric

s the missed detection, and for the Expand gesture, that has been

reviously discussed. This may suggest to exclude this gesture from

ommand gestures dictionaries for general purpose gestural inter-

aces, or to adopt specific rejection strategies. 

There are many strategies that could be applied to both the

iew-based and the dissimilarity-based method to improve results.

For the view-based method, there is ample room for improve-

ent: 

• adding two more classes such as “noise” and “blank” carrying

information about “non-gestures” could help in decreasing the

number of false positives; 
• as previously said, introducing a second side view to feed

the network with double “composite” images of the 3D scene

would greatly help the classifier to recognize gestures with

movement mostly developing along the z-axis such as pinch

and grab; 
• performing further data augmentation on the training set to

feed the network with the same sequences but rotated around

x and y axes with slightly different angles. At the moment, the

only rotations provided by Fast.ai ’s standard data augmentation

are only those applied on the 2D image, therefore around the

z-axis; 
• adding an LSTM layer at the end of the convolutional layers of

the ResNet-50 model, to make the network learn along the time

dimension. 

For the dissimilarity-based method, several ideas to improve

he results can be identified as well: 

• as the method is based on class-specific classifiers, we could

differentiate the features or even the labeling rules for the

specific gesture type or class. In particular, improved metrics

should be employed to estimate coarse trajectory dissimilarity.

Furthermore, the current method does not exploit information

related to the evolution of the hand orientation. 
• Handcrafted features could be replaced by features derived

from the raw dictionary data, for example by training dimen-

sionality reduction methods like discriminative mappings or au-

toencoders. 
• Currently we have no rejection strategies for gestures with sim-

ilar parts (e.g. Swipe V , Swipe O , Swipe Right ) that may be con-

fused. By adopting specific strategies it may be possible in-

crease the performance on them. 
• False positives could be reduced by including more complex,

synthetically generated patterns in the non-gesture class of the
training set. 
. Conclusion 

In this paper, a novel benchmark for online gesture detection

nd recognition, SFINGE 3D, has been presented. The main novelty

f the benchmark is its suitability for the detection and classifi-

ation of gestures in online realistic use cases where gestures are

equentially performed and not a priori segmented. 

We also proposed and tested on the novel benchmark two dif-

erent approaches for the online gesture recognition, one based on

isual rendering and Convolutional Neural Networks and the other

ased on geometry-based handcrafted features and dissimilarity-

ased classifiers. The results obtained are promising: both the

ethods are suitable for real time online application and provide

 similar detection rate of about 75% on average. The main weak-

esses of both the methods are related to a low accuracy and a

igh number of false positives for a limited number of the dictio-

ary gestures. This means that, on restricted dictionaries (differ-

nt for each method), the quality of the gesture detection methods

ould be already rather good. Moreover, adding the non gesture

lass can further improve the recognition capabilities by reducing

he number of false positives. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Ariel Caputo: Conceptualization, Software, Validation, Inves- 

igation, Data curation, Writing - original draft, Writing - re-

iew & editing, Visualization. Andrea Giachetti: Conceptual- 

zation, Methodology, Software, Validation, Investigation, Data 

uration, Writing - original draft, Writing - review & editing, Vi-

ualization. Franca Giannini: Conceptualization, Writing - origi- 

al draft, Writing - review & editing. Katia Lupinetti: Conceptual-

zation, Methodology, Software, Writing - original draft, Writing -

eview & editing, Visualization. Marina Monti: Conceptualization,

riting - original draft, Writing - review & editing. Marco Pego-

aro: Software, Investigation, Validation, Writing - review & edit-

ng. Andrea Ranieri: Conceptualization, Methodology, Software, 

alidation, Investigation, Data curation, Writing - original draft,

riting - review & editing, Visualization. 

eferences 

[1] Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M, et al. Medi-
apipe: A framework for building perception pipelines. 2019. arXiv:1906.08172 . 

[2] Bazarevsky V., Zhang F.. On-device, real-time hand tracking with me-
diapipe. 2019. https://ai.googleblog.com/2019/08/on- device- real- time- hand- 

tracking-with.html . 

http://arXiv:1906.08172
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html


242 A. Caputo, A. Giachetti and F. Giannini et al. / Computers & Graphics 91 (2020) 232–242 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

[  

 

[  
[3] De Smedt Q , Wannous H , Vandeborre J-P , Guerry J , Le Saux B , Filliat D .
Shrec’17 track: 3d hand gesture recognition using a depth and skeletal dataset;

2017 . 
[4] Avola D , Bernardi M , Cinque L , Foresti GL , Massaroni C . Exploiting recurrent

neural networks and leap motion controller for the recognition of sign lan-
guage and semaphoric hand gestures. IEEE Trans Multimed 2018;21(1):234–45 .

[5] Tao W , Leu MC , Yin Z . American sign language alphabet recognition using con-
volutional neural networks with multiview augmentation and inference fusion.

Eng Appl Artif Intell 2018;76:202–13 . 

[6] Maghoumi M , LaViola Jr JJ . Deepgru: deep gesture recognition utility. In: Pro-
ceedings of the international symposium on visual computing. Springer; 2019.

p. 16–31 . 
[7] Mazzini L , Franco A , Maltoni D . Gesture recognition by leap motion controller

and lstm networks for cad-oriented interfaces. In: Proceedings of the interna-
tional conference on image analysis and processing. Springer; 2019. p. 185–95 .

[8] Lupinetti K., Ranieri A., Giannini F., Monti M.. 3d dynamic hand gestures recog-

nition using the leap motion sensor and convolutional neural networks. 2020.
arXiv:2003.01450 . 

[9] Boulahia SY , Anquetil E , Multon F , Kulpa R . Dynamic hand gesture recogni-
tion based on 3d pattern assembled trajectories. In: Proceedings of the 2017

seventh international conference on image processing theory, tools and appli-
cations (IPTA). IEEE; 2017. p. 1–6 . 

[10] Caputo F , Burato S , Pavan G , Giachetti A , Voillemin T , Wannous H , et al. Shrec

2019 track: online gesture recognition. In: Proceedings of the eurographics
workshop on 3D object retrieval; 2019 . 

[11] De Smedt Q , Wannous H , Vandeborre J-P . Skeleton-based dynamic hand ges-
ture recognition. In: Proceedings of the IEEE conference on computer vision

and pattern recognition workshops; 2016. p. 1–9 . 
[12] Wei L , Zheng T , Jinghui C . Dynamic hand gesture recognition with leap motion

controller. IEEE Signal Process. Lett. 2016;23(9):1188–92 . 

[13] Escalera S , Gonzàlez J , Baró X , Reyes M , Lopes O , Guyon I , et al. Multi-modal
gesture recognition challenge 2013: dataset and results. In: Proceedings of the

fifteenth ACM on international conference on multimodal interaction; 2013.
p. 445–52 . 

[14] Deployment of LSTMs for Real-Time Hand Gesture Interaction of 3D Virtual
Music Instruments with a Leap Motion Sensor. Zenodo; 2018. 10.5281/zen-

odo.1258041 
[15] Ameur S , Khalifa AB , Bouhlel MS . A comprehensive leap motion database
for hand gesture recognition. In: Proceedings of the 2016 seventh interna-

tional conference on sciences of electronics, technologies of information and
telecommunications (SETIT). IEEE; 2016. p. 514–19 . 

[16] Kuznetsova A , Leal-Taixé L , Rosenhahn B . Real-time sign language recognition
using a consumer depth camera. In: Proceedings of the IEEE international con-

ference on computer vision workshops; 2013. p. 83–90 . 
[17] Van den Bergh M , Van Gool L . Combining rgb and tof cameras for real-time

3d hand gesture interaction. In: Proceedings of the 2011 IEEE workshop on

applications of computer vision (WACV). IEEE; 2011. p. 66–72 . 
[18] Chen Y, Zhao L, Peng X, Yuan J, Metaxas D.N. Construct dynamic graphs for

hand gesture recognition via spatial-temporal attention. 2019. arXiv preprint
arXiv: 190708871 . 

[19] Manning CD, Raghavan P, Schütze H. Evaluation in information retrieval. Cam-
bridge University Press; 2008. p. 139–61. doi: 10.1017/CBO9780511809071.009 .

chap. 8 

[20] Campagnola L, Klein A, Larson E, Rossant C, Rougier N. Vispy: Harness-
ing the gpu for fast, high-level visualization; 2015. p. 91–6. doi: 10.25080/

Majora- 7b98e3ed- 00e . http://vispy.org . 
[21] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. CoRR

2015;abs/1512.03385 . http://arxiv.org/abs/1512.03385 . 
22] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large

Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015;115(3):211–

52. doi: 10.1007/s11263-015-0816-y . 
23] HasanPour SH, Rouhani M, Fayyaz M, Sabokrou M. Lets keep it simple, using

simple architectures to outperform deeper and more complex architectures.
CoRR 2016;abs/1608.06037 . http://arxiv.org/abs/1608.06037 . 

[24] Howard J, Gugger S. Fastai: A layered api for deep learning. Information
2020;11(2):108. doi: 10.3390/info11020108 . 

25] Fang L, Monroe F, Novak SW, Kirk L, Schiavon CR, Yu SB, et al. Deep learning-

based point-scanning super-resolution imaging. bioRxiv 2019. doi: 10.1101/
740548 . https://www.biorxiv.org/content/early/2019/10/24/740548 . 

26] Pekalska E , Paclik P , Duin RP . A generalized kernel approach to dissimilari-
ty-based classification. J. Mach. Learn. Res. 2001;2(Dec):175–211 . 

http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0001
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0002
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0005
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0005
http://arXiv:2003.01450
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0006
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0007
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0008
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0009
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0010
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0011
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0013
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0013
arxiv:/190708871
https://doi.org/10.1017/CBO9780511809071.009
https://doi.org/10.25080/Majora-7b98e3ed-00e
http://vispy.org
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1608.06037
https://doi.org/10.3390/info11020108
https://doi.org/10.1101/740548
https://www.biorxiv.org/content/early/2019/10/24/740548
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0021
http://refhub.elsevier.com/S0097-8493(20)30116-3/sbref0021

	SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers’ trajectories
	1 Introduction
	2 Related work
	3 Dataset and proposed task
	4 Proposed methods
	4.1 View-based method
	4.1.1 From SFINGE 3D data to 3D joint visualization
	4.1.2 From 3D joints to 2D pattern
	4.1.3 Offline data augmentation
	4.1.4 Classification architecture
	4.1.5 The training method
	4.1.6 Inference on the test set

	4.2 Dissimilarity-based method

	5 Evaluation
	5.1 View-based method results
	5.2 Dissimilarity-based method results

	6 Discussion
	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References


