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Abstract 
This work takes important steps towards solving the following problem of current interest: Assuming that each 
individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face 
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recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the 
general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed 
today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face 
images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-
partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a 
weighted voting algorithm to integrate the evidence collected from multiple images of the same face as 
recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we 
created and two publicly available datasets which include a total of 48 people. In addition to providing 
important insights into the nature of this problem, our results show that we are able to successfully recognize 
faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches 
based on deep convolutional neural networks. 

Keywords 
Face recognition, Depth cameras, Manifold representations, Multi-view face recognition, RGBD models, Deep 
convolutional neural networks, Deep learning 

1. Introduction 
Face recognition is now considered to be a reliable and nonintrusive biometric. Several algorithms that have 
been proposed during the last decade can now achieve accuracies that far exceed 90%. Such high levels of 
accuracy, however, can only be obtained for ‘normalized’ frontal face images. These algorithms perform less 
than adequately when constraints are removed on the orientation of the camera vis-à-vis the face. Although 
there have been many attempts at replicating such results in unconstrained scenarios by automating the face 
normalization step, most methods that have been proposed to date are of questionable reliability. The general 
problem of recognizing faces under unconstrained conditions remains largely unsolved even for seemingly easy 
scenarios such as when there is sufficient illumination, the motion of the human subject is slow compared to the 
camera frame rate, and when high resolution cameras are employed. A solution to this general problem would 
be relevant in a number of applications, which include face verification and identification in static imagery 
(Abate, Nappi, Riccio, Sabatino, 2007, Phillips, Grother, Micheals, 2011, Zhao, Chellappa, Phillips, Rosenfeld, 
2003), video (Krueger, Zhou, 2002, Lee, Ho, Yang, Kriegman, 2003), and with camera networks (An, Bhanu, Yang, 
2012, Du, Sankaranarayanan, Chellappa, 2014). 

The problem of recognizing faces under unconstrained conditions, also known as "face recognition in the wild", 
deals with assigning a face identity label to a set of face images collected by an assortment of cameras at 
random orientations with respect to the face. Imagine a human subject being tracked by the cameras at a 
crowded public place like an airport or a city square. This problem has become very important in recent years 
with the advent of camera networks. Most major cities now have surveillance cameras installed in public places. 
As the reader can imagine, in its most general form, it is an extremely challenging problem. When we attempt 
face recognition from the images in a video or in other multi-view scenarios, there is no guarantee that any of 
the collected images would constitute a full frontal view of a face. In addition, we must also cope with other 
effects such as those caused by uncontrolled illumination. 

While the difficulties mentioned above can be expected to degrade the performance of any face recognition 
algorithm, one could raise the following question: Is it possible to compensate for some of the difficulties by 
leveraging the availability of multiple images recorded from different viewpoints? That is, can multiple images 
from different viewpoints of the same face compensate for the lack of a single frontal image and controlled 
illumination? It is this question that is the focus of this paper. If the reader accepts the validity of the question, 
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the problem becomes one of how to pool together the visual evidence from the different viewpoints for 
classifying a face. 

Some previous approaches have attempted to solve this problem by taking advantage of the machine learning 
algorithms made possible by the availability of large scale datasets of labeled faces in the wild (Huang, Ramesh, 
Berg, Learned-Miller, 2007, Lu, Tang, 2014, Taigman, Yang, Ranzato, Wolf, 2014; Zhou et al., 2015). While these 
approaches have obtained impressive results, achieving accuracies as high as 99.5% and even surpassing the 
97.53% accuracy obtained by human observers, they suffer from two main limitations. First, they rely on the 
existence of massive datasets for training purposes. While such datasets may be readily available for celebrities 
and other personalities, generating very large datasets for a broader population would be challenging. We are 
more interested, therefore, in a more practical scenario in which a classifier can be trained with a single 
snapshot of the target. Second, even when such large datasets are available, these methods have been shown to 
map poorly to alternative datasets collected from a general population, which limits their practical applicability. 
In (Zhou et al., 2015), for example, the authors have shown that when their approach based on multiple 
deep convolutional networks is applied to a real-world dataset of faces collected by the authors, the accuracy 
falls to 66% compared to the 99.5% accuracy obtained for the LFW dataset. 

This paper makes a small but important step in our understanding of whether it is possible to attempt face 
recognition under unconstrained conditions when our training data consists of a single frontal RGBD image for 
each human subject. Since, as mentioned above, the general problem of unconstrained face recognition is quite 
broad, we focus here on this particular subproblem in order to get a better understanding of the issues involved 
in pooling together the visual evidence from multiple viewpoints. Within the context of our subproblem, given 
the RGBD images, we are faced with issues such as how to best extract viewpoint oriented 2D images from the 
models; how to best extract class discriminatory information from these 2D images that are likely to reside on 
low-dimensional manifolds in high-dimensional measurement spaces (Okada, von der Malsburg, 2002, Seung, 
Lee, 2000, Wu, Souvenir, 2015); and, finally, how to construct a classifier that makes an identity decision based 
on a set of test face images collected from random viewpoints. 

In order to solve these problems, we first create multi-view training data from single frontal RGBD images of the 
human faces. We then view-partition the manifolds on which the data resides in order to identify the 
optimal subspacesin which groups of similar faces can be found together. We explore two different approaches 
for view-partitioning the training data, namely, pose based and appearance based. 

Subsequently, we investigate how to best carry out multi-view classification by comparing view-partitioned 
approaches with global approaches. We study two different types of global approaches, one in which all of the 
training data for all human subjects is thrown into a single global subspace, and the other in which we create a 
separate person-specific global subspace for each human subject. 

The view-partitioned approaches that we investigate create the possibility of carrying out weighted voting when 
combining the classification labels for a given set of test 2D images of the same face (as recorded from different 
viewpoints) into a single identity label. We do so by devising a weighting mechanism that uses the inverse of the 
normalized subspace reconstruction error for each test image as the weight that its classification label should 
carry in a multi-view aggregation of those labels. 

This paper makes four main contributions. First, it presents a novel hierarchical approach for multi-view face 
recognition. Second, it proposes a weighted voting scheme for improved face recognition as obtained by 
combining the classification labels for the face images from different viewpoints. Third, it presents a new 
dataset of RGBD face images for the evaluation of multi-view face recognition algorithms. Finally, this paper 
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includes an extensive evaluation and analysis of several approaches for carrying out data clustering and 
classification for the purpose of face recognition. 

The remainder of this paper is organized as follows. Section 2 briefly reviews some of the most relevant works 
related to the topic of face recognition in relatively unconstrained scenarios such as in videos and with camera 
networks. Section 3 proposes several approaches to devising face recognition algorithms that can be trained 
using a single RGBD image of each human subject, and Section 4 discusses the methods we employ to combine 
the classification results obtained from several query images of the same face from different viewpoints. An 
extensive experimental evaluation is then presented in Section 5, which is followed by our concluding remarks 
in Section 6. 

2. Prior work 
Attempts at automatic recognition of faces using non-frontal imagery have generally involved constructing 
partial or full 3D models of the human head and then morphing the models in order to best describe the test 
images. For the case of static imagery, there are two different classes of algorithms that come under this 
category. In the first class, the training protocol includes generating off-normal images of the face by directly 
applying a pose-transform to the frontal image (Beymer, 1994, Beymer, Poggio, 1995, Lando, Edelman, 1995). At 
test time, the recognizer first locates prominent facial features and then uses these locations to geometrically 
register the input with multiple example views. Subsequently, a correlation based operation is used to find the 
best match from the database. In the second approach, the goal is to use some sort of a range sensor to create a 
generic 3D point cloud model of either the whole head or of a set of salient points on the head (Blanz, Vetter, 
2003, Georghiades, Belhumeur, Kriegman, 2001, Niinuma, Han, Jain, 2013, Vetter, Blanz, 1998, Zhao, Chellappa, 
2000). Subsequently, this model, along with the accompanying texture information, can be manipulated to 
create off-normal training images for a human subject. At test time, a query image is generally manually 
annotated for the salient features of a face and the 3D model is morphed to fit the query image through these 
salient points. 

2.1. Recognizing faces in videos 
Recognizing a face in a video involves the following processes that may need to run concurrently: a 
tracking/detection mechanism, a crucial alignment step, and a recognition algorithm, which generally attempts 
to exploit the availability of multiple image frames. Each of these three steps is complex and is an active subject 
of ongoing research (Choi, Dumortier, Choi, Ahmad, Medioni, 2012, Hassner, Harel, Paz, Enbar, 2015, Alabort-i 
Medina, Antonakos, Booth, Snape, Zafeiriou, 2014, Sagonas, Tzimiropoulos, Zafeiriou, Pantic, 2013, Sung, 
Kanade, Kim, 2008, Tzimiropoulos, 2015, Tzimiropoulos, Pantic, 2013, Yoder, Medeiros, Park, Kak, 2010). 
Regarding face tracking, a comprehensive survey of the existing approaches is presented in Chrysos et al. (2016). 
In a particularly relevant example, Marras et al. (2014) proposed a particle filtering method that uses 
the reconstruction error from learned subspaces to determine face orientation. As for face detection, although 
it is still a largely unsolved problem(especially if large variations in face poses are allowed), much progress has 
been made in this area during the last decade and a half (Hjelmås, Low, 2001, Viola, Jones, 2001, Yang, 
Kriegman, Ahuja, 2002, Zhang, Zhang, 2010). While face detection is generally regarded as the starting point for 
all face analysis tasks (Zafeiriou et al., 2015), face alignment is an essential intermediate step for many 
subsequent higher level tasks that range from biometric recognition to the interpretation of emotions. We 
discuss the issue of face alignment in more detail below. 

2.1.1. Face alignment 
The problem of face alignment is a well-studied topic in computer vision(Hassner, Harel, Paz, Enbar, 
2015, Matthews, Baker, 2004, Alabort-i Medina, Antonakos, Booth, Snape, Zafeiriou, 2014, Tzimiropoulos, 
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2015, Xiong, De la Torre, 2013). Face alignment is widely used by face recognition algorithms to improve their 
robustness against pose variations. Face recognition algorithms, such as those based on feature-based 
(structural) matching (Campadelli, Lanzarotti, Savazzi, 2003, Zhao, Chellappa, Phillips, Rosenfeld, 2003), rely on 
accurate face alignment to establish correspondences for the local features (e.g. eyes, nose, mouth, etc.) used 
for matching. 

Over the last two decades, numerous techniques have been developed for face alignment with varying degrees 
of success. Çeliktutan et al. (2013) have surveyed many traditional methods for face alignment for both 2D and 
3D faces. For a more recent survey, see Yang et al. (2015). In general terms, face alignment can be formulated as 
a problem of searching over a face image for pre-defined feature points (also called face shape) that typically 
starts with a coarse initial shape and then proceeds by refining the shape estimate step by step until 
convergence. During the search process, two different sources of information are typically used: face 
appearance and face shape. Typically, faces are modeled as deformable objects that can vary in shape and 
appearance. Much of the early work along these lines was based on Active Shape Models (ASMs) and Active 
Appearance Models (AAMs) (Cootes, Edwards, Taylor, 2001, Cootes, Taylor, Cooper, Graham, 
1995, Tzimiropoulos, Pantic, 2013). In ASMs, face shape is expressed as a linear combination of shape bases 
learned through Principal Component Analysis (PCA), while appearance is modeled locally using (most 
commonly) discriminatively learned templates. 

AAMs, first proposed by Cootes et al. (2001), are linear statistical models of both the shape and the appearance 
of a deformable object. Since AAM models can generate a variety of instances with only a small number 
of model parameters, they have been used widely in many computer vision tasks, such as face recognition 
(Lanitis et al., 1997), object tracking (Stegmann and Olsen, 2001), and medical image analysis (Stegmann et al., 
2003). Despite their popularity and success, AAMs are generally considered to possess only limited 
representational power when used in unconstrained conditions. One possible way to overcome these drawbacks 
is to use part-based representations since local features are generally not as sensitive to lighting and occlusion 
as global features. ASMs are a notable example of part-based models (Cootes, Taylor, 1992, Cootes, Taylor, 
Cooper, Graham, 1995) that combine the generative appearance model for each face part with a 
Point Distribution Model for the global shape. More recently, the focus has shifted to a family of methods 
known as Constrained Local Models (CLMs) (Cristinacce, Cootes, 2006, Lucey, Wang, Cox, Sridharan, Cohn, 
2009, Saragih, Lucey, Cohn, 2011) that build upon ASM to model individual face parts using discriminatively 
trained local detectors (Asthana, Zafeiriou, Cheng, Pantic, 2013, Cristinacce, Cootes, 2007, Lindner, Bromiley, 
Ionita, Cootes, 2015, Saragih, Lucey, Cohn, 2011). In the training phase, a CLM learns an independent local 
detector for each face point and a prior shape model to characterize the deformation of the face shape. For 
testing, face alignment is typically formulated as an optimization problem to find the best fit of the shape model 
to the test image. 

Research in multi-view face recognition has been significantly influenced by the availability of large 
annotated datasets consisting of face images recorded under unconstrained conditions (Belhumeur, Jacobs, 
Kriegman, Kumar, 2013, Crabtree, Chamberlain, Davies, Glover, Reeves, Rodden, Tolmie, Jones, 2013, Le, 
Brandt, Lin, Bourdev, Huang, 2012, Rogers, 2011, Sagonas, Tzimiropoulos, Zafeiriou, Pantic, 2013, Zhu, Ramanan, 
2012). These datasets have been used to develop a variety of cascaded regression-based techniques (Asthana, 
Marks, Jones, Tieu, Rohith, 2011, Cao, Wei, Wen, Sun, 2014, Kazemi, Sullivan, 2014, Ren, Cao, Wei, Sun, 
2014, Sun, Wang, Tang, 2013, Tzimiropoulos, Pantic, 2014, Valstar, Martinez, Binefa, Pantic, 2010, Xiong, De la 
Torre, 2013, Zhu, Li, Change Loy, Tang, 2015) that have proved very successful in solving the face alignment 
problem. The motivation behind cascaded regression is that, since performing regression from image features to 
face shape in one step is extremely challenging, we can divide the regression process into stages by learning a 
cascade of vectorial regressors. As in related computer vision tasks such as human pose estimation (Liu, Li, Allen, 

https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0096
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0109
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0014
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0119
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0016
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0111
https://www.sciencedirect.com/topics/computer-science/deformable-object
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0021
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0023
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0023
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0097
https://www.sciencedirect.com/topics/engineering/linear-combination
https://www.sciencedirect.com/topics/computer-science/component-analysis
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0021
https://www.sciencedirect.com/topics/engineering/statistical-model
https://www.sciencedirect.com/topics/computer-science/parameter-model
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0053
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0091
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0090
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0090
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0022
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0023
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0023
https://www.sciencedirect.com/topics/engineering/distribution-model
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0026
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0063
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0063
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0083
https://www.sciencedirect.com/topics/computer-science/individual-model
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0005
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0027
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0058
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0058
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0083
https://www.sciencedirect.com/topics/computer-science/training-phase
https://www.sciencedirect.com/topics/engineering/deformation
https://www.sciencedirect.com/topics/computer-science/optimisation-problem
https://www.sciencedirect.com/topics/engineering/dataset
https://www.sciencedirect.com/topics/computer-science/recorded-image
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0009
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0009
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0025
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0054
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0054
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0079
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0082
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0124
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0124
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0004
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0004
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0015
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0047
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0078
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0078
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0092
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0098
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0100
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0109
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0109
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0123
https://www.sciencedirect.com/topics/computer-science/regression
https://www.sciencedirect.com/topics/engineering/regressors
https://www.sciencedirect.com/topics/computer-science/pose-estimation
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0059


Belhumeur, 2015, Yang, Ramanan, 2013), such methods are particularly successful when associated with 
generative deformable part models (Tzimiropoulos and Pantic, 2014). Despite the substantial progress made in 
face alignment in recent years, it is still unclear if the ability to determine the orientation of a face will translate 
into more accurate face recognition approaches for unconstrained scenarios in which face orientations may vary 
dramatically and frontal reconstructions are likely to be heavily distorted. 

2.1.2. Exploiting multiple image frames for video-based face recognition 
Rather than attempting to carry out face frontalization on each frame, most video-based face recognition 
approaches try to leverage the availability of multiple images of the same face in a video, often at different 
poses and under different illumination conditions. 

Taking advantage of the presence of multiple frames showing the same face in a video does, however, come 
with its own challenges --- overcoming the problems caused by sudden pose and illumination changes. A well-
known approach to solving these problems consists of recording training videos of the human subjects in 
arbitrary motions and, subsequently, using the frames of the training videos as a gallery of images for each 
subject in the database. At test time, a query video recording is compared with all of the gallery images in the 
database. Generally, each frame of the query video is compared with all the gallery images for estimating 
a matching score for the query video (Chai et al., 2007; Howell and Buxton, 1996; Pentland, Moghaddam, 
Starner, 1994, Shakhnarovich, Fisher, Darrell, 2002). 

Instead of performing face recognition with a frame-by-frame comparison of the training and the test data, it is 
also possible to treat a video as a temporal stream in the three dimensional space formed by two spatial and 
one temporal coordinates. One can analyze this 3D space holistically to extract information that characterizes 
the dynamic properties of a face. Zhou et al. (2003) pioneered this kind of work by tracking human subjects in 
videos and extracting their faces to construct priors for the different views of the different faces. Lee et al. 
(2003) focused on automatically learning the transition probabilities between the different possible appearances 
of a face in a video. Along the same lines, Liu and Chen (2003) used a Hidden Markov Model (HMM) for 
modeling the face appearance along with the head pose changes in the training videos for each human subject. 

Another class of methods, known as the ensemble approach, focuses on the fact that a query video, when 
treated as a stream of temporal information, may not correspond to any of the gallery videos recorded 
previously for all of the human subjects (Arandjelovic, Shakhnarovich, Fisher, Cipolla, Darrell, 2005, Fan, Yeung, 
2006, Hamm, Lee, 2008, Kim, Kittler, Cipolla, 2007, Shakhnarovich, Fisher, Darrell, 2002, Yamaguchi, Fukui, 
Maeda, 1998, Zhou, Chellappa, 2006). In order to deal with this problem at test time, a frame-by-frame 
comparison between the query video and the gallery videos is carried out to create virtual gallery videos for 
each human subject using the gallery video frames that are most similar to the query video frames. 
Subsequently, face recognition is based on comparing the query video with the virtual gallery videos for the 
different human subjects. 

2.2. Multi-camera and multi-view face recognition — recognizing faces in the wild 
Superficially it may seem that there should be no difference between multi-camera (or multi-view) face 
recognition and video face recognition. As it turns out, the two are very different problems because, with video, 
the variations in the viewpoints are bound to be localized to where the camera happens to be with respect to 
the human subject. On the other hand, when you have multiple cameras viewing the same subject, the cameras 
could be mounted at spatially dispersed locations that make for large variations in viewpoints vis-a-vis the 
subject. One typical example would be the cameras in an airport terminal that are tracking the same human 
subject with the goal of identifying the individual from the snippets of images recorded by the cameras. The 
multi-camera face recognition research can be divided into the following two categories: when a face to be 
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recognized is in the intersection of the fields of view of all the cameras, and when that is not the case. We briefly 
discuss both cases below. 

For the case of multi-camera face recognition when a face is in the intersection of the fields of view of all the 
cameras, most works focus on choosing the view that provides the most reliable evidence for recognizing a face 
and subsequently using a traditional approach for carrying out the recognition task (Pnevmatikakis, 
Polymenakos, 2007, Xie, Boult, Ramesh, Zhu, 2006, Xie, Ramesh, Zhu, Boult, 2007). In Xie et al. (2007), for 
example, the reliability of each camera depends on how well both face detection and recognition can be carried 
out with the image captured by that camera. Alternatively, subspace learning methods can be used to compare 
the pose of a face as seen in a camera view, with the pose information needed for aggregating the multi-camera 
data. Li et al. (2005) proposed one of the first approaches for clustering faces into subspaces according to their 
poses. Their method is based on a supervised version of Independent Subspace Analysis (s-ISA). Although their 
experiments indicate that s-ICA provides better face pose classification than Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), and Topographic Independent Component Analysis (TICA), their results 
are largely qualitative. Kan et al. (2012) proposed a method that finds optimal linear transformations to map 
images from different views (or different sensing modalities) into a common subspace. Their approach shows 
performance improvement over previous linear subspace learning approaches such as the one presented 
by Sharma et al. (2012), but their multi-view classification evaluation is restricted to the viewpoint range 
−45∘, +45∘in azimuth. Note also that manifold learning approaches have been shown to be more robust and 
have better generalization capabilities than linear methods such as ISA (Lu et al., 2013; Tenenbaum et al., 
2000; Zaki and Yin, 2015). Furthermore, none of the methods mentioned above is concerned with the problem 
of incorporating multiple query images recorded from different viewpoints in a classification algorithm. 

While not directly applicable to the multi-camera face recognition problem, another related non-linear subspace 
learning approach was proposed by Goudelis et al. (2007). In that work, the authors proposed a face verification 
(i.e., binary recognition) method that employs a kernelized discriminant for maximizing the impostor distance 
measures while minimizing the client (i.e., non-impostor) distance measure. Their method showed impressive 
single-digit equal error rates (EER) for several challenging datasets with varying face poses. 

When there is no overlap between the fields of view of the cameras involved, person re-identification becomes 
a fundamental issue in multi-camera face recognition (Bąk, Corvee, Bremond, Thonnat, 2012, Bedagkar-Gala, 
Shah, 2014, Cai, Huang, Tan, 2008, Gong, Cristani, Loy, Hospedales, 2014, Mazzon, Tahir, Cavallaro, 2012, de 
Oliveira, de Souza Pio, 2009, Satta, Fumera, Roli, 2012, Zhu, Luo, Wang, Tang, 2014). The notion of re-
identification addresses the following issue related to face recognition in the wild: If a group of people is being 
tracked by a network of non-overlapping cameras, how can we ensure that the face fragments extracted from 
two different cameras belong to the same individual? Person re-identification is a complex problem on its own 
and is currently a subject of active research. It is, however, beyond the scope of the work reported in this paper. 
Obviously, after collecting the face fragments for each individual, there remains the problem of aggregating the 
evidence and attempting final face recognition. This evidence aggregation is the main problem addressed in this 
paper. 

Regarding previous contributions to such evidence aggregation, An et al. (2012)aggregate the information from 
different cameras with the help of a dynamic Bayesian network that contains a node for each camera and a 
node for each human subject that the system is expected to recognize. At training time, the structure of the 
network and its parameters are learned with person-specific dynamics from the gallery videos. At test time, 
faces are recognized by maximizing the posterior probabilities derived from the camera and the human subject 
nodes. Du et al. (2014) aggregate evidence in multi-camera scenarios by tracking a human head from camera to 
camera. The head model used in this work is a texture-mapped sphere that is represented by spherical 
harmonics. Recognition is carried out by comparing the head model coefficients of the training images with 
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those that apply to a test subject. Another approach that tracks a head and then associates a pose with it was 
proposed by Harguess et al. (2009). In this approach, at training time, all frontal images obtained from multiple 
cameras are used for building a generic cylinder head model and a lower dimensional subspace. At test time, the 
pose of the head is estimated through the cylinder head model that is constructed during the training process. 
This pose is used to weight the reliability of a partial view of a query face assuming that the reliability goes down 
as the query viewpoint moves away from the frontal view. 

3. View-partitioned subspaces for multi-subject face data 
As stated above, the main problem that this paper investigates is that of face recognition from a set of partial 
views as recorded from a set of randomly chosen viewpoints around the face. In order to discriminate between 
the faces of different individuals, we use a vector representation for the images so that each image is regarded 
as a point in a high D-dimensional space. In order to cope with the curse of dimensionality, we want to create 
lower dimensional representations of the faces, but do so in such a way that the discriminatory information 
between the faces is not lost. As is now well known, face data collected from different viewpoints is likely to 
reside on a manifold and any dimensionality reduction approach must take into account the structure of the 
manifold — in both the original measurement space and in the target low-dimensional space. So the first 
research issue faced is how to best represent the training data for the different human subjects in a manifold-
based low-dimensional representation. We address this issue by creating multiple view-partitioned subspaces. 
By view partitioning we mean simply dividing the view sphere according to some criterion. 

The goal of the present section is to introduce two criteria for partitioning the training data for subspace 
construction. The first is based on the pose parameters associated with the training images and the second is 
based on the similarity of appearance between the training images. We have previously used both of these 
approaches for solving the simpler problem of head pose estimation (Kim et al., 2013). Our conclusion in that 
study was that, for the purpose of pose estimation, the appearance based partitioning methodproduced better 
results than the pose based partitioning method. For the purpose of face recognition, we must now also factor 
in the person-to-person image variations. In this context, for each partition of the training dataset, we can either 
construct a single subspace for all the individuals in the database, or we can create person-specific 
subspaces. Fig. 1 illustrates these variations on the pose-based and the appearance-based subspace 
construction techniques. We will discuss each of the boxes in Fig. 1 in detail later in this section. 

 
Fig. 1. Variations on the classifiers for face recognition with view-partitioned subspaces for multi-subject and 
multi-view face recognition scenarios. 

Before focusing on the issue of how best to construct the subspaces, we are faced with the serious challenge of 
collecting a large number of viewpoint variant images of the faces of different individuals for training purposes. 
In this paper, we have solved this problem by recording a single frontal RGBD image for each individual in the 
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database and then synthetically generating all the needed viewpoint variant images from the recorded RGBD 
image. In the next section we briefly discuss this process. 

3.1. Creating viewpoint-variant face images from a single frontal RGBD scan of a human 
subject 
As we have previously described in Kim et al. (2013), the 3D position (X, Y, Z) associated with an RGBD “pixel” at 
the raster coordinates (x, y) is given by: 

(1) 𝑋𝑋 = 𝑍𝑍𝐷𝐷
𝑓𝑓𝑐𝑐

(𝑥𝑥 − 𝑢𝑢𝑥𝑥),𝑌𝑌 = −𝑍𝑍𝐷𝐷
𝑓𝑓𝑐𝑐

(𝑦𝑦 − 𝑢𝑢𝑦𝑦),𝑍𝑍 = 𝑍𝑍𝐷𝐷, 

where ZD is the depth value recorded by the sensor, fc is the focal length, and uxand uy are the center 
coordinates of the image plane. Given the 3D points obtained in this manner, we first remove the background by 
thresholding the point cloud according to its depth histogram using Otsu’s algorithm (Otsu, 1975). The 
foreground, i.e., the set of points with Z coordinate lower than Otsu’s threshold, corresponds to the 3D points 
on the surface of a face (Fig. 2(a)). 

 
Fig. 2. The sequence of steps for generating a pose-transformed version of a frontal RGBD image: (a) the original 
RGBD image for the frontal pose (the RGB data is shown on the left and the depth is shown on the right); (b) the 
pose transformed and projected result from the data in (a); (c) the 2.5D interpolated result. 

The resulting 3D point cloud model is simply a collection of 9-dimensional vectors of the form ℳ =
[𝐱𝐱2𝐷𝐷 ,𝐙𝐙𝐷𝐷 ,𝐗𝐗3𝐷𝐷,𝐕𝐕𝑅𝑅𝑅𝑅𝑅𝑅]𝑇𝑇 ,, where x2D represents the (x,y) pixel positions, ZD the depth values, X3D the three spatial 
coordinates of the corresponding object points, and VRGB the three color values recorded at the pixels. This cloud 
model includes the 2D pixel coordinates, the 3D coordinates of the corresponding object point, as well as the 
texture data in the form of RGB values at the object point. Given a single RGBD image of the frontal pose, we 
generate T training images by first applying T pose transformations to its point cloud, and then projecting the 
resulting point clouds back into the camera image plane. The computation that generates a virtual view 
image It is described by 

(2) 𝐼𝐼𝑡𝑡 = 𝒯𝒯(𝐊𝐊[𝐈𝐈|𝟎𝟎𝑇𝑇]𝐺𝐺(𝐩𝐩)𝐗𝐗3𝐷𝐷), 
where K is the intrinsic camera calibration matrix, 𝒯𝒯(·) stands for the conversion from the vectorized image with 
RGB values to the 2D image on the camera image plane, and G(·) is the 3D transformation involving the 
translation parameters 𝐭𝐭 = [𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑡𝑡𝑧𝑧]𝑇𝑇 and the Euler rotation matrix R computed from the rotation 
parameters 𝜽𝜽 = [𝜃𝜃𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟]𝑇𝑇  as shown below: 

(3) 𝐺𝐺(𝐩𝐩)=[𝐑𝐑 𝐭𝐭
𝟎𝟎𝑇𝑇 1], 

where 𝐩𝐩 = [𝜃𝜃𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟 𝜃𝜃𝑟𝑟𝑟𝑟𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑡𝑡𝑧𝑧] is the pose parameter vector. 

Generating 2D images projected from rotated 3D points has two general problems to be considered. First, after 
a pose transform is applied, it is possible for multiple 3D points in the point cloud to project to the same pixel in 
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the camera image plane. To get around this problem, only the closest sample to the camera is projected into the 
camera image plane. Second, when a pose-transformed point cloud is projected into the camera image plane, 
one can end up with “holes” in the projected image on account of the variable depth resolution of the RGBD 
sensor. An example of this effect is shown in Fig. 2(b), which illustrates a pose-transformed version of the frontal 
RGBD image in Fig. 2(a). We eliminate such holes by applying bilinear interpolation to the neighboring points in 
the image plane using the constraint that the points used for bilinear interpolation possess roughly the same 
depth values. Fig. 2 (c) shows a projection when such interpolation is a part of the projection 
operator. Fig. 3shows additional examples of the training images generated according to this process. 

 
Fig. 3. Examples of the generated training images for one subject. 

3.2. Applying ISOMAP for clustering multi-subject face images 
When face images are viewed from different directions, the image data falls on a low-dimensional manifold in a 
high-dimensional measurement space (Okada, von der Malsburg, 2002, Seung, Lee, 2000, Wu, Souvenir, 2015). 
This fact is responsible for much interest in topics such as manifold-based learning and data clustering 
(Fukunaga, Olsen, 1971, Ghahramani, Hinton, et al., 1996, Kambhatla, Leen, 1997, Roweis, Saul, 2000, Saul, 
Roweis, 2003, Tenenbaum, De Silva, Langford, 2000, Verbeek, 2006). Much of this work is based on the intuition 
that if we could first create an appropriate low-dimensional representation for the underlying manifold, that 
would simplify the logic needed for establishing the decision boundaries required for the classification of the 
data. 

We have previously investigated three of the main methods that exist today for understanding the data on 
manifolds, namely: 1) Locally Linear Embedding (LLE) (Roweis and Saul, 2000); 2) ISOMAP (Tenenbaum et al., 
2000); and 3) Representations that can be obtained by the Kambhatla and Leen algorithm (Kambhatla and Leen, 
1997). Our study concluded that ISOMAP gives us the best partitioning of the data that minimizes the 
average reconstruction error in the subspaces in each of the view partitions of the data (Kim, 2015). The goal in 
this section is to demonstrate the clustering that is achieved when ISOMAP is applied to the multi-subject face 
images. 

As described in the previous section, we record a single frontal RGBD scan for each human subject and then 
create viewpoint dependent training images from the scan by applying a set of appropriate projection 
transforms to the scan. The clustering results we show in this section are obtained on the image data collected 
in this manner. These results are based on the training images collected from the RGBD scans for the three 
subjects shown in Fig. 4(a). 
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Fig. 4. Visualization of the manifolds corresponding to three subjects as obtained by ISOMAP: (a) Three subjects, 
(b) Visualization of person-specific manifold structure in the PCA space, (c) Mean manifold for the person-
specific manifolds in (b). 

The manifold structure shown in Fig. 4(b) for each of the three subjects in Fig. 4(a) is in the space spanned by the 
three leading eigenvectors when all of the data for all three subjects is subject to a PCA based dimensionality 
reduction. Each subject-specific manifold in this figure is illustrated with a different color that matches the color 
of the border for the corresponding human subject in Fig. 4(a). As the reader can see, all three manifolds look 
similar globally. However, when the manifolds are examined more carefully by focusing on the local curvatures, 
one can see the differences between the three that are caused by the different facial features, eyewear, etc. 
Shown in Fig. 4(c) is the mean manifold for the three subjects. The mean manifold is obtained by averaging the 
three principal coordinates in the 3D PCA space on the basis of the identity of the pose labels associated with 
the images. Note that Fig. 4(a)–(c) are just for human visualization of the structure of the image data for the 
three human subjects. 

With regard to the dimensionality reduction of this face data using ISOMAP, the extent to which the algorithm 
can capture both the global shape variations in the manifolds shown in Fig. 4(b) and, at the same time, retain 
the local shape characteristics, depends on the parameter γ, which controls the size of the immediate 
neighborhood of a data point that ISOMAP uses for calculating point-to-point geodesic distances. Fig. 5(a)–(c) 
show how the ISOMAP representation calculated from the original data changes as we vary γ. What the ISOMAP 
algorithm accomplishes can be thought of as the unfolding of the manifold. Since small values of γ will cause 
geodesic distances to become more sensitive to local shape variations in the manifold, it is not surprising that 
the “unfolded manifolds” returned by ISOMAP for 𝛾𝛾 = 6 look like what is shown in Fig. 5(a). As this parameter 
becomes larger and larger, the sensitivity to small shape variations disappears and what emerges is the overall 
global shape as seen in Fig. 5 (c). This implies that small values of γ are to be preferred since the class 
discriminatory information between the different human subjects is likely to reside primarily in the local 
variations on the manifold. When we apply the KMeans algorithm to the ISOMAP representation with clusters 
𝐾𝐾 = 9, the corresponding appearance-based clustering results that we get are as shown in Fig. 5 for the three 
different values of γ. 
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Fig. 5. Top row: ISOMAP-based representation of multi-subject face images with (a) 𝛾𝛾 = 6,, (b) 𝛾𝛾 = 10,, (c) 𝛾𝛾 =
27,. Bottom row: Clustering results using KMeans applied to the ISOMAP representation with (d) 𝛾𝛾 = 6,, (e) 𝛾𝛾 =
10,, and (f) 𝛾𝛾 = 27,. The parameter γ controls the size of the immediate neighborhood of a data point that 
ISOMAP uses for calculating point-to-point geodesic distances. 

We now show that appearance-based clustering of the multi-subject data represented by the results 
in Fig. 5 does NOT yield a usable partitioning of the view sphere. Shown in Fig. 6 is a random sampling of the 
images in each of the clusters in Fig. 5. What is even more important with regard to the results shown 
in Fig. 6 are the triple of data entries, with each entry of the form SI: X where SI one of {S1, S2, S3} and 
where X is an integer. The three entries {S1, S2, S3} stand for “Subject 1,” “Subject 2,” and “Subject 3,” 
respectively, these being the three subjects arranged left-to-right in Fig. 4(a). The integer X in SI: X stands for the 
number of images for the subject SI in the cluster. Given this notation, out of 9 clusters, we have 5 clusters that 
consist exclusively of images for the same subject. Additionally, in the remaining 4 clusters, we have exactly 2 
subjects represented. There does not exist a single cluster that contains images from all three subjects. It is 
therefore evident that the sort of viewspace partitioning we achieve automatically with such clustering does not 
correspond to an even distribution of the different face poses for the three subjects. As shown in Kim (2015), 
however, this algorithm does typically give us good viewspace partitioning of the images as long as they belong 
to a single human subject. We will take advantage of this fact later in this paper when we consider person-
specific appearance-based partitioning of the manifold data for constructing a set of locally optimal subspaces 
for each subject. 

 
Fig. 6. Clustered image samples that correspond to the result shown in Fig. 5 (d) with K=9 and γ=6 for the three 
subjects in Fig. 4(a). 

What works best for the case when multi-subject images are considered together is pose based partitioning of 
the viewspace , which is accomplished trivially since the training images generated from the RGBD data are 
tagged with the face poses. Fig. 7(a) illustrates nine partitions that are manually delineated in the pitch and yaw 
space. Shown in Fig. 7(b) is a visualization of all the images in the space spanned by the three leading 
eigenvectors extracted with PCA from all of the images. Fig. 7(c) shows the partitioning applied to the mean of 
the images of the three human subjects, the means being computed for the same pose parameters. 
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Fig. 7. Visualization of pose-based clustering for 𝐾𝐾 = 9the three subjects shown in Fig. 4(a): (a) Manual pose 
partition in the pitch and yaw space, (b) Partitioned subject-specific manifolds in the PCA space, (c) A partitioned 
mean manifold in the PCA space. 

In the next subsection, we discuss locally optimum subspace construction for the individual clusters in the data 
on the manifold. However, before launching into the material presented next , we must first point out that there 
has been much research in the past in fitting locally linear subspaces to data that resides on nonlinear manifolds 
(Hu, Huang, 2008, Lee, Ho, Yang, Kriegman, 2003, Morency, Whitehill, Movellan, 2008, Pentland, Moghaddam, 
Starner, 1994). 

3.3. Constructing subspaces from view-partioned clusters 
Before we can construct optimal subspaces for the individual clusters on the manifold, we need to decide how 
to handle the person-to-person variations in the training data. That is, we need to choose whether the multi-
subject data should be represented through common view subspaces as at node 2 in Fig. 1, or through a finer 
person-specific decomposition as at nodes 5 and 9. For the common-view case, each pose-partitioned subspace 
contains training data from all the subjects. For the case of person-specific subspaces, the pose-partitioned 
subspaces are made specific to each individual subject. In addition to pose partitioning, we consider 
appearance-based partitioning for the case of person-specific subspaces. 

Recent literature in face recognition suggests that we are likely to achieve higher recognition accuracies if we 
construct person-specific subspaces (Belhumeur, Hespanha, Kriegman, 1997, Lee, Ho, Yang, Kriegman, 
2003, Lee, Kriegman, 2005, Luo, Ma, Takikawa, Lao, Kawade, Lu, 2007, Sivic, Everingham, Zisserman, 
2009, Wang, Shan, Chen, Dai, Gao, 2012). The reason has to do with the fact that the fine details on the 
manifold structure for each individual subject are likely to get lost in a low-dimensional subspace that integrates 
over all of the data for all the training subjects. One can argue that if an attempt was made to retain the 
manifold structure corresponding to each human subject in the low-dimensional space constructed using PCA — 
as would be the case in person-specific subspaces — one would get better results no matter what classification 
rule is used for face recognition. 

In light of the merits of the person-specific subspaces as stated in the literature, but keeping in mind that not 
enough is known about what strategies might work the best for face recognition in the wild, we keep both 
options open. That is, this work evaluates both the Common View Subspace (CVS) construction and what we 
refer to as Person Specific Subspaces (PSS). 

3.3.1. Common view subspace and person specific subspace models 
The CVS model in our investigation is for the pose-based partitioning criterion as shown at node 3 of Fig. 1 (as 
demonstrated by the clustering results shown in Fig. 6 in Section 3.2, partitioning the viewspace for the global 
case based on subject appearance does not provide a useful representation). We call this model Pose-CVS; it is 
created by first pose-partitioning the view sphere and then placing the relevant training images for all the 
subjects in a common subspace for each partition. As a result, the CVS model consists of multiple PCA 
subspaces, one for each pose partition, and the principal components of the training samples in each subspace. 
Here, each training sample is labeled with the index of a human subject. Accordingly, for a given number of 
views K and the total number of human subjects H (elsewhere in this paper, especially in Fig. 1, we have used 
the symbol N for the total number of human subjects in the training data), the CVS model is represented by 
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where 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐,ℎ = �𝑆𝑆(𝑘𝑘),𝐘𝐘ℎ
(𝑘𝑘)�

𝑘𝑘=1

𝐾𝐾
. In this representation, the kth cluster-based subspace is given by 𝑆𝑆(𝑘𝑘) =<

𝐫𝐫(𝑘𝑘),𝐔𝐔(𝑘𝑘),𝜦𝜦(𝑘𝑘) > where r(k) is the center of the k-th cluster, U(k)the eigenvector matrix, 
and Λ(k) the eigenvalues matrix. Additionally, 𝐘𝐘ℎ

(𝑘𝑘)denotes the set of training samples for the hth human subject 

projected into the subspace for the kth cluster. Here, we can also interpret 𝐘𝐘ℎ
(𝑘𝑘)as the set of points of the hth 

subject on the hyperplane represented by S(k). 

Again, as shown in Fig. 1, the person-specific subspaces can be constructed for either pose-based partitioning of 
the view sphere or appearance-based partitioning (nodes 6 and 10, respectively). When the view sphere is 
partitioned directly in the pose space, as at node 1, the person-specific subspaces are constructed by fitting a 
PCA model to all the training images for each human subject in each pose partition separately. We call this 
approach Pose-PSS. On the other hand, at nodes 7 and 8, we first partition all the training images on the basis of 
their human identity and carry out appearance-based clustering of the images for each human subject using 
ISOMAP followed by KMeans clustering (see Kim, 2015 for more details). This approach is called App-PSS. 
Consequently, both PSS models can be expressed in the following form: 
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where K is the number of clusters formed for each human subject (based on pose or appearance), 
and H denotes the number of human subjects (recall from the earlier note in this section that the symbol N is 
synonymous with the symbol H in this paper). The kth cluster-based subspace for the hth subject is represented 
by 𝑆𝑆ℎ

(𝑘𝑘) =< 𝐫𝐫ℎ
(𝑘𝑘),𝐔𝐔ℎ

(𝑘𝑘),𝜦𝜦ℎ
(𝑘𝑘) > where 𝐫𝐫ℎ

(𝑘𝑘) is the center of the kth cluster, 𝐔𝐔ℎ
(𝑘𝑘) the eigenvector matrix, and the 

eigenvalues matrix 𝜦𝜦ℎ
(𝑘𝑘). Also, 𝐘𝐘ℎ

(𝑘𝑘) is the set of points for the hth human subject on the hyperplane represented 

by 𝑆𝑆ℎ
(𝑘𝑘). 

3.3.2. Overall classification logic for a test image 
When we use the above subspace models to classify a query image, we employ a nearest-subspace (NS) 
classifier that chooses a subspace in terms of the smallest reconstruction error. The reconstruction error 
calculates the orthogonal distance from a query to the hyperplane obtained by PCA. Fig. 8 illustrates the 
reconstruction error distance from a query image point q to two hyperplanes S(1) and S(2) in the 
underlying RD space. The reconstruction error distance is given by: 

(8) 𝑑𝑑(𝐪𝐪, 𝑆𝑆(𝑘𝑘)) = ∥ 𝐅𝐅
(𝑘𝑘)𝑇𝑇

(𝐪𝐪 − 𝐫𝐫(𝑘𝑘)) ∥2, 

where 𝐔𝐔(𝑘𝑘) = �𝐅𝐅(𝑘𝑘)𝐅𝐅�(𝑘𝑘)�is the matrix whose columns are the eigenvectors of the covariance matrix obtained 
from the samples in the kth subspace. F(k)consists of the d leading eigenvectors and 𝐅𝐅�(𝑘𝑘) consists of the (𝑛𝑛 −
𝑑𝑑) trailing eigenvectors of U(k) whose rank is represented by n. 
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Fig. 8. Geometric interpretation of the reconstruction error distance for two subspaces S(1)and S(2) in RD. 

Referring back to Fig. (1), App-PSS and Pose-PSS return the face identity using only the NS classifier. On the 
other hand, Pose-CVS requires two-layered classifiers in order to determine the face label. First we must select a 
subspace and then figure out the applicable face label in that subspace. We consider two different classifiers in 
the second layer of Pose-CVS: a nearest neighbor (NN) classifier and an SVM classifier (Cortes, Vapnik, 
1995, Vapnik, 1963). 

Fig. 9 illustrates the classification logic for each of the models we consider. Fig. 9(a) shows the classification logic 
used for both PSS approaches. From the N× K subspaces available, the test image is assigned to that subspace 
for which the reconstruction error distance is the smallest. This directly yields the person ID for the test images 
since each subspace is person specific. In other words, for the PSS model ModelPSS, given a query q, recognizing a 
face is simply achieved by the nearest subspace classifier as 

(9) ℎ∗ = argmin
ℎ
𝑑𝑑 �𝐪𝐪, 𝑆𝑆ℎ

(𝑘𝑘)�, 

 

where 𝑑𝑑 �𝐪𝐪,𝑆𝑆ℎ
(𝑘𝑘)� denotes the reconstruction distance from a point q to the kth hyperplane of the hth subject. 

 
Fig. 9. Classification logic for: (a) App-PSS and Pose-PSS, (b) Pose-CVS-NN, (c) Pose-CVS-LSVM and Pose-CVS-
RKSVM. See Fig. 1 for what is meant by App-PSS, Pose-PSS, and Pose-CVS. The additional qualifiers used with 
Pose-CVS stand for the second-layer classification strategy used. The symbol H in the figure stands for the total 
number of human subjects in the training data (which is also represented by N in this paper). The 
symbol K stands for the total number of partitioned subspaces for CVS and for the total number of partitioned 
subspaces per person for PSS. 

Fig. 9(b) and (c) show how to work with two-layered classifiers for the Pose-CVS model. The classifier in the first 
layer of this model is similar to that used for the PSS models. For a query image q, we first find the best subspace 
to use by minimizing the reconstruction distance as 

(10) 𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑘𝑘
𝑑𝑑�𝐪𝐪,𝑆𝑆(𝑘𝑘)�,k=1,⋯ ,K. 
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As for the second layer classifier, Fig. 9 (b) shows the NN classifier and (c) depicts the SVM classifier where LSVM 
and RKSVM stand for linear SVM and radial basis function (RBF) kernel SVM, respectively. 

For the NN classifier, let the training samples 𝐱𝐱𝑖𝑖
(𝑗𝑗) in the jth subspace have their local-subspace representations 

given by the vectors 𝐲𝐲𝑖𝑖
(𝑗𝑗) = 𝐅𝐅(𝑗𝑗)𝑇𝑇 �𝐱𝐱𝑖𝑖

(𝑗𝑗) − 𝐫𝐫(𝑗𝑗)� for 𝐲𝐲𝑖𝑖
(𝑗𝑗) ∈ 𝐘𝐘ℎ

(𝑗𝑗) and 𝑖𝑖 = 1,⋯ ,𝑇𝑇𝑗𝑗 where Tj is the number of samples 
in the jth subspace. Subsequently, we search in the local subspace for that training image which is closest to the 
query image q. That is, we find 

(11) 𝑙𝑙∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑖𝑖

∥ 𝐲𝐲𝑖𝑖
(𝑗𝑗) − 𝐅𝐅(𝑗𝑗)𝑇𝑇(𝐪𝐪 − 𝐫𝐫(𝑗𝑗)) ∥2, 𝑖𝑖 = 1,⋯ ,𝑇𝑇𝑗𝑗 . 

The person label returned for the query image q is the label h associated with the nearest training sample image 
represented in the local subspace by the vector 𝐲𝐲𝑙𝑙∗

(𝑗𝑗). 

For the SVM classifier, the person label is returned by the SVM classifier trained with the local-subspace 
representation of the training samples 𝐱𝐱𝑖𝑖

(𝑗𝑗) in the jth subspace. During the training procedure, the SVM 
classifiers associated with common-view subspaces are learned from the training samples projected in each 
subspace. Here, we consider two popular kernels: a linear kernel 𝕂𝕂�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝐱𝐱𝑖𝑖𝑇𝑇𝐱𝐱𝑗𝑗and a nonlinear kernel with 

radial basis function, 𝕂𝕂(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) = exp �− ∥𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗∥2

2𝜎𝜎2
�. In this paper, we utilize the multi-class SVM in Chang and 

Lin’s LibSVM (Chang and Lin, 2011), which is based on the one-against-one approach in which we have one SVM 
for each pair of classes (Hsu and Lin, 2002). 

4. Combining identity labels from multiple viewpoints 
This section addresses the question of combining identity labels of face images recorded from a collection of 
viewpoints. Combining the identity labels for the global approach to face classification, that is when all of the 
training data calculated from the RGBD images resides in a single low-dimensional subspace, is relatively 
straightforward. The most commonly used approach in the literature for this purpose is that of majority voting. 
That is the method we use in this section for the global approaches. 

On the other hand, the view-partitioned subspaces open up the possibility of integrating the labels by 
giving greater weight to query images that can be associated with viewpoints that carry greater discriminatory 
power for determining the identity of a face. It should be intuitively obvious that frontal and near-frontal 
viewpoints carry greater discriminatory power than the other viewpoints. That then provides us with motivation 
for investigating a weighted voting approach to combine identity labels generated by view-partitioned 
subspaces. 

For the case of view-partitioned subspaces, Fig. 10 is a visual representation of our overall framework for 
training and testing the system for recognizing a face from a set of query images. The labels I1, I2, ... , IN in the top 
box in the figure represent the N different subjects in the population on which the system is trained. We assume 
we have access to a single frontal RGBD image for the face of each subject. As explained in Section 3.1, we 
generate from each RGBD image a set of 2D images of the face as would be seen from a large number of 
different viewpoints. These images are then partitioned into K clusters on the basis of either pose-based 
partitioning or appearance-based partitioning. Subsequently, we construct a subspace for each partition of 
the training images thus created. 
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Fig. 10. A weighted voting framework for multi-view inputs. 

For the testing phase, as shown below the dotted line in Fig. 10, we are given Mquery images of the same 
individual, q1, ⋅⋅⋅, qM. As to how these images are processed depends on whether we use the common view-
partitioned subspaces where each subspace represents the data from all of the subjects (ModelCVS) or the 
person-specific view-partitioned subspaces in which each subject in the population gets his/her own view-
partitioned subspace (ModelPSS). The specific classifiers for each model were described in the previous section. 

In either case, the output of this step for each query image is an identity label. In general, we may associate a 
weight wi with the identity label estimated for the ith query image and then construct a weighted aggregation of 
the identity labels for the final recognition label. The weights reflect the degree of trust we place in a given 
query image. When the final identity label is calculated with simple majority voting, the weights wi all become 1. 

4.1. Weighted voting by normalized reconstruction error distance 
For the view-partitioned case, we consider the normalized reconstruction errordistance as the weight to be 
assigned to a query image. That is, if a query image q is assigned to a subspace S(k) (or 𝑆𝑆ℎ

(𝑘𝑘) for the person-
specific models), we compute the reconstruction error when q is projected into the subspace S(k) and normalize 
it by the mean value of the error between q and all the subspaces as we explain below.1 The inverse of this error 
then becomes the weight to be assigned to the classification label that is given to q by the subspace S(k). 

For the PSS model, the least reconstruction error distance for the ith query qi is obtained by 

(12) ɛ(𝐪𝐪𝑖𝑖) = min
ℎ,𝑘𝑘

�𝑑𝑑 �𝐪𝐪𝑖𝑖 , 𝑆𝑆ℎ
(𝑘𝑘)��, 

where 𝑑𝑑 �𝐪𝐪,𝑆𝑆ℎ
(𝑘𝑘)� denotes the reconstruction error distance of q to the kthsubspace of the hth person given 

by Eq. (8) (see Appendix B in Kim, 2015 for more details). Similarly, for the CVS model, the minimum 
reconstruction error distance for a query q is obtained by 

(13) ɛ(𝐪𝐪𝑖𝑖) = min
𝑘𝑘
�𝑑𝑑�𝐪𝐪𝑖𝑖 , 𝑆𝑆(𝑘𝑘)��. 

Then, the normalized minimum distance is given by 

(14) ɛ�(𝐪𝐪𝑖𝑖) = ɛ(𝐪𝐪𝑖𝑖)
1

𝐻𝐻·𝐾𝐾
∑𝐻𝐻ℎ=1 ∑𝐾𝐾𝑘𝑘=1 𝑑𝑑�𝐪𝐪𝑖𝑖,𝑆𝑆ℎ

(𝑘𝑘)�
, 

 

for PSS, and 
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(15) ɛ�(𝐪𝐪𝑖𝑖) = ɛ(𝐪𝐪𝑖𝑖)
1
𝐾𝐾
∑𝐾𝐾𝑘𝑘=1 𝑑𝑑�𝐪𝐪𝑖𝑖,𝑆𝑆(𝑘𝑘)�

, 

for CVS. In Eqs. (14) and (15), the symbol H stands for the total number of human subjects in the training data. 
(Recall, from Section 3.3.1, this paper uses the symbols N and H synonymously.) The weight for the ith query qi is 
determined in inverse proportion to ɛ�(𝐪𝐪𝑖𝑖) as 

(16) 𝑤𝑤(𝐪𝐪𝑖𝑖) = 1
ɛ�(𝐪𝐪𝑖𝑖)

. 

To summarize, given a query image q, let the values for the reconstruction error between q and the 
subspaces 𝑆𝑆(1),𝑆𝑆(2), … be denoted , respectively ɛ1, ɛ2, … For the purpose of class label calculation, we 
assign q to the subspace S(i) if εi < εj for all j ≠ i. Then, to combine the classifications returned for all the query 
images, the class label calculated for q is weighted in inverse proportion to εi (after normalization). 

5. Results 
Our discussion so far has raised a number of important research questions that we now address with an 
extensive experimental evaluation. In particular, we focus on the following research questions: 1) Does 
viewspace partitioning improve the performance of a classifier in comparison with that of the global 
approaches? 2) What is the effect of the number of such partitions on the classification performance? 3) Should 
viewspace partitioning be carried out on the basis of face pose or face appearance? 4) What is the impact of 
the dimensionality of the subspaces that represent the different partitions on the performance of the system? 5) 
Does a classification system benefit from aggregating multiple images from different viewpoints? And if so 6) 
Does the proposed weighted voting method further improve the system performance in comparison with 
simple majority voting? 

In order to quantitatively assess the relative merits of the different classification strategies, we use three 
RGBD datasets. The first is the RVL face dataset consisting of 10 human subjects that we created. Some example 
images from the RVL dataset are shown in Figs. 11 and 13. The second is a public dataset consisting of 28 
subjects from the Visual Analysis of People (VAP) lab at Aalborg University (Høg et al., 2012). We will refer to this 
dataset as the VAP dataset in the rest of this paper. The third dataset is the ETH BIWI Kinect Dataset (Fanelli 
et al., 2011), another publicly available dataset consisting of 20 distinct test subjects. Finally, we also compare 
our methods with the state-of-the-art face classification approach proposed by Parkhi et al. (2015). 

 
Fig. 11. Frontal faces of the 10 human subjects in the RVL face dataset. 

5.1. Comparison of the discriminative power of view-partitioned subspaces 
The goal of this section is to measure the class discriminatory information retained in the different subspace 
models by a 10-fold cross validation test. For the evaluation in this section, we generated 200 multi-view images 
for each of the 10 human subjects from a single frontal RGBD image for each subject in the RVL dataset, as 
described in Section 3.1. Fig. 11 displays the frontal images of the 10 subjects. For 10-fold cross validation, we 
randomly shuffle the 200 images for each human subject. For each run of the 10-fold test, we use 180 of these 
for training and the remaining 20 for testing. (Compared to the 200 multi-view images generated from the RGBD 
model for each subject in this section, we generate a much larger number of views --- 925 --- for the training 
required for multi-view face recognition as reported in the next section.) 
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During training, we generate three models: Pose-CVS, Pose-PSS, and App-PSS (see Fig. 1). As previously 
mentioned, the Pose-CVS model has three variants, Pose-CVS-NN, Pose-CVS-LSVM and Pose-CVS-RKSVM, each 
with a different second-layer classifier. For details regarding the classification logic in each model, see Fig. 9 and 
the associated explanations. We investigate the discriminatory power of the subspaces in each model as we vary 
the number of clusters (which is the same as the number of subspaces) K and the dimensionality of the 
subspaces d. The baseline method is the SVM classifier with the RBF kernel and no viewspace partitioning 
because this type of classifier has had a rich history of success in the past. 

Fig. 12 shows the accuracy of each model with respect to the dimensionality dand the number of partitions K. In 
(a) of the figure, a comparison of all models is presented with the baseline when there is no viewspace 
partitioning. As the reader can see, the PSS model is not only better than the linear SVM and the global NN 
models but is also comparable to the nonlinear SVM model. For the Pose-CVS model, when we use the NN 
classifier, its performance approaches that of the global NN model as d increases. When we use the linear SVM 
and RBF kernel-based SVM, they converge to the baseline (although Pose-CVS-LSVM requires a substantially 
higher dimensionality than what is shown in the figure in order to do so). In terms of the number of view-
partitions, as Fig. 12(b) – (f) show, as K increases, each of the models converges to its maximum accuracy in a 
smaller dimensional subspace. The Pose-CVS-LSVM model, shown in Fig. 12 (c), for example, requires a subspace 
dimensionality of around 200 (not shown in the figure) to approach its saturated accuracy with K=1, but 
for K=9, it surpasses the global linear SVM with only 𝑑𝑑 = 20 dimensions. 
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Fig. 12. We investigate the extent to which the different subspace models retain the class discriminatory 
information by measuring the accuracy with which individual image samples are classified in a 10-fold cross-
validation test. This figure shows accuracy vs. subspace dimensionality with respect to the number of 
partitions K for: (a) All models at 𝐾𝐾 = 1,, (b) Pose-CVS-NN, (c) Pose-CVS-LSVM, (d) Pose-CVS-RKSVM, (e) App-
PSS, and (f) Pose-PSS. In the Global NN, Linear SVM and Nonlinear SVM approaches, all the samples are placed in 
a common global space without dimensionality reduction and classification is performed respectively with a 
nearest neighbor, linear SVM, and nonlinear SVM with an RBF kernel classifier. 
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Fig. 13. These are the 17 purely 2D test images collected for one of the subjects in the RVL dataset. To the extent 
possible, the pose of the face is random with respect to the camera viewpoint. 

5.2. Results on the RVL face dataset 
Starting with this subsection, we present our multi-view face recognition results in this and the next two 
subsections. As stated earlier in Section 5, our overall evaluation of the classification framework presented in 
this paper is based on three different datasets. In this section, we show results on the home-brewed RVL face 
dataset.We first demonstrate the application of the majority voting rule to the case when we use a single 
subspace for representing all of the training data (i.e., when 𝐾𝐾 = 1). We then extend the majority voting 
approach to the case of view-partitioned subspaces (i.e., 𝐾𝐾 >  1) and compare the results obtained with those 
of the non-partitioned approach. Finally, we consider the case of weighted voting for view-partitioned 
subspaces in which the weights depend upon the least reconstruction error distances. 

All of our results in this section are based on the training data collected from the 10 human subjects whose 2D 
images are shown in Fig. 11. For each subject, we record a single frontal RGBD image and from that image we 
generate 925 viewpoint variant images for the subject. The viewpoint variant images cover an angular 
range of [−90∘, 90∘] in yaw and [−60∘, 60∘] in pitch with respect to the frontal view of the face in steps of 5°. 
For the test data, we use a separate set of face images recorded from different viewpoints. To emphasize, the 
test data is NOT drawn from the RGBD based 2D training images generated for each subject. We separately 
record a set of 17 images for each subject with different orientations of the face vis-à-vis the camera. Note that 
these are purely 2D images. No particular constraint is placed on the relationship of the face pose to the 
location/orientation of the camera — except for ensuring that the face is sufficiently visible in the camera 
images. Shown in Fig. 13 are such test imagesfor one of the subjects. 

5.2.1. Majority voting for a non-partitioned subspace 
This study is for the case when we place all of the training data in a single non-partitioned subspace. Although 
the main focus in this section is to show results with a single subspace, for the sake of completeness we also 
show results with an extension of the idea — we create person-specific subspaces but with NO viewpoint 
partitioning. While the former corresponds to the CVS model with 𝐾𝐾 = 1, the latter is equivalent to either of the 
PSS models also with 𝐾𝐾 = 1. The results shown in this section demonstrate how the classification error varies as 
we change the dimensionality d of the single subspace and as we change the number M of query images 
available. 

Fig. 14 shows the classification accuracy as a function of the dimensionality of the subspace. Each datapoint 
in Fig. 14 as well as in the remainder of this section corresponds to the average over 100 
independent realizations of the experiment, with each realization consisting of query images drawn randomly 
from the testing dataset. The accuracy results plotted in Fig. 14 indicate that the classification accuracy 
decreases rapidly when the dimensionality of the subspace is made larger than approximately 20. The most 
significant result in Fig. 14 is that multi-view classification, that is, when M is greater than 1, definitely 
contributes to increases in overall classification accuracy. 
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Fig. 14. Multi-view classification accuracy with a single non-partitioned subspace and majority voting as a 
function of the subspace dimensionality dand the number M of query images for the RVL dataset. (a) Results 
with a linear SVM classifier (CVS-LSVM), (b) Results with an RBF kernel based SVM classifier (CVS-RKSVM), and 
(c) a single subspace for each individual separately (PSS). 

In order to examine the results plotted in Fig. 14 from a different perspective, shown in Fig. 15(a) are the same 
results for a fixed value of 20 for the subspace dimensionality and as a function of the number of views M. It is 
interesting to observe that, when the test images are drawn from a separate dataset, the PSS approach 
performs comparably to the nonlinear SVM for any number of query images. Fig. 15(b) shows the time 
performance of the classifiers for the same three cases as in (a). 

 
Fig. 15. Classification performance as a function of the number of query images M for a single non-
partitioned subspace with the dimensionality for the RVL dataset 𝑑𝑑 = 20. (a) Classification accuracies. (b) Time 
performance of the classifiers for the three cases in (a). 

5.2.2. Majority voting for view-partitioned subspaces 
This section presents the results obtained when the classification results generated by multiple views are 
combined by a simple majority voting approach in which the contributions from each view are equally weighted. 

Fig. 16 shows the multi-view classification accuracy as a function of dimensionality for the Pose-CVS model. In 
comparison with the non-partitioned case, the accuracy does not fall off as rapidly when we increase the 
dimensionality beyond 20. Instead, we see less pronounced peaks at a dimensionality of approximately 50, 
which indicates that the dimensionality of the data is dependent on the complexity of its subspace 
representation. The peak is slightly more pronounced for the linear SVM, indicating that the non-linear SVM is 
marginally more robust to the noise added by the extra dimensions. On average, when the dimensionality d is 
approximately 50 and both methods show their peak performance, the linear SVM performs about 5% better 
than the nonlinear SVM, which indicates that for properly modeled subspaces, the additional complexity of an 
RBF kernel is not justified. Fig. 17shows results similar to those in Fig. 16 for the PSS model. As with the CVS 
model, here again the accuracy does not fall off as rapidly when we increase the dimensionality beyond 20. 
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Instead we see a peak at a dimensionality of approximately 30, which again indicates the dependence of the 
dimensionality on the model. The peak is significantly more noticeable in the App-PSS model, which indicates 
that, similar to the Pose-CVS-LSVM, it is less robust to noise at higher dimensionalities. 

 
Fig. 16. Multi-view classification accuracy versus subspace dimensionality for the Pose-CVS model with K=25 for 
the RVL dataset. (a) Linear SVM (Pose-CVS-LSVM). (b) Nonlinear SVM (Pose-CVS-RKSVM). 

 
Fig. 17. Multi-view classification accuracy versus the subspace dimensionalityfor the PSS model with K=25 for 
the RVL dataset. (a) Appearance based clustering (App-PSS). (b) Pose based clustering (Pose-PSS). 

Fig. 18(a) shows how the classification accuracy depends on the number M of query images for a fixed value of 
the subspace dimensionality 𝑑𝑑 = 20 and view partitions 𝐾𝐾 = 25. For the RVL dataset, the PSS models show 
marginally higher performance than the CVS models with either a nonlinear or a linear kernel for seven or more 
views. Shown in (b) of the same figure are the time performance comparisons for the four approaches shown in 
(a). As can be seen from the plots in (b), CVS based classification with pose partitioned subspaces gives the best 
time performance. 
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Fig. 18. Classification performance as a function of the number of query images M with the dimensionality fixed 
at 𝑑𝑑 = 20 and the number of view partitions fixed at 𝐾𝐾 = 25 for the RVL dataset. (a) Classification accuracies. 
(b) Time performance of the classifiers in (a). 

Fig. 19 shows a comparison of the non-partitioned approaches of Section 5.2.1with the view-partitioned 
approaches of this section. As is evident from this figure, the multi-view classification approaches with view-
partitioned subspaces tend to significantly outperform the non-partitioned subspace methods, particularly when 
the number of views is greater than 5. Shown in (b) is a comparison of the time performance numbers 
associated with all cases in (a). This figure tells us that there is a cost associated with the superior classification 
accuracies one achieves with person-specific view-partitioned multi-view classification — increased time to 
arrive at the results. As we increase the number of views, the time it takes to arrive at a classification decision by 
a person-specific view-partitioned classifier goes up linearly with M. On the other hand, this time increases sub-
linearly for both the common-view view-partitioned classifier and the non-partitioned classifier. 

 
Fig. 19. Comparison of the multi-view classification results for a single subspacewith those obtained using view-
partitioned subspaces for the RVL dataset. The plots in red are for the case when single non-partitioned 
subspaces are used and the plots in blue are for the case when view-partitioning is applied to the training data. 
The subspace dimensionality d is fixed as 20 for both the red and the blue plots. The value of K is 1 for the red 
plots (since they correspond to the case of a single global subspace) and 25 for the blue plots. (a) Classification 
accuracies. (b) Time performance of the classifiers in (a). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

5.2.3. Weighted voting for view-partitioned subspaces 
Fig. 20(a) compares the classification accuracy obtained with the weighted voting approach of Section 4.1 to 
that of simple majority voting. In this figure, blue lines correspond to weighted voting and red lines to majority 
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voting. Weighted voting improves the classification accuracy for all models. For example, when 𝑀𝑀 = 7, weighted 
voting yields an overall accuracy about 14% higher than majority voting. Regarding computational 
time, Fig. 20(b) shows a comparison of weighted voting with the majority voting method. The average time does 
not change much by calculating the weights for each query. Therefore, weighted voting by normalized 
reconstruction error distance improves the classification accuracy without additional computational costwhen 
compared to majority voting. 

 
Fig. 20. Comparison of weighted voting with majority voting for the view-partitioned multi-view classification 
methods with 𝑑𝑑 = 20 and 𝐾𝐾 = 25 for the RVL dataset. Shown in (a) are the accuracy results and in (b) the 
average time taken by the classifier to return the result. The plots in red are for majority voting and the plots in 
blue are for weighted voting. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

5.3. Results on the VAP dataset 
In this section, we evaluate the various classification strategies presented in our paper on the publicly available 
VAP database (Høg et al., 2012). This database has RGB images at a resolution of 1280 × 960 pixels and depth 
data at a resolution of 640 × 480 pixels for 31 subjects. For each subject, there are 17 different face poses. Note 
that in this dataset, the authors use the term ‘face pose’ to refer to both different face orientations vis-à-vis the 
sensor as well as different facial expressions. For each subject, 14 poses correspond to different orientations and 
3 correspond to different expressions. Each pose was recorded 3 times resulting in a total of 51 RGBD images 
per person. More details about the dataset can be found in Høg et al. (2012). 

Two pre-processing steps are required to use this dataset for evaluating our classification strategies. First, since 
the RGB images and depth maps are not co-registered, simple downsampling of the RGB images is not sufficient 
to align the two data sources. We used the Microsoft Kinect SDK to co-register them. The second step is face 
detection. The Haar feature based cascade classifier from OpenCV was used to detect faces in the images. We 
rejected false detections by using the observation that the position of the test subjects does not vary much with 
respect to the sensor. 

Using the procedure described in Section 3.1, we use one frontal image to generate 925 viewpoint variant 
training images of each subject. Regarding the testing dataset, our goal is to parallel the test data in the RVL 
dataset to the maximum extent possible. Recall that the testing segment of the RVL dataset consists of 17 2D 
images of the face of each subject taken from random orientations. For the testing portion drawn from the VAP 
dataset, we select 17 2D shots randomly from the RGB data associated with the 51 RGBD images for each 
subject. In making this selection we make sure that no two of the 17 views are for the same pose of the subject. 
Note that whereas the original dataset is for 31 subjects, we use the data for 28 of them.2 
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It is interesting to note that this dataset suffers from stronger shadow and occlusion effects when compared to 
our RVL face dataset. Visualizing the point clouds in MeshLab showed that some of the holes in the projected 
images are caused by the holes in the point clouds and that the holes in the former persist notwithstanding the 
application of the depth-constrained bilinear interpolationdescribed in Section 3.1. Some examples to illustrate 
these artifacts are shown in Fig. 21. Such effects can impair the performance of any classifier. More robust 3-
D surface reconstruction algorithms are needed to fill these holes. This is a part of our ongoing research. Despite 
these challenges, our method still shows very high accuracy, as demonstrated in the following sections. 

 
Fig. 21. Examples of holes in the viewpoint variant training images for the publicly available VAP dataset. 

5.3.1. Majority voting 
We first show results using majority voting for view-partitioned subspaces. Adhering to the discussion 
in Section 5.2.2, we use 𝐾𝐾 = 25 for the number of partitions. Fig. 22 depicts the classification accuracy versus 
dimensionality for different numbers of query images for the Pose-CVS model. In the figure, as well as in the 
remainder of this section, each datapoint corresponds to the average over 100 independent realizations of the 
experiment, with each realization consisting of query images drawn randomly from the 2D testing dataset. Again 
we notice that additional query images increase the accuracy and that the peak accuracy is obtained at a 
dimensionality of 50, although less noticeably so for the RKSVM model. The performance difference between 
linear and non-linear kernel SVMs is slightly less evident for this dataset. Fig. 23 illustrates the performance 
when we use the PSS models. Similarly, the dependence on the dimensionality of the data is less noticeable for 
the PSS models in this dataset. 

 
Fig. 22. Multi-view classification accuracy versus subspace dimensionality for the Pose-CVS model with 𝐾𝐾 =
25 partitions for the VAP dataset. (a) Linear SVM (Pose-CVS-LSVM). (b) Nonlinear SVM (Pose-CVS-RKSVM). 
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Fig. 23. Multi-view classification accuracy versus the subspace dimensionalityfor the PSS model with 𝐾𝐾 =
25 partitions for the VAP dataset. (a) Appearance based clustering (App-PSS). (b) Pose based clustering (Pose-
PSS). 

To illustrate the relative performances of the different classifiers while using majority voting, we fix the 
dimensionality d as 20 and plot the accuracies for the non-partitioned and view-partitioned classifiers for 
different numbers of query images M in part (a) of Fig. 24. Part (b) of the figure shows the corresponding time 
performances. As for the RVL dataset, view partitioning significantly improves the performance for the VAP 
dataset.. Also, we notice that the PSS approaches tend to outperform the CVS approaches even when a 
nonlinear kernel is used. This result is to be expected since the number of human subjects in this dataset is 
larger, which would make classification within a common subspace to be more challenging. 

 
Fig. 24. Comparison of multi-view classification approaches when we use majority voting as a function of the 
number of query images M with the dimensionality 𝑑𝑑 = 20 for the VAP dataset. The plots in red are for the case 
when single global subspaces are used and the plots in blue are for the case when view-partitioning is applied to 
the training data. The value of K is 1 for the red plots (since they correspond to the case of a single global 
subspace) and 25 for the blue plots. (a) Classification accuracies. (b) Time performance of the classifiers in (a). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

5.3.2. Weighted voting 
We now use the weighted voting approach of Section 4.1 to combine the classification results from different 
views. The results are shown in Fig. 25. For the VAP dataset, weighted voting also shows a performance 
improvement over majority voting. Also, the PSS approaches outperform the CVS approaches in both voting 
schemes. 
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Fig. 25. Comparison of weighted voting with majority voting for the view-partitioned multi-view classification 
methods for the VAP dataset with d=20and 𝐾𝐾 = 25 in terms of (a) accuracy and (b) average test time. The plots 
in red are for majority voting and the plots in blue are for weighted voting. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

5.4. Results on the BIWI dataset 
We also tested our framework on the publicly available BIWI Kinect Dataset (Fanelli et al., 2011). Although this 
dataset was originally created and used for head pose estimation in real time, it can be used for our purposes as 
well. The dataset consists of a total of 24 RGBD image sequences collected for 20 human subjects with the 
Microsoft Kinect sensor, implying that some of the subjects were recorded more than once. Given that face 
recognition is the main focus of our work, and that it is desirable to have roughly the same amount of data for 
each subject, we chose to keep 20 RGBD image sequences, one for each human subject.. This dataset is different 
from and more challenging than the VAP and RVL datasets in a number of aspects. First, in the other datasets, 
for generating the 2D images for testing purposes, the human subjects looked at a fixed number of points on a 
wall so that the images were recorded by the same Kinect sensor at roughly the same angles vis-a-vis the frontal 
face pose for each person. On the other hand, for the BIWI dataset, the test subjects sat in front of the sensor 
and moved their heads randomly in different directions in a continuous fashion while simultaneously changing 
facial expressions. Moreover, the calibration for the sensor can be different for different subjects. The number 
of data frames in each of the 20 retained RGBD image sequences varies between 395 and 946. For each frame, 
we are provided with the RGB data as a PNG image and the depth data as a binary file. Both of these have 
dimensions of 640 × 480 pixels. More details about this dataset can be found in Fanelli et al. (2011). 

Before testing our framework on this dataset, we needed to first align the depth images and the RGB images. 
Each RGBD recording is provided with its own calibration information for the RGB sensor and the depth sensor, 
which we used to align the depth and the corresponding RGB images. Specifically, for each pixel in the depth 
image, we used the calibration information of the depth sensor to backproject the depth value to a 3D point and 
then used the calibration information of the RGB sensor to find the corresponding color values in the forward 
projection of that 3D point. After this step, we needed to detect faces in the images. The BIWI dataset also 
contains mask images that can be used to localize the faces in the RGB projections. 

We used one frontal RGBD image for each human subject for generating the 925 viewpoint variant training 
images. All the remaining RGBD images in each sequence were used for extracting the 2D test images needed 
for evaluating our algorithms. It is interesting to note that the training data generated from the BIWI dataset 
contains some of the same artifacts as the training data generated from the VAP dataset. Fig. 26 shows holes in 
the viewpoint variant images generated from the BIWI dataset after the application of 2.5D interpolation. These 
artifacts can affect the accuracy of any classifier. Better calibration, surface reconstruction and image 
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alignment strategies are possible solutions to address these problems. As with the VAP dataset, nonetheless, we 
were able to achieve high classification accuracies despite these difficulties, as described in detail below. 

 
Fig. 26. Examples of viewpoint-variant training images for the BIWI dataset. 

5.4.1. Majority voting 
We first show results with the majority voting scheme. In Fig. 27 we show classification accuracy versus 
dimensionality for the Pose-CVS model. We use 𝐾𝐾 = 25 partitions. Similar to our observations for the RVL and 
VAP datasets, accuracy increases with more query images. Corresponding plots for the PSS models are shown 
in Fig. 28. 

 
Fig. 27. Multi-view classification accuracy versus subspace dimensionality for the Pose-CVS model with 𝐾𝐾 =
25 partitions for the BIWI dataset. (a) Linear SVM (Pose-CVS-LSVM). (b) Nonlinear SVM (Pose-CVS-RKSVM). 

 
Fig. 28. Multi-view classification accuracy versus subspace dimensionality for the PSS model with K=25 partitions 
for the BIWI dataset. (a) Appearance based clustering (App-PSS). (b) Pose based clustering (Pose-PSS). 

Fixing the dimensionality d at 20, we compare the accuracy and time performance of the different models as a 
function of the number of query images in Fig. 29. Again, the view-partitioned models perform better than the 
single subspace models and the PSS models outperform the CVS models. Note that the performance difference 
between App-PSS and Pose-PSS is more pronounced in this dataset than in the VAP dataset. 
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Fig. 29. Comparison of multi-view classification approaches for the BIWI dataset when we use majority voting as 
a function of the number of query images M with the dimensionality 𝑑𝑑 = 20. The plots in red are for the case 
when single global subspaces are used and the plots in blue are for the case when view-partitioning is applied to 
the training data. The value of K is 1 for the red plots (since they correspond to the case of a single global 
subspace) and 25 for the blue plots. (a) Classification accuracies. (b) Time performance of the classifiers in (a). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

5.4.2. Weighted voting 
Fixing dimensionality d as 20, we compare the majority and weighted voting schemes in Fig. 30. As in the 
previous sections, the weighted voting scheme clearly outperforms the majority voting scheme. In this dataset, 
however, CVS models tend to benefit more from weighted voting than the view-partitioned approaches, 
possibly due to the different calibration parameters used for the different subjects as well as the large variability 
in the number of image frames available for the different subjects. Both of these would affect the value of the 
reconstruction error metric. 

 
Fig. 30. Comparison of weighted voting with majority voting for the view-partitioned multi-view classification 
methods for the BIWI dataset with d=20and 𝐾𝐾 = 25 in terms of (a) accuracy and (b) average test time. The plots 
in red are for majority voting and the plots in blue are for weighted voting. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

5.5. Comparison with multi-view face recognition using a deep convolutional neural 
network 
We now compare our algorithms with a state-of-the-art face recognition approach proposed by Parkhi et al. 
(2015), which is based on the VGG deep convolutional network that was originally trained on face images of 
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2622 different human subjects. For our experiments, we used the MatConvNet framework and an NVIDIA Tesla 
K20 GPU. The training and testing procedures are briefly described below. 

5.5.1. Training and testing 
The viewpoint variant training images from all subjects (925 per subject) are normalized to zero mean and 
resized to 224 × 224 × 3 as per the requirements of the VGG network. In order to retrain the network for our 
purpose, we first removed the last two layers of the neural network. These correspond to the last fully 
connected layer (denoted as ‘fc8’ in the literature) and the final softmax layer. Since the original VGG net was 
trained on 2622 classes, its ‘fc8’ layer produces an equal number of outputs. We replaced this layer with a new 
‘fc8’ layer that has as many outputs as the number of classes (10 for the RVL dataset, 28 for the VAP dataset, 
and 20 for the BIWI dataset). The weights in this new ‘fc8’ layer were randomly initialized. The final softmax 
layer of the original VGG net was also replaced with a new softmax layer for the correct number of classes. We 
retrained the neural network using gradient descent for 30 epochs. The 925 images per person were randomly 
split into training (90% of the images) and validation sets (10%). We used the trained neural net to classify the 
test images. Similar to the procedure used for our CVS and PSS approaches, we evaluated the performance of 
the deep learning approach by varying the number of query images. We used majority voting to combine the 
classification labels from multiple views. 

5.5.2. Results and comparison 
For presenting the results in this section, we denote the deep learning classifier by VGG-NET. We fixed K=25 and 
dimension 𝑑𝑑 = 20 for our approaches used in the comparison. In Fig. 31 we compare the classification 
performance of VGG-NET with that of our framework. We observe that for all three datasets our PSS 
approaches, when used with the weighted voting strategy, outperform VGG-NET when the number of query 
images is larger than 7. It is interesting to note that the CVS approaches also outperform VGG-NET when used in 
conjunction with majority voting for the RVL and the BIWI datasets. 

 
Fig. 31. Comparison of our proposed approaches with the deep-learning based face recognition system 
presented in Parkhi et al. (2015) for the (a) RVL dataset, (b) VAP dataset, and (c) BIWI dataset. 

6. Conclusion 
This paper answers the following question: To what extent can face recognition be carried out using images 
from multiple arbitrary viewpoints if each human subject in a population is represented by a single frontal RGBD 
image? No constraints are placed on the orientation of the camera vis-à-vis that of the face, except, of course, 
for the underlying assumption that a face can be seen with sufficient clarity from each viewpoint. 

Towards answering the question stated above, this paper started out by first investigating the issue of how to 
generate multi-view training data from the individual frontal RGBD images of the faces. Once the training data 
was available, we then dealt with how to best partition the multi-subject multi-view data for the construction 
of subspaces. Subsequently, we finally confronted our main research problem — multi-view recognition from 
images collected from a random selection of viewpoints. We compared global methods with view-partitioned 
methods, and, for each case, we experimented with common-view subspaces and person-specific subspaces. In 

https://www.sciencedirect.com/topics/engineering/graphics-processing-unit
https://www.sciencedirect.com/topics/computer-science/neural-networks
https://www.sciencedirect.com/topics/engineering/gradient-descent
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#fig0031
https://www.sciencedirect.com/science/article/pii/S1077314217300693?via%3Dihub#bib0074
https://www.sciencedirect.com/topics/engineering/dataset
https://www.sciencedirect.com/topics/computer-science/underlying-assumption
https://www.sciencedirect.com/topics/engineering/subspace
https://www.sciencedirect.com/topics/computer-science/research-problem


the context of using view-partitioned subspaces, we also investigated the possibility of carrying out weighted 
voting in which each query image is given a different weight in the final classification depending on how 
accurately the query image can be represented in the subspace to which it is assigned. 

Here are our three important conclusions: First, methods based on view-partitioned subspaces showed superior 
performance relative to global subspace methods. Second, person-specific subspaces, when used in a majority 
votingframework, were significantly more effective than common-view subspaces, although in most cases 
common-view subspaces also provided highly satisfactory results. Finally, weighted voting based on the 
normalized reconstruction error distance outperformed simple majority voting for multi-view classification. In 
particular, the App-PSS approach with weighted voting proved more flexible and robust than the other methods 
with a maximal accuracy of approximately 95% in all three datasets. The Pose-PSS approach with weighted 
voting performed only slightly worse in most cases, except for the BIWI dataset, in which case the CVS methods 
benefited substantially from the weighted voting scheme. The App-PSS approach outperformed the state-of-
the-art deep-learning based face recognition method presented in Parkhi et al. (2015) by as much as 7% when at 
least 7 views are available. 

With regard to future directions, perhaps the most important goal would be to investigate the effect of noise 
and labeling errors when collecting 2D images of a face in a crowded environment. This paper made 
a simplifying assumptionthat all the query images on which the final decision is to be based belong to the same 
individual. That is highly unlikely to be the case in real life scenarios. Other issues that will certainly be present in 
a real-world application of our algorithms and hence would need to be investigated in the future are the effect 
of variable resolution query images (variability in the resolution caused by the cameras being at different 
distances from the human subject) and the presence of motion blur in the images. At the moment it is not clear 
how a large variability in photo resolution in the cameras or modest amounts of motion blur would affect the 
final classification outcome. Finally, another challenging issue for any face recognition method are appearance 
modifiers such as facial hair and eyeglasses. Since such modifiers can be seen as different kinds of partial 
occlusion, robust dimensionality reduction approaches such as IGO-PCA (Tzimiropoulos et al., 2012) which are 
specifically designed to handle these kinds of scenarios could be employed to alleviate this problem. Since our 
subspace construction methods necessarily involve a dimensionality reduction step, incorporating such robust 
algorithms should be relatively simple. 
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1Note that, since we need to calculate the reconstruction error between q and all the subspaces anyway in order 

to figure out which subspace is best for q, no additional computations are involved in the normalization 
of the reconstruction errors. 

2For the remaining three individuals, we were unable to automatically extract the faces for all views using a face 
detector. Instead of manually processing the missing views, we chose not to include these three 
individuals in this evaluation. 
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