4,753 research outputs found

    A Reliable Energy-Efficient Multi-Level Routing Algorithm for Wireless Sensor Networks Using Fuzzy Petri Nets

    Get PDF
    A reliable energy-efficient multi-level routing algorithm in wireless sensor networks is proposed. The proposed algorithm considers the residual energy, number of the neighbors and centrality of each node for cluster formation, which is critical for well-balanced energy dissipation of the network. In the algorithm, a knowledge-based inference approach using fuzzy Petri nets is employed to select cluster heads, and then the fuzzy reasoning mechanism is used to compute the degree of reliability in the route sprouting tree from cluster heads to the base station. Finally, the most reliable route among the cluster heads can be constructed. The algorithm not only balances the energy load of each node but also provides global reliability for the whole network. Simulation results demonstrate that the proposed algorithm effectively prolongs the network lifetime and reduces the energy consumption

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Topology Aware Leader Election Algorithm for Dynamic Networks

    Get PDF
    International audienceThis paper proposes an algorithm that eventually elects a leader for each connected component of a dynamic network where nodes can move or fail by crash. A node only communicates with nodes in its transmission range and locally keeps a global view, denoted topological knowledge, of the communication graph of the network and its dynamic evolution. Every change in the topology or in nodes membership is detected by one or more nodes and propagated over the network, updating thus the topological knowledge of the nodes. As the choice of the leader has an impact on the performance of applications that use an eventual leader election service, our algorithm, thanks to nodes topological knowledge, exploits the closeness centrality as the criterion for electing a leader. Experiments were conducted on top of PeerSim simulator, comparing our algorithm to a representative flooding algorithm. Performance results show that our algorithm outperforms the flooding one when considering leader choice stability, number of messages, and average distance to the leader

    Topology Aware Leader Election Algorithm for MANET

    Get PDF
    National audienceThis article presents an eventual leader election algorithm for mobile dynamic networks. Each node builds knowledge of the communication graph of connected nodes, by broadcasting changes in their neighborhood. This knowledge provides the current topology of the network, used to compute the closeness centrality as the choice of the leader. Experiments were realized on PeerSim simulator, comparing our algorithm with static and dynamic flooding algorithms, on different network topologies and mobility patterns. Our algorithm improves leader stability up to 24%, sends half less messages and aims to an 8% shorter leader path

    Centrality-Based Eventual Leader Election in Dynamic Networks

    Get PDF
    International audienceThis paper presents CEL, a new distributed eventual leader election algorithm for dynamic networks, which exploits topological information to improve the choice of a central leader and reduce message exchanges. The algorithm has a crosslayer neighbors detection, with a neighbor-aware mechanism, to improve the sharing of topological knowledge and elect a central leader faster. It uses a self-pruning mechanism based on topological knowledge, combined with probabilistic gossip, to improve the performance of broadcast propagation. Evaluations were conducted on the OMNeT++ environment, simulating realistic MANET with interference, collision, and messages loss. Using different parameters values, we have compared CEL to Gómez-Calzado et al. algorithm [1], on the Random Walk and the Truncated Lévy Walk mobility models. The results show better performances than [1], including fewer messages sent, shortest paths to the leader, and a more stable algorithm

    Genetic-fuzzy based load balanced protocol for WSNs

    Get PDF
    Recent advancement in wireless sensor networks primarily depends upon energy constraint. Clustering is the most effective energy-efficient technique to provide robust, fault-tolerant and also enhance network lifetime and coverage. Selection of optimal number of cluster heads and balancing the load of cluster heads are most challenging issues. Evolutionary based approach and soft computing approach are best suitable for counter the above problems rather than mathematical approach. In this paper we propose hybrid technique where Genetic algorithm is used for the selection of optimal number of cluster heads and their fitness value of chromosome to give optimal number of cluster head and minimizing the energy consumption is provided with the help of fuzzy logic approach. Finally cluster heads uses multi-hop routing based on A*(A-star) algorithm to send aggregated data to base station which additionally balance the load. Comparative study among LEACH, CHEF, LEACH-ERE, GAEEP shows that our proposed algorithm outperform in the area of total energy consumption with various rounds and network lifetime, number of node alive versus rounds and packet delivery or packet drop ratio over the rounds, also able to balances the load at cluster head
    corecore