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Résumé
This article presents an eventual leader election algorithm for mobile dynamic networks. Each
node builds knowledge of the communication graph of connected nodes, by broadcasting
changes in their neighborhood. This knowledge provides the current topology of the network,
used to compute the closeness centrality as the choice of the leader. Experiments were realized
on PeerSim simulator [11], comparing our algorithm with static and dynamic flooding algo-
rithms, on different network topologies and mobility patterns. Our algorithm improves leader
stability up to 24%, sends half less messages and aims to an 8% shorter leader path.
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1. Introduction

Eventual leader election is a key component for many fault tolerant services in asynchronous
distributed systems. The election of an eventual leader is an agreement on the identity of a
single correct node, called leader and eventually accepted by all correct nodes of a network.
The leader coordinates distributed tasks in the network and all processes can potentially be-
come leaders.

This problem is studied in dynamic systems [10, 14, 12, 5, 1, 7], but only a few articles use
specificities of highly dynamic networks, such as MANET, in their leader election criteria [7].
A mobile ad hoc network (MANET) is a decentralized dynamic network where nodes can move
and communicate with each other by transmitting messages over wireless links. Two nodes
communicate by sending messages through a direct wireless link if they are in the same trans-
mission range, or through a sequence of wireless links, including one or more intermediate
nodes acting as relays. Initially, the system is unknown and processes it during execution time.
Processes can join or leave the system, fail and recover at runtime.

In the context of MANET, the leader election problem must be specialized in two ways [4] :
— The election algorithm must tolerate arbitrary, concurrent topological changes and should

eventually terminate electing a unique leader per component.
— The leader should be the most valued node of the connected component, where the

value of a node is a performance-related characteristic or its central topological position.
Our contribution is an algorithm providing an eventual leader according to a topological know-
ledge of the network, assuming an asynchronous system and broadcast communications only.
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Our algorithm progressively builds and maintains a knowledge of the connected graph for-
med by the neighbors of nodes at the topological level, that allows us to compute the closeness
centrality and elect a central leader. A central leader efficiently spread information across the
network and quickly reach a majority of nodes to solve the consensus.

2. Related work

In dynamic systems and in MANET, the leader election is a well-studied problem. To elect a
new leader, [6, 5, 14, 7] require a three waves algorithm : two waves to search a potential leader
and one confirmation wave to spread the election result over the network. This requires more
message exchanges and slow down the election process due to network discovery.

Point-to-point communications are used in [6] and [5], requiring to know the set of direct neigh-
bors, and to send as many messages as the number of neighbors. With a broadcast communi-
cation model, neighbors nodes do not need to be known and only one message reaches all the
neighborhood at once. Rahman et al. [12] use a heartbeat, probe, reply and acknowledgment
system, but if a specific message is lost, the leader node could not be determined. [1] uses a
query-response system to verify correct nodes. All these algorithms increase the number of
message exchanges and overload the network.

Malpani et al. [10] create a direct acyclic graph where each node has a direct path to the leader.
Vasudevan et al. [14] uses a spanning tree to elect the leader, where each node sends back to its
parent the identifier and value of the most valued node in its sub tree. Rahman et al. [12] also
uses a spanning tree. In all cases, not enough information is available to elect a central leader
in the component.

Kim et al. [7] use a spanning tree to elect a central leader based on the average depth of nodes,
according to their own metric. However, the central leader is not always optimal, depending
on the initiator node of the election. The algorithm in [6] relies on a global time and assumes
that nodes have perfectly synchronized clocks, which is not suitable for a realistic MANET.

Most works elect the most valuable node of the network, considering a static value such as
the highest node identifier [12], a movement based counter [10, 6, 5, 1], or the highest arbitrary
value [14]. Vasudevan et al. [14] suggest the idea of a leader with the minimum average distance
to other nodes, but their algorithm does not.
We compare our algorithm with a variant of Vasudevan et al. [14], because it is a good example
of a typical flooding algorithm, and is recognized in the literature [6, 12, 13, 5, 3, 7].

3. System model and assumptions

Nodes always follow the specification of the algorithm. A node is correct if it never fails and
never leaves the system. A node is faulty if it fails, or leaves the system, until it comes back in
the system again, with the same id and knowledge of the membership as before. A node can
fail by stopping early, shutting down or by crashing.

3.1. Communication graph
The system is a collection of mobile nodes, seen as an undirected connected graph, where ver-
tices are nodes and edges represent direct communication links between nodes (1-hop dis-
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tance). Two nodes can communicate directly if they are in the transmission range of each
other.Emission range and the reception range are identical, so if node i can communicate with
node j, node j can also communicate with node i. Adjacent nodes are called neighbors and the
set of adjacent nodes represents the neighborhood of a node.
If the system is divided into two different connected components due to movements, each
connected component is considered to be a fully fledged network, and therefore eventually
contains one leader. The algorithm ensures that if the topological changes cease, each connected
component will contain a single leader.

3.2. Messages
Nodes communicate by exchanging messages in a MANET supporting broadcast. Nodes are
directly reachable if they are physically located in the wireless transmission range of each other.
Our algorithm only uses broadcast communications on a fixed Wi-Fi channel decided before-
hand. There is no assumption about the execution time of nodes or message transfer time, so
the system is asynchronous, but we assume reliable communication channels.

3.3. Membership and identity
The number of nodes is unknown. Each node initially knows its own identifier, unique in the
system. By receiving messages from its neighbor, a node gets knowledge of the membership
of the network. Each node periodically emits probes with its identifier, every τ millisecond, but
probes are not used in the algorithm. When node i receives probes from node j because they
are in the same transmission range, the method Connection of the algorithm is triggered. After
not receiving α probes from node j, node i considers node j as not a neighbor anymore, and the
method disconnected of the algorithm is triggered.

4. Algorithm

Every node builds a topological knowledge of its connected component, formed by its neigh-
bors, neighbors of its neighbors and so on ; during node connections and disconnections. The
algorithm maintains it by sending the knowledge (called known) to new neighbors, or partial
modifications (called updates) periodically to its neighbors. The pseudo code for the algorithm
is given in Algorithm 1.

4.1. Types, variables and messages
Each node knows its identifier and maintains three local variables (line 3) :

— known (line 4) : the actual knowledge of the connected component of a node (including
itself), implemented as a map of views (a logical clock [8] and a set of direct neighbors
identifiers, line 1) indexed by node identifier, i.e., an entry for each node.

— updates (line 5) : a list of updates is periodically sent to update the knowledge, by pro-
pagating new connections and disconnections, without sending the entire knowledge,
reducing message sizes and avoiding sending information already received by neigh-
bors. An update consists of the identifier of the source node having the modifications in
its neighborhood, a set of added nodes (new direct connected neighbors), a set of remo-
ved nodes (direct disconnected nodes), the logical clock value of source node before the
modifications (old_clk) and the logical clock value after modifications (new_clk).

— saved (line 6) : a list of updates which cannot be applied at the time of first reception, but
which could be applied when new information is received thereafter.

known and updates are exchanged through two distinct kinds of messages with the same
name.
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4.2. Connection
When a new node j appears in the transmission range of node i, the probe system calls the
Connection method (line 21). Node j is considered as a new neighbor and is added to the know-
ledge of node i (line 22). As the knowledge of node i has just been updated, the logical clock of
node i is incremented by one (line 23). Both nodes i and j exchange their knowledge to share
information about the component (line 24).

4.3. Knowledge reception
When node i receives the known map of node j (line 44), it checks each node id included in
knownj (line 45). If id is a new node (line 46), an updated is created with neighbors of id and
an old clock valued at 0 (i.e., all neighbors are in the add set, line 47), and the knowledge of i is
updated (line 48).
If id is already known and has a greater clock than the clock known by i (line 49), id had
new connections and/or disconnections, so node i creates an update, computes new neigh-
bors (line 50) and removed nodes (representing disconnections, line 51) since the last received
view. Clock values are set in the update (line 52). Eventually, due to previous knowledge and
update exchanges, neighbors of node i will have the same knowledge as node i with identical
clocks, and will be able to apply this new update in their knowledge.
Clock and neighbors are updated in the knowledge of i (line 53). The SavedUpdates method is
called to apply previous saved updates (line 54).

4.4. Disconnection
When α probes from node j are not received by node i, node j is considered disconnected
(line 25). An update is created (line 26) with : the identifier of i (source of the modification) ; an
empty value for the add set (no new connection) ; the identifier of the disconnected node j for
the removed set ; the current clock of i ; the new clock, which is the clock of i increased by 1. The
update will be propagated later (line 26). Node j is then removed from knowledge of i (line 27)
and the clock is increased (line 28).

4.5. Updates reception
Each update adds or removes neighbors of a source node k (line 30). If old clock is equal to 0
(line 32), the update contains all the neighbors of k, and is applied (line 33) if node i does not
have any information about k (line 31). If old clock equals the clock of k in the knowledge of i
(line 37), i.e., new information, neighbors (line 38) and clock (line 39) are updated. Updates are
propagated later by the periodic updates task (lines 34 and 40). An update may not be applied
because it is too recent and node i has not received one or more previous updates yet (line 41
and 35). Thus, node i saves the update (line 36 and 42) to apply it in the future, after new
updates will be received (line 43).

4.6. Updates saved
SavedUpdates (line 55) checks the updates that can be applied in the saved list (line 56).
To reduce message exchanges and improve performances, we save updates that cannot be ap-
plied when first received, and we try to apply them after new information is received.

4.7. Leader()
When the upper layer needs a leader, it calls the Leader method (line 17) which computes the
best leader of the knowledge, according to the closeness centrality (line 20). The closeness of a
node is the inverse of its distance to all other nodes, and characterize the capacity of a node to
spread information over the graph. The closeness centrality formula for a node x used was de-
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fined by Alex Bavelas in 1950 [2] is : C(x) = 1∑
y d(y,x)

. From the set of reachable nodes (line 18)
(nodes of the component), we compute the closeness centrality. The leader is the node with
maximum centrality (line 20), and node identifiers are used to break ties. In the knowledge, un-
reachable nodes are deleted to improve future performances of component computing (line 19).

5. Results

The objective of the experiments is to compare our TopologyAware algorithm with other classic
flooding algorithms. Thanks to the knowledge of the topology, our algorithm can choose a
better leader, i.e., more central to spread information more efficiently over the graph.

5.1. Simulation environment
Experiments used PeerSim [11], a peer-to-peer network simulator. Each experiment lasts 30
minutes, with a simulated unit of time of one millisecond, and simulates 60 nodes placed in
a 900m × 900m obstacle free area. We assumed reliable communications, no message loss, no
failures and consider two different mobility patterns.

5.1.1. Random waypoint
Nodes are randomly placed and move according to the Random Waypoint mobility pattern,
with a minimum speed of 5m/s, a maximum speed of 15m/s, and a 20s pause before moving
to a next random destination (speeds follow a uniform random law).

5.1.2. Periodic single point of interest
Nodes are circularly placed around a center point of interest Fig. 1. After a random timeout,
nodes start moving to a random destination. Once the destination has been reached, node wait
a few seconds before coming back to their initial position, and start to move randomly again.

5.2. Probes system
A probe message is sent every 400 milliseconds and contains the unique identifier of the node.
After not receiving one probe from node j (reliable communications with no messages loss are
assumed), node i considers node j as out of range and trigger the disconnected method.

5.3. Algorithms
Topology Aware is compared with Beacon, a typically representative of flooding algorithms.

5.3.1. Beacon
Vasudevan et al. proposed an algorithm [14] returning ⊥ when no leader is decided in the
election phase. We made a variant without ⊥, to be fairly comparable with Topology Aware, and
called it Beacon, because it periodically broadcasts information about its current leader. Beacon
is also a variant of OptFloodMax algorithm of Nancy A. Lynch, Distributed Systems [9].
Beacon was also adapted for MANET assuming an underlying probe system. Exchanged mes-
sages contain an election criteria called value and a node identifier. Beacon sends each 250 mil-
liseconds information about the current leader, which is the highest received value compared
to node value. The leader fails after a non-reception within 600 ms (2 × 250 + margin), of one
leader message by direct neighbors (reliable communications with no messages loss are assu-
med), and nodes trigger a new election by setting themselves as their own new leader. Thus,
new leader messages are propagated and eventually, the highest valued node will be elected.
We made two versions of Beacon. Beacon Static uses a fixed node value, set at launch time with
a random number. Beacon Dynamic uses a local topological election criteria evolving over time :
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the number of direct neighbors (i.e., node degree in a graph), updated at each topology change.

5.3.2. Topology Aware
We bufferize sent messages with a ∆ buffer value equals to transmission range (on x-axis of
figures), considering that larger transmission ranges potentially reach more nodes, to avoid
burst effect after a topology change.

5.4. Performances
The goal is to compare static and dynamic versions of Beacon algorithms, with our Topology
Aware algorithm, for diameters of transmission range from 10m to 200m, representing the
connectivity indices, i.e., the number of components in the system. We consider 3 metrics in
the experiments.

5.4.1. Instability
Instability is the average percentage of time a node has a wrong leader, according to an oracle.
On Fig. 3., the instability of the random waypoint pattern ceases to increase at a 130-meter
range, as the majority of nodes often form a single component. In periodic POI, Topology Aware
is 24% more stable than Beacon, because flooding in a circular configuration spread slower than
knowledge and updates exchange. A static election criteria leads to low linear instability.

5.4.2. Messages sent
It is the number of messages sent for each node, divided by the experiment time in seconds.
On Fig. 4., low transmission ranges lead to more components (more leaders), so Beacon Dyna-
mic sends more messages, but when the range increases, broadcasts reach more nodes. As the
range increases, each Topology Aware node observes more topological movements, increasing
the amount of knowledge and update messages. In periodic POI, Topology Aware does not need
to communicate when the topology is motionless. Beacon Dynamic sends more messages even
in static topology, because flooding algorithms periodically send information about the current
leader. Beacon Static has a sending frequency independent of topology changes.
Message sizes in Topology Aware are higher than Beacon Dynamic Fig. 2, because Beacon only
sends one integer (the degree ; a value for Beacon Static). Topology Aware message sizes vary
according to the number of nodes in the knowledge. This is the trade-off of Topology Aware :
sending fewer but heavier messages.

5.4.3. Longest leader path relative to component diameter
We compute the longest path of all shortest paths from every node of the component to their cur-
rent leader, then divide by the diameter of the component. Fig. 5. shows that a dynamic election
criteria aims to a shorter leader path on average 8% compared to a static criteria, on both mo-
bility patterns. In random waypoint, low transmission ranges lead to small components, i.e.,
leader paths are mainly direct. The second pattern does not depend on the transmission range
because periodically motionless, so components periodically contain the whole network.

6. Conclusion

This article explains the advantages of building a local knowledge of the network topology, to
improve the leader choice in MANET, using the closeness centrality to elect a leader that spread
information faster over the graph. Our algorithm improves the leader stability up to 24% de-
pending on mobility patterns, sends half less messages than a classical flooding algorithm, and
aims to an 8% shorter leader path. The trade off is higher message sizes that can be improved.
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Algorithm 1: Topology Aware Eventual Leader Election for node i

1 Typedef view : 〈clk : int, neigh : set(id)〉
2 Typedef updt : 〈src : int, add : set(id), rmv : set(id), old_clk : int, new_clk : int〉
3 Local variables of node i :
4 known : map(key : id, value : view)
5 updates : list(updt)
6 saved : list(updt)

7 Initialisation of node i :
8 known[i].neigh← {i}
9 known[i].clk← 0

10 updates← ∅
11 saved← ∅
12 Periodic UpdateTask :
13 if updates 6= ∅ then
14 Broadcast (updates)
15 updates← ∅
16 Wait ∆ seconds

17 Invocation of Leader() :
18 component← Reachable (known[i])
19 known← RetainAll (known, component)
20 return Max (ClosenessCentrality (component))

21 Connection of node j :
22 Add (known[i].neigh, {j})
23 known[i].clk← known[i].clk + 1
24 Broadcast (known)

25 Disconnection of node j :
26 updates← updates ∪ {〈i, –, {j}, known[i].clk, known[i].clk + 1〉}
27 known[i].neigh← known[i].neigh \ {j}
28 known[i].clk← known[i].clk + 1
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29 Receive updatesj from node j :
30 for each updt :〈src, add, rmv, old_clk, new_clk〉 ∈ updatesj do
31 if @ 〈src, –〉 ∈ known then
32 if old_clk = 0 then
33 known[src]← 〈new_clk, add〉
34 updates← updates ∪ updt
35 else
36 saved← saved ∪ updt

37 else if old_clk = known[src].clk then
38 known[src].neigh← (known[src].neigh ∪ add) \ rmv
39 known[src].clk← new_clk
40 updates← updates ∪ updt
41 else if old_clk > known[src].clk then
42 saved← saved ∪ updt

43 SavedUpdates()

44 Receive knownj from node j :
45 for each 〈id, view〉 in knownj do
46 if @ 〈id, –〉 ∈ known then
47 updates← updates ∪ {〈id, view.neigh, –, 0, view.clk〉}
48 known[id]← 〈view.clk, view.neigh〉
49 else if view.clk > known[id].clk then
50 add← view.neigh \ known[id].neigh
51 rmv← known[id].neigh \ view.neigh
52 updates← updates ∪ {〈id, add, rmv, known[id].clk, view.clk〉}
53 known[id]← 〈view.clk, view.neigh〉

54 SavedUpdates()

55 Invocation of SavedUpdates() :
56 for each updt :〈src, add, rmv, old_clk, new_clk〉 ∈ saved do
57 if old_clk = 0 then
58 if @ 〈src, –〉 ∈ known then
59 known[src]← 〈new_clk, add〉
60 saved← saved \ updt

61 else if old_clk = known[src].clk then
62 known[src].neigh← (known[src].neigh ∪ add) \ rmv
63 known[src].clk← new_clk
64 saved← saved \ updt

65 if old_clk < known[src].clk then
66 saved← saved \ updt
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FIGURE 1 – Topology of single
point of interest

Beacon
Static

Beacon
Dynamic

Topology
Aware

Random Waypoint 196 196 681-1720
Single POI 196 196 738-942

FIGURE 2 – Average message size (in bytes)

FIGURE 3 – Instability results

FIGURE 4 – Messages sent per second
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FIGURE 5 – Longest path to leader
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