26,461 research outputs found

    Stabilizing leader election in population protocols

    Get PDF
    In this paper we address the stabilizing leader election problem in the population protocols model augmented with oracles. Population protocols is a recent model of computation that captures the interactions of biological systems. In this model emergent global behavior is observed while anonymous finite-state agents(nodes) perform local peer interactions. Uniform self-stabilizing leader election is impossible in such systems without additional assumptions. Therefore, the classical model has been augmented with the eventual leader detector, Omega?, that eventually detects the presence or absence of a leader. In the augmented model several solutions for leader election in rings and complete networks have been proposed. In this work we extend the study to trees and arbitrary topologies. We propose deterministic and probabilistic solutions. All the proposed algorithms are memory optimal --- they need only one memory bit per agent. Additionally, we prove the necessity of the eventual leader detector even in environments helped by randomization

    Leader Election in Anonymous Rings: Franklin Goes Probabilistic

    Get PDF
    We present a probabilistic leader election algorithm for anonymous, bidirectional, asynchronous rings. It is based on an algorithm from Franklin, augmented with random identity selection, hop counters to detect identity clashes, and round numbers modulo 2. As a result, the algorithm is finite-state, so that various model checking techniques can be employed to verify its correctness, that is, eventually a unique leader is elected with probability one. We also sketch a formal correctness proof of the algorithm for rings with arbitrary size

    Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs

    Get PDF
    This paper considers the fundamental problem of \emph{self-stabilizing leader election} (SSLE\mathcal{SSLE}) in the model of \emph{population protocols}. In this model, an unknown number of asynchronous, anonymous and finite state mobile agents interact in pairs over a given communication graph. SSLE\mathcal{SSLE} has been shown to be impossible in the original model. This impossibility can been circumvented by a modular technique augmenting the system with an \emph{oracle} - an external module abstracting the added assumption about the system. Fischer and Jiang have proposed solutions to SSLE\mathcal{SSLE}, for complete communication graphs and rings, using an oracle Ω?\Omega?, called the \emph{eventual leader detector}. In this work, we present a solution for arbitrary graphs, using a \emph{composition} of two copies of Ω?\Omega?. We also prove that the difficulty comes from the requirement of self-stabilization, by giving a solution without oracle for arbitrary graphs, when an uniform initialization is allowed. Finally, we prove that there is no self-stabilizing \emph{implementation} of Ω?\Omega? using SSLE\mathcal{SSLE}, in a sense we define precisely

    Leader Election for Anonymous Asynchronous Agents in Arbitrary Networks

    Get PDF
    We study the problem of leader election among mobile agents operating in an arbitrary network modeled as an undirected graph. Nodes of the network are unlabeled and all agents are identical. Hence the only way to elect a leader among agents is by exploiting asymmetries in their initial positions in the graph. Agents do not know the graph or their positions in it, hence they must gain this knowledge by navigating in the graph and share it with other agents to accomplish leader election. This can be done using meetings of agents, which is difficult because of their asynchronous nature: an adversary has total control over the speed of agents. When can a leader be elected in this adversarial scenario and how to do it? We give a complete answer to this question by characterizing all initial configurations for which leader election is possible and by constructing an algorithm that accomplishes leader election for all configurations for which this can be done

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(logn)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(logΔ+loglogn)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(loglogn)\Omega(\log \log n) bits per register also holds for leader election

    Termination Detection of Local Computations

    Full text link
    Contrary to the sequential world, the processes involved in a distributed system do not necessarily know when a computation is globally finished. This paper investigates the problem of the detection of the termination of local computations. We define four types of termination detection: no detection, detection of the local termination, detection by a distributed observer, detection of the global termination. We give a complete characterisation (except in the local termination detection case where a partial one is given) for each of this termination detection and show that they define a strict hierarchy. These results emphasise the difference between computability of a distributed task and termination detection. Furthermore, these characterisations encompass all standard criteria that are usually formulated : topological restriction (tree, rings, or triangu- lated networks ...), topological knowledge (size, diameter ...), and local knowledge to distinguish nodes (identities, sense of direction). These results are now presented as corollaries of generalising theorems. As a very special and important case, the techniques are also applied to the election problem. Though given in the model of local computations, these results can give qualitative insight for similar results in other standard models. The necessary conditions involve graphs covering and quasi-covering; the sufficient conditions (constructive local computations) are based upon an enumeration algorithm of Mazurkiewicz and a stable properties detection algorithm of Szymanski, Shi and Prywes
    corecore