7 research outputs found

    A Security Game Combining Patrolling and Alarm-Triggered Responses Under Spatial and Detection Uncertainties

    Get PDF
    Motivated by a number of security applications, among which border patrolling, we study, to the best of our knowledge, the first Security Game model in which patrolling strategies need to be combined with responses to signals raised by an alarm system, which is spatially uncertain (i.e., it is uncertain over the exact location the attack is ongoing) and is affected by false negatives (i.e., the missed detection rate of an attack may be positive). Ours is an infinite-horizon patrolling scenario on a graph, where a single patroller moves. We study the properties of the game model in terms of computational issues and form of the optimal strategies and we provide an approach to solve it. Finally, we provide an experimental analysis of our techniques

    Lazy Defenders Are Almost Optimal Against Diligent Attackers

    No full text
    Most work building on the Stackelberg security games model assumes that the attacker can perfectly observe the defender's randomized assignment of resources to targets. This assumption has been challenged by recent papers, which designed tailor-made algorithms that compute optimal defender strategies for security games with limited surveillance. We analytically demonstrate that in zero-sum security games, lazy defenders, who simply keep optimizing against perfectly informed attackers, are almost optimal against diligent attackers, who go to the effort of gathering a reasonable number of observations. This result implies that, in some realistic situations, limited surveillance may not need to be explicitly addressed.</p

    Lazy Defenders Are Almost Optimal against Diligent Attackers

    No full text
    Most work building on the Stackelberg security games model assumes that the attacker can perfectly observe the defender's randomized assignment of resources to targets. This assumption has been challenged by recent papers, which designed tailor-made algorithms that compute optimal defender strategies for security games with limited surveillance. We analytically demonstrate that in zero-sum security games, lazy defenders, who simply keep optimizing against perfectly informed attackers, are almost optimal against diligent attackers, who go to the effort of gathering a reasonable number of observations. This result implies that, in some realistic situations, limited surveillance may not need to be explicitly addressed

    Adversarial patrolling with spatially uncertain alarm signals

    Get PDF
    When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide, such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game where a Defender is supported by a spatially uncertain alarm system, which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy is FNP-hard even in tree graphs and APX-hard in arbitrary graphs. We provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Finally, we show that, without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects
    corecore