157 research outputs found

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robotโ€™s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPRโ€™s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive

    ํ˜‘์—… ๋กœ๋ด‡์„ ์œ„ํ•œ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜๊ณผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ํ•˜์ˆœํšŒ.๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•˜๋‚˜์˜ ์ž„๋ฌด๋ฅผ ํ˜‘๋ ฅํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ์Šต์€ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ ์ด๋Ÿฌํ•œ ๋ชจ์Šต์ด ์‹คํ˜„๋˜๊ธฐ์—๋Š” ๋‘ ๊ฐ€์ง€์˜ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋จผ์ € ๋กœ๋ด‡์„ ์šด์šฉํ•˜๊ธฐ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋ช…์„ธํ•˜๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์„ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋กœ๋ด‡์ด๋‚˜ ์ปดํ“จํ„ฐ์— ๋Œ€ํ•œ ์ง€์‹์ด ์—†๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ˜‘๋ ฅํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ž‘์„ฑํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•  ๋•Œ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์˜ ํŠน์„ฑ๊ณผ ๊ด€๋ จ์ด ๊นŠ์–ด์„œ, ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ„๋‹จํ•˜์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ์œ„ ์ˆ˜์ค€์˜ ๋ฏธ์…˜ ๋ช…์„ธ์™€ ๋กœ๋ด‡์˜ ํ–‰์œ„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ƒˆ๋กœ์šด ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ๋ณธ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡๋ถ€ํ„ฐ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์ด ์ถฉ๋ถ„ํ•œ ๋กœ๋ด‡๋“ค์ด ์„œ๋กœ ๊ตฐ์ง‘์„ ์ด๋ฃจ์–ด ๋ฏธ์…˜์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์ด ๋ถ€์กฑํ•œ ์‚ฌ์šฉ์ž๋„ ๋กœ๋ด‡์˜ ๋™์ž‘์„ ์ƒ์œ„ ์ˆ˜์ค€์—์„œ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์–ธ์–ด๋Š” ๊ธฐ์กด์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์—์„œ๋Š” ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๋„ค ๊ฐ€์ง€์˜ ๊ธฐ๋Šฅ์ธ ํŒ€์˜ ๊ตฌ์„ฑ, ๊ฐ ํŒ€์˜ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ, ๋™์ ์œผ๋กœ ๋ชจ๋“œ ๋ณ€๊ฒฝ, ๋‹ค์ค‘ ์ž‘์—…(๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น)์„ ์ง€์›ํ•œ๋‹ค. ์šฐ์„  ๋กœ๋ด‡์€ ํŒ€์œผ๋กœ ๊ทธ๋ฃน ์ง€์„ ์ˆ˜ ์žˆ๊ณ , ๋กœ๋ด‡์ด ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ์„œ๋น„์Šค ๋‹จ์œ„๋กœ ์ถ”์ƒํ™”ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ณตํ•ฉ ์„œ๋น„์Šค๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋กœ๋ด‡์˜ ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น์„ ์œ„ํ•ด 'ํ”Œ๋žœ' ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๊ณ , ๋ณตํ•ฉ ์„œ๋น„์Šค ๋‚ด์—์„œ ์ด๋ฒคํŠธ๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ์„œ ๋™์ ์œผ๋กœ ๋ชจ๋“œ๊ฐ€ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋‚˜์•„๊ฐ€ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘๋ ฅ์ด ๋”์šฑ ๊ฒฌ๊ณ ํ•˜๊ณ , ์œ ์—ฐํ•˜๊ณ , ํ™•์žฅ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด, ๊ตฐ์ง‘ ๋กœ๋ด‡์„ ์šด์šฉํ•  ๋•Œ ๋กœ๋ด‡์ด ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋„์ค‘์— ๋ฌธ์ œ๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋กœ๋ด‡์„ ๋™์ ์œผ๋กœ ๋‹ค๋ฅธ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋™์ ์œผ๋กœ๋„ ํŒ€์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๊ณ , ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ•˜๋‚˜์˜ ์„œ๋น„์Šค๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ทธ๋ฃน ์„œ๋น„์Šค๋ฅผ ์ง€์›ํ•˜๊ณ , ์ผ๋Œ€ ๋‹ค ํ†ต์‹ ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์„ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์— ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ํ™•์žฅ๋œ ์ƒ์œ„ ์ˆ˜์ค€์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ๋น„์ „๋ฌธ๊ฐ€๋„ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํ˜‘๋ ฅ ์ž„๋ฌด๋ฅผ ์‰ฝ๊ฒŒ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์žฌ์‚ฌ์šฉ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ค‘์ ์œผ๋กœ ๋‘” ์—ฐ๊ตฌ๋“ค์ด ์ตœ๊ทผ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ์ด๋“ค ์—ฐ๊ตฌ๋Š” ๋ฆฌ๋ˆ…์Šค ์šด์˜์ฒด์ œ์™€ ๊ฐ™์ด ๋งŽ์€ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํ•„์š”๋กœ ํ•˜๋Š” ์šด์˜์ฒด์ œ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ํ”„๋กœ๊ทธ๋žจ์˜ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ์˜ˆ์ธก ๋“ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ž์› ์ œ์•ฝ์ด ์‹ฌํ•œ ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ์—๋Š” ์–ด๋ ต๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„๋ฒ ๋””๋“œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์„ค๊ณ„ํ•  ๋•Œ ์“ฐ์ด๋Š” ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์„ ์ด์šฉํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ •์  ๋ถ„์„๊ณผ ์„ฑ๋Šฅ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ์—๋Š” ์ œ์•ฝ์ด ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์™ธ๋ถ€์˜ ์ด๋ฒคํŠธ์— ์˜ํ•ด ์ˆ˜ํ–‰ ์ค‘๊ฐ„์— ํ–‰์œ„๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๋กœ๋ด‡์„ ์œ„ํ•ด ์œ ํ•œ ์ƒํƒœ ๋จธ์‹  ๋ชจ๋ธ๊ณผ ๋ฐ์ดํ„ฐ ํ”Œ๋กœ์šฐ ๋ชจ๋ธ์ด ๊ฒฐํ•ฉํ•˜์—ฌ ๋™์  ํ–‰์œ„๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ํ™•์žฅ๋œ ๋ชจ๋ธ์„ ์ ์šฉํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋”ฅ๋Ÿฌ๋‹๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋Ÿ‰์„ ๋งŽ์ด ํ•„์š”๋กœ ํ•˜๋Š” ์‘์šฉ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘์—… ์šด์šฉ์„ ์œ„ํ•ด ๋กœ๋ด‡ ์‚ฌ์ด์— ๊ณต์œ ๋˜๋Š” ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋จผ์ € ์ค‘์•™์—์„œ ๊ณต์œ  ์ •๋ณด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํƒœ์Šคํฌ๋ผ๋Š” ํŠน๋ณ„ํ•œ ํƒœ์Šคํฌ๋ฅผ ํ†ตํ•ด ๊ณต์œ  ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์ด ์ž์‹ ์˜ ์ •๋ณด๋ฅผ ๊ฐ€๊นŒ์šด ๋กœ๋ด‡๋“ค๊ณผ ๊ณต์œ ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ€ํ‹ฐ์บ์ŠคํŒ…์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํฌํŠธ๋ฅผ ์ถ”๊ฐ€ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ™•์žฅ๋œ ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์€ ์‹ค์ œ ๋กœ๋ด‡ ์ฝ”๋“œ๋กœ ์ž๋™ ์ƒ์„ฑ๋˜์–ด, ์†Œํ”„ํŠธ์›จ์–ด ์„ค๊ณ„ ์ƒ์‚ฐ์„ฑ ๋ฐ ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ์— ์ด์ ์„ ๊ฐ€์ง„๋‹ค. ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ๋ช…์„ธํ•œ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ์ •ํ˜•์ ์ธ ํƒœ์Šคํฌ ๋ชจ๋ธ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ฐ„ ๋‹จ๊ณ„์ธ ์ „๋žต ๋‹จ๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์—ฌ๋Ÿฌ ๋Œ€์˜ ์‹ค์ œ ๋กœ๋ด‡์„ ์ด์šฉํ•œ ํ˜‘์—…ํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.In the near future, it will be common that a variety of robots are cooperating to perform a mission in various fields. There are two software challenges when deploying collaborative robots: how to specify a cooperative mission and how to program each robot to accomplish its mission. In this paper, we propose a novel software development framework that separates mission specification and robot behavior programming, which is called service-oriented and model-based (SeMo) framework. Also, it can support distributed robot systems, swarm robots, and their hybrid. For mission specification, a novel scripting language is proposed with the expression capability. It involves team composition and service-oriented behavior specification of each team, allowing dynamic mode change of operation and multi-tasking. Robots are grouped into teams, and the behavior of each team is defined with a composite service. The internal behavior of a composite service is defined by a sequence of services that the robots will perform. The notion of plan is applied to express multi-tasking. And the robot may have various operating modes, so mode change is triggered by events generated in a composite service. Moreover, to improve the robustness, scalability, and flexibility of robot collaboration, the high-level mission scripting language is extended with new features such as team hierarchy, group service, one-to-many communication. We assume that any robot fails during the execution of scenarios, and the grouping of robots can be made at run-time dynamically. Therefore, the extended mission specification enables a casual user to specify various types of cooperative missions easily. For robot behavior programming, an extended dataflow model is used for task-level behavior specification that does not depend on the robot hardware platform. To specify the dynamic behavior of the robot, we apply an extended task model that supports a hybrid specification of dataflow and finite state machine models. Furthermore, we propose a novel extension to allow the explicit specification of loop structures. This extension helps the compute-intensive application, which contains a lot of loop structures, to specify explicitly and analyze at compile time. Two types of information sharing, global information sharing and local knowledge sharing, are supported for robot collaboration in the dataflow graph. For global information, we use the library task, which supports shared resource management and server-client interaction. On the other hand, to share information locally with near robots, we add another type of port for multicasting and use the knowledge sharing technique. The actual robot code per robot is automatically generated from the associated task graph, which minimizes the human efforts in low-level robot programming and improves the software design productivity significantly. By abstracting the tasks or algorithms as services and adding the strategy description layer in the design flow, the mission specification is refined into task-graph specification automatically. The viability of the proposed methodology is verified with preliminary experiments with three cooperative mission scenarios with heterogeneous robot platforms and robot simulator.Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Contribution 7 1.3 Dissertation Organization 9 Chapter 2. Background and Existing Research 11 2.1 Terminologies 11 2.2 Robot Software Development Frameworks 25 2.3 Parallel Embedded Software Development Framework 31 Chapter 3. Overview of the SeMo Framework 41 3.1 Motivational Examples 45 Chapter 4. Robot Behavior Programming 47 4.1 Related works 48 4.2 Model-based Task Graph Specification for Individual Robots 56 4.3 Model-based Task Graph Specification for Cooperating Robots 70 4.4 Automatic Code Generation 74 4.5 Experiments 78 Chapter 5. High-level Mission Specification 81 5.1 Service-oriented Mission Specification 82 5.2 Strategy Description 93 5.3 Automatic Task Graph Generation 96 5.4 Related works 99 5.5 Experiments 104 Chapter 6. Conclusion 114 6.1 Future Research 116 Bibliography 118 Appendices 133 ์š”์•ฝ 158Docto

    Mechatronics design of a robot society : a case study of minimalist underwater robots for distributed perception and task execution

    Get PDF
    This thesis describes the mechatronics design of a cooperative multi-robot system, including systems level design, practical implementation, and testing. Two main subjects are integrated in this research work: the generic concept of a Robot Society as an engineering framework to control an autonomously operating distributed multi-robot system, and the constructed prototype society consisting of several sensor/actuator robots for submerged use in a liquid environment. These novel types of prototype robots, SUBMARs, are targeted for distributed autonomous perception and task execution in the internal, three-dimensional on-line monitoring of various flow-through processes. The Robot Society control architecture implemented into SUBMAR robots supports such features as the autonomous cooperation of the robots, multi-tasking, self-organization, and selfoptimization in task execution. The mechatronics design of the robots has followed a minimalist approach, where the structure of the robot is maximally simplified. As a solution to compensate the obvious limitations derived from minimalism, the multiplicity and the cooperation of the robots have been exploited. On a systems level, this produces fault tolerant, flexible, and cost-effective engineering solutions for application. Altogether over 90 logged experiment runs with physical robots have been completed to elucidate the functioning and reveal the factors affecting the performance of the system. The testing has been performed in a laboratory environment in a special demonstration process. In these experiment series, the searching and destroying of distributed dynamic targets were tested. Furthermore, the meaning of communication in the development of robot consciousness during the mission has also been analyzed. As a result of the research work and systems development, profound knowledge has been gained and new solutions presented for the required technology for a minimalist mobile robot operating in a liquid process environment. SUBMAR Robot Society forms a technological basis for the development of real-world applications in the future.reviewe

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    • โ€ฆ
    corecore