9 research outputs found

    Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway

    Get PDF
    Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo

    On the sensitivity of the diffusion MRI signal to brain activity in response to a motor cortex paradigm

    Full text link
    Diffusion functional MRI (dfMRI) is a promising technique to map functional activations by acquiring diffusion-weighed spin-echo images. In previous studies, dfMRI showed higher spatial accuracy at activation mapping compared to classic functional MRI approaches. However, it remains unclear whether dfMRI measures result from changes in the intra-/extracellular environment, perfusion and/or T2 values. We designed an acquisition/quantification scheme to disentangle such effects in the motor cortex during a finger tapping paradigm. dfMRI was acquired at specific diffusion weightings to selectively suppress perfusion and free-water diffusion, then times series of the apparent diffusion coefficient (ADC-fMRI) and of the perfusion signal fraction (IVIM-fMRI) were derived. ADC-fMRI provided ADC estimates sensitive to changes in perfusion and free-water volume, but not to T2/T2* values. With IVIM-fMRI we isolated the perfusion contribution to ADC, while suppressing T2 effects. Compared to conventional gradient-echo BOLD fMRI, activation maps obtained with dfMRI and ADC-fMRI had smaller clusters, and the spatial overlap between the three techniques was below 50%. Increases of perfusion fractions were observed during task in both dfMRI and ADC-fMRI activations. Perfusion effects were more prominent with ADC-fMRI than with dfMRI but were significant in less than 25% of activation ROIs. Taken together, our results suggest that the sensitivity to task of dfMRI derives from a decrease of hindered diffusion and an increase of the pseudo-diffusion signal fraction, leading to different, more confined spatial activation patterns compared to classic functional MRI.Comment: Submitted to peer-reviewed journa

    MP-PCA denoising of fMRI time-series data can lead to artificial activation "spreading"

    Full text link
    MP-PCA denoising has become the method of choice for denoising in MRI since it provides an objective threshold to separate the desired signal from unwanted thermal noise components. In rodents, thermal noise in the coils is an important source of noise that can reduce the accuracy of activation mapping in fMRI. Further confounding this problem, vendor data often contains zero-filling and other effects that may violate MP-PCA assumptions. Here, we develop an approach to denoise vendor data and assess activation "spreading" caused by MP-PCA denoising in rodent task-based fMRI data. Data was obtained from N = 3 mice using conventional multislice and ultrafast acquisitions (1 s and 50 ms temporal resolution, respectively), during visual stimulation. MP-PCA denoising produced SNR gains of 64% and 39% and Fourier spectral amplitude (FSA) increases in BOLD maps of 9% and 7% for multislice and ultrafast data, respectively, when using a small [2 2] denoising window. Larger windows provided higher SNR and FSA gains with increased spatial extent of activation that may or may not represent real activation. Simulations showed that MP-PCA denoising causes activation "spreading" with an increase in false positive rate and smoother functional maps due to local "bleeding" of principal components, and that the optimal denoising window for improved specificity of functional mapping, based on Dice score calculations, depends on the data's tSNR and functional CNR. This "spreading" effect applies also to another recently proposed low-rank denoising method (NORDIC). Our results bode well for dramatically enhancing spatial and/or temporal resolution in future fMRI work, while taking into account the sensitivity/specificity trade-offs of low-rank denoising methods

    Double diffusion encoding and applications for biomedical imaging

    Full text link
    Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application
    corecore