941 research outputs found

    3D Stacked Cache Data Management for Energy Minimization of 3D Chip Multiprocessor

    Get PDF
    In this model a runtime cache data mapping is discussed for 3-D stacked L2 caches to minimize the overall energy of 3-D chip multiprocessors (CMPs). The suggested method considers both temperature distribution and memory traffic of 3-D CMPs. Experimental result shows energy reduction achieving up to 22.88% compared to an existing solution which considers only the temperature distribution.  New tendencies envisage 3D Multi-Processor System-On-Chip (MPSoC) design as a promising solution to keep increasing the performance of the next-generation high performance computing (HPC) systems. However, as the power density of HPC systems increases with the arrival of 3D MPSoCs with energy reduction achieving up to 19.55% by supplying electrical power to the computing equipment and constantly removing the generated heat is rapidly becoming the dominant cost in any HPC facility

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    3D IC optimal layout design. A parallel and distributed topological approach

    Full text link
    The task of 3D ICs layout design involves the assembly of millions of components taking into account many different requirements and constraints such as topological, wiring or manufacturability ones. It is a NP-hard problem that requires new non-deterministic and heuristic algorithms. Considering the time complexity, the commonly applied Fiduccia-Mattheyses partitioning algorithm is superior to any other local search method. Nevertheless, it can often miss to reach a quasi-optimal solution in 3D spaces. The presented approach uses an original 3D layout graph partitioning heuristics implemented with use of the extremal optimization method. The goal is to minimize the total wire-length in the chip. In order to improve the time complexity a parallel and distributed Java implementation is applied. Inside one Java Virtual Machine separate optimization algorithms are executed by independent threads. The work may also be shared among different machines by means of The Java Remote Method Invocation system.Comment: 26 pages, 9 figure

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    CAD methodologies for low power and reliable 3D ICs

    Get PDF
    The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin; Committee Member: Mukhopadhyay, Saiba

    Design and Implementation of High QoS 3D-NoC using Modified Double Particle Swarm Optimization on FPGA

    Get PDF
    One technique to overcome the exponential growth bottleneck is to increase the number of cores on a processor, although having too many cores might cause issues including chip overheating and communication blockage. The problem of the communication bottleneck on the chip is presently effectively resolved by networks-on-chip (NoC). A 3D stack of chips is now possible, thanks to recent developments in IC manufacturing techniques, enabling to reduce of chip area while increasing chip throughput and reducing power consumption. The automated process associated with mapping applications to form three-dimensional NoC architectures is a significant new path in 3D NoC research. This work proposes a 3D NoC partitioning approach that can identify the 3D NoC region that has to be mapped. A double particle swarm optimization (DPSO) inspired algorithmic technique, which may combine the characteristics having neighbourhood search and genetic architectures, also addresses the challenge of a particle swarm algorithm descending into local optimal solutions. Experimental evidence supports the claim that this hybrid optimization algorithm based on Double Particle Swarm Optimisation outperforms the conventional heuristic technique in terms of output rate and loss in energy. The findings demonstrate that in a network of the same size, the newly introduced router delivers the lowest loss on the longest path.  Three factors, namely energy, latency or delay, and throughput, are compared between the suggested 3D mesh ONoC and its 2D version. When comparing power consumption between 3D ONoC and its electronic and 2D equivalents, which both have 512 IP cores, it may save roughly 79.9% of the energy used by the electronic counterpart and 24.3% of the energy used by the latter. The network efficiency of the 3D mesh ONoC is simulated by DPSO in a variety of configurations. The outcomes also demonstrate an increase in performance over the 2D ONoC. As a flexible communication solution, Network-On-Chips (NoCs) have been frequently employed in the development of multiprocessor system-on-chips (MPSoCs). By outsourcing their communication activities, NoCs permit on-chip Intellectual Property (IP) cores to communicate with one another and function at a better level. The important components in assigning application duties, distributing the work to the IPs, and coordinating communication among them are mapping and scheduling methods. This study aims to present an entirely advanced form of research in the area of 3D NoC mapping and scheduling applications, grouping the results according to various parameters and offering several suggestions for further research

    Crossing-aware channel routing for photonic waveguides

    Get PDF
    pre-printAbstract-Silicon photonics technology is progressing at a rapid pace. Despite greatly expanded manufacturing capability, physical design of integrated optical circuits currently lacks the level of automation found in VLSI design. A key component of integrated optic design is waveguide routing; however, unlike VLSI, where signal nets are routed with metal layers and vias, photonic waveguides are fabricated in planar substrates. For many applications, our studies show that the waveguide routing problem can be formulated as planar channel routing. Signal losses become a major factor due to the insertion losses of planar waveguide crossings. Channel routing must therefore take into account these losses. This paper investigates methods for adapting traditional VLSI channel routing techniques for integrated optics - specifically, a technique based on left-edge-style track assignment. We show how incorporating waveguide crossing constraints into the underlying constraint model affects the routing solution, and describe the necessary modifications and extensions to the routing technique to properly exploit optical technology. We implement the channel router, describe the experimental results, and compare the cost of solutions with respect to waveguide crossings, corresponding to signal loss, and channel height

    Layout optimization in ultra deep submicron VLSI design

    Get PDF
    As fabrication technology keeps advancing, many deep submicron (DSM) effects have become increasingly evident and can no longer be ignored in Very Large Scale Integration (VLSI) design. In this dissertation, we study several deep submicron problems (eg. coupling capacitance, antenna effect and delay variation) and propose optimization techniques to mitigate these DSM effects in the place-and-route stage of VLSI physical design. The place-and-route stage of physical design can be further divided into several steps: (1) Placement, (2) Global routing, (3) Layer assignment, (4) Track assignment, and (5) Detailed routing. Among them, layer/track assignment assigns major trunks of wire segments to specific layers/tracks in order to guide the underlying detailed router. In this dissertation, we have proposed techniques to handle coupling capacitance at the layer/track assignment stage, antenna effect at the layer assignment, and delay variation at the ECO (Engineering Change Order) placement stage, respectively. More specifically, at layer assignment, we have proposed an improved probabilistic model to quickly estimate the amount of coupling capacitance for timing optimization. Antenna effects are also handled at layer assignment through a linear-time tree partitioning algorithm. At the track assignment stage, timing is further optimized using a graph based technique. In addition, we have proposed a novel gate splitting methodology to reduce delay variation in the ECO placement considering spatial correlations. Experimental results on benchmark circuits showed the effectiveness of our approaches
    corecore