
Copyright

by

Derong Liu

2018

The Dissertation Committee for Derong Liu
certifies that this is the approved version of the following dissertation:

Layer Assignment and Routing Optimization for

Advanced Technologies

Committee:

David Z. Pan, Supervisor

Zhuo Li

Michael Orshansky

Nan Sun

Nur A. Touba

Layer Assignment and Routing Optimization for

Advanced Technologies

by

Derong Liu

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2018

Acknowledgments

I am sincerely grateful to my adviser, Professor David Z. Pan, for his

generous guidance and inestimable support along the way. Professor Pan in-

troduced me to the magical research field of electronic design automation,

where my interests was ignited. During the years, Professor Pan encourages

me to ask questions, teaches me to consider problems carefully and guides me

to solve the challenging problems with passion. In addition, Professor Pan has

helped me to find several valuable internships, where my view has been broad-

ened to gain more industrial experiences. His kind suggestions and support

benefit me greatly in both research and general life. I am very fortunate to

obtain guidance from Professor Pan in many aspects.

Also, I would like to express my appreciation to my committee members

for offering me very valuable advice. In particular, I would like to thank

Professor Michael Orshansky for the technical advice I acquired about this

dissertation and several VLSI related courses. I would like to thank Professor

Nan Sun for the constructive comments in the perspective of circuit design. I

would also like to thank Professor Nur A. Touba for the helpful suggestions

provided during the course and this dissertation. I would like to thank Dr.

Zhuo Li for the great guidance, discussions, and support during my internships

at Cadence.

iv

I would express my great thanks to Dr. Salim Chowdhury who provided

lots of industrial insights during our collaboration. This brought out significant

benefits to my research. Meanwhile, I am also very thankful for my other

mentors and colleagues during my internships: Dr. Charles Alpert, Dr. Jhih-

Rong Gao, Dr. Wing-Kai Chow and Dr. Amin Farshidi at Cadence Design

System, Dr. Duo Ding, Dr. Yue Xu, Mr. Huy Vo, Dr. Akshay Sharma, Dr.

Yang Zhang, Dr. Xin Huang, Mr. Yu-Yen Mo, and Dr. Rajendran Panda

at Oracle Corporation. Also, I am really thankful to Dr. Zheng Wang, Mr.

Zhoufeng Ying, and Dr. Ray T. Chen for the kind suggestions about the

optical project. Without these collaborations, this work would be impossible

to accomplish.

I would like to thank all UTDA alumni and members, who provided

lots of great help and suggestions for me all the time: First, I would like to

thank Dr. Bei Yu for the very invaluable help regarding my research. Also, I

would like to thank Dr. Subhendu Roy, Dr. Xiaoqing Xu, Dr. Yibo Lin, Dr.

Jiaojiao Ou, Dr. Vinicius Livramento, Biying Xu, Zheng Zhao, Wei Ye, Jingyi

Zhou, Meng Li, Wuxi Li, Shounak Dhar, Mohamed Baker Alawieh, Che-Lun

Hsu, Keren Zhu, et al. With all these cherishable discussions and experiences

during the years, I could set up the ideas and continue the research along the

way.

I would express my sincere gratitude to my parents for their constant

love. They encourage me to pursue my dream and support my decision with

great belief. No words can express my appreciation. Also, I would like to

v

send special thanks to Hai Yan, for his love and company during the years.

Meanwhile, I also appreciate the help and support of all my friends.

vi

Layer Assignment and Routing Optimization for

Advanced Technologies

Publication No.

Derong Liu, Ph.D.

The University of Texas at Austin, 2018

Supervisor: David Z. Pan

As VLSI technology scales to deep sub-micron and beyond, it becomes

increasingly challenging to achieve timing closure for VLSI design. Since a

complete design flow consists of several phases, such as logic synthesis, place-

ment, and routing, interconnect synthesis plays an important role which in-

cludes buffer insertion/sizing and timing-driven routing. Although progress

has been achieved by many advanced routing techniques, the following aspects

can be exploited sufficiently for further improvement: (1) incremental layer as-

signment for timing optimization; (2) signal routing with the requirement of

regularity; (3) power-efficient optical-electrical interconnect paradigm. Thus,

to perform the layer assignment and routing optimization for advanced tech-

nologies, an automated routing engine in a global view is essential to benefit

the interconnect design while satisfying specific requirements.

This dissertation proposes a set of algorithms and methodology on layer

assignment and routing optimization for advanced technologies. The research

vii

includes two timing-driven incremental layer assignment approaches, synergis-

tic topology generation and routing synthesis for signal groups, and optical-

electrical routing design for power efficiency.

For incremental layer assignment, most of the conventional approaches

target via minimization but neglect the timing issues. Meanwhile, via delays

are ignored but should be considered in emerging technology nodes. Then two

timing-driven incremental layer assignment frameworks are proposed, where

all the nets are solved simultaneously with the integration of via delays: (1)

optimization of the total sum of net delays and reduction of slew violations;

(2) minimization of critical path timing in selected nets.

For on-chip signal routing, the bundled bits in one group may have dif-

ferent pin locations, but they have to be routed in a regular manner by sharing

common topologies. Very few previous works target inter-bit regularity via

multi-layer topology selection. Furthermore, the routability and wire-length

of the signal bits should also be optimized. Then an advanced synergistic

routing engine is promoted, which is able to not only control routability and

wire-length but also guide each bit routing intelligently for design regularity.

For optical-electrical co-design routing, optical interconnect shows its

advantage due to the dominance of bandwidth-distance-power properties. The

previous works lack a detailed exploration of optical-electrical co-design for on-

chip interconnects. During the transmission, signal quality can be affected by

various loss sources and Electrical to Optical (EO)/Optical to Electrical (OE)

conversion overheads should also be considered. Then a power-efficient routing

viii

flow for on-chip signals is presented, where optical connections can collaborate

with electrical wires seamlessly.

The effectiveness of proposed algorithms and techniques is demon-

strated in this dissertation. These approaches are able to achieve the improve-

ments regarding specific metrics and eventually benefit the routing flow.

ix

Table of Contents

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Challenges and Proposed Techniques in Layer Assignment and
Routing for Advanced Technologies 5

Chapter 2. Timing-Driven Incremental Layer Assignment Avoid-
ing Slew Violations 8

2.1 Introduction . 8

2.2 Preliminaries and Problem Formulation 14

2.2.1 Graph Model . 15

2.2.2 Delay Model . 16

2.2.3 Slew Model . 18

2.2.4 Problem Formulation 19

2.3 TILA-S Algorithms . 21

2.3.1 Mathematical Formulation 21

2.3.2 Lagrangian Relaxation based Optimization 24

2.3.3 Solving Lagrangian Subproblem (LRS) 27

2.3.4 Critical & Non-Critical Net Selection 30

2.3.5 Parallel Scheme . 32

2.3.6 Iterative Slew Optimization 34

2.3.7 Post Slew Optimization 39

2.4 Experimental Results . 42

2.4.1 Evaluation on ISPD 2008 Benchmarks 43

2.4.2 Evaluation on 20nm Industry Benchmarks 49

2.4.3 Slew Comparisons on ISPD & 20nm Industry Benchmarks 51

2.5 Summary . 55

x

Chapter 3. Incremental Layer Assignment for Timing Optimiza-
tion 57

3.1 Introduction . 57

3.2 Preliminaries . 61

3.2.1 Graph Model . 61

3.2.2 Timing Model . 64

3.2.3 Problem Formulation 65

3.3 CPLA Algorithms . 65

3.3.1 ILP Formulation . 66

3.3.2 Self-Adaptive Partition Algorithm 72

3.3.3 Semidefinite Programming Relaxation 74

3.3.4 Sequential Mapping Algorithm 79

3.3.5 Concurrent Matching Algorithm 81

3.3.6 Post Delay Optimization 87

3.4 Experimental Results . 90

3.4.1 Timing Results . 90

3.4.2 Timing Violation Results 98

3.5 Summary . 102

Chapter 4. Synergistic Topology Generation and Route Synthe-
sis for Signal Groups 104

4.1 Introduction . 104

4.2 Preliminaries . 109

4.2.1 Streak Flow . 109

4.2.2 Proposed Signal Model 110

4.2.3 Proposed Bit Model . 112

4.2.4 Proposed Similarity Vector Model 113

4.2.5 Problem Formulation 115

4.3 Algorithms . 115

4.3.1 Identification of Signal Isomorphism 115

4.3.2 Topology Generation and Evaluation 118

4.3.2.1 Backbone Structure Construction 118

4.3.2.2 Equivalent Topology Generation 120

xi

4.3.2.3 Regularity Evaluation 124

4.3.3 Mathematical Formulation 125

4.3.4 Primal-Dual Algorithm 127

4.4 Post Optimization . 130

4.4.1 Possible Layer Prediction 133

4.4.2 Bottom-up Clustering & Routing 135

4.4.3 Post-Routing Refinement 137

4.5 Experimental Results . 142

4.5.1 ILP + Primal-Dual Performance Comparison. 143

4.5.2 Effectiveness of Post Optimization 148

4.6 Summary . 151

Chapter 5. Optical-electrical Power-efficient Route Synthesis 152

5.1 Introduction . 152

5.2 Preliminaries . 155

5.2.1 Overall Flow . 155

5.2.2 Optical Device Model 156

5.2.3 Proposed Signal Model 158

5.2.4 Problem Formulation 159

5.3 Algorithms . 160

5.3.1 Signal Processing . 160

5.3.1.1 K-Means-based Clustering 160

5.3.1.2 Hyper Net Construction 161

5.3.2 Optical-electrical Route Co-design 162

5.3.3 Mathematical Formulation 164

5.3.4 Lagrangian Relaxation-based Algorithm 166

5.4 WDM Assignment . 168

5.4.1 WDM Placement . 168

5.4.2 Network-flow Based Assignment 169

5.5 Experimental Results . 172

5.6 Summary . 176

Chapter 6. Conclusion and Future Work 177

xii

Bibliography 180

Vita 194

xiii

List of Tables

2.1 Notations for timing-driven layer assignment. 22

2.2 Notations used for slew model. 36

2.3 Normalized capacitance and resistance. 42

2.4 Performance comparisons on ISPD 2008 benchmarks. 43

2.5 Performance comparisons on 20nm industrial benchmarks. . . 46

2.6 Comparisons on ISPD 2008 benchmarks for slew optimization. 50

2.7 Comparisons on 20nm industry benchmarks for slew optimization. 54

3.1 Notations used for ILP formulation. 69

3.2 Notations for post stage algorithms. 84

3.3 Performance comparison with TILA on ISPD 2008 benchmarks. 92

3.4 Performance comparison with/without post opt. 97

3.5 Delay violation comparison on ISPD 2008 benchmarks. 99

4.1 Performance comparisons on 10nm industrial benchmarks. . . 142

4.2 Performance comparisons of post optimization on 10nm indus-
trial benchmarks . 145

5.1 Performance comparisons among different designs. 172

xiv

List of Figures

1.1 The cross section of IC interconnection stack in advanced tech-
nology nodes [1], where wires and vias on top metal layers are
much wider and much less resistive than those on lower metals.
The normalized pitch lengths of different metal layers are listed
in the table (source: [30]). 2

1.2 Integration of proposed studies (orange blocks) into the routing
flow for advanced technologies. 3

2.1 Net delay distribution for benchmark adaptec2. (a) Result by
layer assignment solver NVM [54]; (b) Result by our timing-
driven incremental layer assignment solver TILA-S, where 5%
most critical nets are reassigned layers. 11

2.2 Sink slew distribution for benchmark adaptec2. (a) Result by
layer assignment solver NVM [54]; (b) Result by our timing-
driven incremental layer assignment solver TILA-S, where 1%
most critical nets are reassigned layers. 12

2.3 Layer design and grid models. (a) A design with four rout-
ing layers {M6, M7, M8, M9}; (b) Grid model with preferred
routing directions. 15

2.4 Example of net model. 17

2.5 An example of timing driven layer assignment. In initial layer
assignment net n3 is timing critical. Through resource releasing
from nets n1 and n2, the total timing gets improvement. . . . 21

2.6 An example of min-cost flow model. 30

2.7 Our parallel scheme to support multi-threading computing on
K × K partitions. (Here K = 4). (a) Parallel pattern 1; (b)
Parallel pattern 2. 32

2.8 Overall timing optimization flow. 33

2.9 An example of difference between delay and slew optimization. 34

2.10 Performance impact on different ratio values. (a) The impact
of ratio on maximum delay; (b) The impact of ratio on average
delay; (c) The impact of ratio on runtime. 43

xv

2.11 Evaluation thread number impact on three test cases in ISPD
2008 benchmark suite. (a) The impact on maximum delay; (b)
The impact on average delay; (c) The impact on overflow; (d)
The impact on runtime. 47

2.12 Comparison between greedy methodology and TILA on some
small test cases: (a) on average delay; (b) on maximum delay;
(c) on via overflow; (d) on runtime. 48

2.13 Comparison between with and without post slew optimization
stage on some small test cases: (a) on average delay; (b) on
maximum delay; (c) on slew violations. 51

2.14 Convergence with iteration number of TILA-S on some small
test cases: (a) on average delay; (b) on slew violations. 53

2.15 Buffering overhead saving with slew optimization. 54

3.1 Pin delay distribution of critical nets for benchmark adaptec1,
where 0.5% of the nets are released as critical nets. (a) Re-
sults from TILA [91]; (b) Results from our incremental layer
assignment framework. 59

3.2 Illustration of capacity model. (a) Edge capacity model; (b)
Via capacity model. 62

3.3 Example of grid partition. (a) Nets partition; (b) Routing den-
sity for benchmark adaptec1 by NCTU-GR. 72

3.4 Sub-grid partition illustration. (a) Sub-grid partition; (b) Sub-
grid corresponding partition tree. 73

3.5 An example of layer assignment through SDP. 78

3.6 T matrix and solution X matrix of the example. 78

3.7 Example of solution candidate generation. (a) Nets partition;
(b) Solution candidate generation for N3. 83

3.8 Algorithm flow including matching algorithm. 86

3.9 Comparison between ILP and SDP on some small test cases: (a)
on average delay for all critical paths; (b) on maximum delay
for all critical paths; (c) on runtime. 90

3.10 Partition size impact on three small cases. (a) The impact on
Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on run-
time. 93

3.11 Partition size impact on three large cases. (a) The impact on
Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on run-
time. 93

xvi

3.12 Performance evaluation based on the number of threads on some
small test cases: (a) Maximum delay for critical paths; (b) Av-
erage delay for critical paths; (c) Runtime. 95

3.13 Critical ratio impact on benchmark adaptec1. (a) The impact
on Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on
runtime. 96

3.14 Comparison between sequential mapping and concurrent match-
ing: (a) via violations; (b) number of vias. 100

3.15 Violation comparison of NVM, TILA and CPLA: (a) Edge over-
flows in NVM; (b) Edge overflows in TILA; (c) Edge overflows
in CPLA; (d) Via overflows in NVM; (e) Via overflows in TILA;
(f) Via overflows in CPLA. 101

4.1 Example of on-chip signal groups. 106

4.2 Overall Streak flow. 110

4.3 Illustration of signal routing model: (a) Example of 2-D routing;
(b) Example of 3-D routing. 111

4.4 Illustration of source-to-sink distance for signal bits: (a) Exam-
ple of equivalent distance for all bits; (b) Example of inter-bit
distance deviation. 113

4.5 Example of signal identification: (a) Quadrant-based similarity
vector; (b) Hierarchical isomorphic identification. 116

4.6 Equivalent topology generation example: (a) Pin mapping through
similarity vector; (b) Bending points aligning; (c) Topology gen-
eration by connecting mapping pins and points. 122

4.7 Example of blocked routing instance: (a) Routing of some bits
blocked by obstacles; (b) Multiple topology selection for each
cluster. 131

4.8 Post-optimization flow. 133

4.9 Example of bit-based source-to-sink distance adjustment: (a)
Pin 2 violates the distance constraint; (b) Violation is fixed by
introducing detour for pin 2. 138

4.10 Example of horizontal shifting for source-to-sink distance match-
ing: (a) Left shifting; (b) Right shifting. 141

4.11 Routing congestion map for Industry7: (a) Manual design re-
sult; (b) Streak result. 145

4.12 Routing congestion map for Industry6: (a) Manual design re-
sult; (b) Streak result. 146

xvii

4.13 Performance comparison on algorithm scalability: (a) Two-pin
benchmarks; (b) Multi-pin benchmarks. 147

4.14 Performance comparison of bottom-up clustering: (a) Impact
on routability; (b) Impact on average regularity. 148

4.15 Performance comparison of post refinement: (a) Impact on vi-
olations; (b) Impact on wire-length. 149

5.1 Block Diagram of Optical-Electrical On-Chip Design. 154

5.2 OPERON Flow. 156

5.3 Optical model illustration. (a) Loss model for on-chip opti-
cal routing; (b) Simulation of the normalized power loss in Y-
branch splitters. 158

5.4 On-chip signal model. (a) Signal routing on 2D optical layer;
(b) Signal routing on 3D optical-electrical architecture. 159

5.5 Optical-electrical co-design example. (a) Hyper net topology;
(b) Dynamic programming based co-design scheme; (c) Corre-
sponding optical-electrical solution candidates. 164

5.6 Example of WDM Placement. (a) Initial WDM placement for
three connections; (b) WDM placement after the assignment. 170

5.7 Example of min-cost max-flow assignment. 172

5.8 Comparison of WDMs for optical connections before the place-
ment, before the assignment and after the assignment. 174

5.9 Power consumption distribution of I2. (a) Optical power in
GLOW; (b) Electrical power in GLOW; (c) Optical power in
OPERON; (d) Electrical power in OPERON. 175

xviii

Chapter 1

Introduction

As VLSI technology scales to deep sub-micron and beyond, intercon-

nect delay plays a determining role in timing [14]. Therefore, interconnect syn-

thesis, including buffer insertion/sizing and timing-driven routing, becomes a

critical problem for achieving timing closure [17]. Global routing is an integral

part of a timing convergence flow to determine the topologies and layers of

nets, which greatly affect the circuit performance [13, 15, 29, 53, 62, 72, 84]. In

emerging technology nodes, back-end-of-line (BEOL) metal stack offers het-

erogeneous routing resources, i.e., dense metal at the lower layers and wider

pitches at the upper layers. Fig. 1.1 gives one example of cross section of IC

interconnection stack in advanced technology nodes [1], where wires and vias

on top metal layers are much wider and much less resistive than those on lower

metals. Besides, the normalized pitches of different metal layers from [30] are

also listed. Advanced routing algorithms should not only be able to achieve

routability, but also intelligently assign layers to overcome timing issues.

The current routing flow is given in Fig. 1.2, integrated with the pro-

posed studies for layer assignment and routing optimization. Global routing

provides the general routes aligned to the given grids, layer assignment places

1

Wire

Via

Metal 1

Lower
Metal Layers

Intermediate
Metal Layers

Top
Metal Layers

Layer Pitch

M10 1.00
M9 1.00
M8 0.63
M7 0.63
M6 0.63
M5 0.63
M4 0.63
M3 0.33
M2 0.35
M1 0.33

Figure 1.1: The cross section of IC interconnection stack in advanced technol-
ogy nodes [1], where wires and vias on top metal layers are much wider and
much less resistive than those on lower metals. The normalized pitch lengths
of different metal layers are listed in the table (source: [30]).

the routing wires onto appropriate layers, and detailed routing specifies the ex-

act routes with the satisfaction of design rules, followed by a post-optimization

stage for final refinement. As global routing and layer assignment play de-

termining roles to routing results, first two layer assignment approaches are

introduced, both targeting at timing optimization for all the nets simultane-

ously. Considering the limitations of layer assignment by adjusting topologies

in one dimension, it is prominent to optimize the topologies in a broader

view to gain more advantages. Thus, this dissertation provides a synergistic

topology generation and route synthesis flow to direct the routing of signal

groups globally. Besides the routing in the electrical field, with the advanced

technologies, optical interconnect shows its competitiveness for signal commu-

2

Eletrical Routing

Global Routing

Post-Routing Optimization

Layer Assignment

Detailed Routing

Optical Routing Topology Generation and
Routing for Signal Groups

Incremental Layer
Assignment Approaches

Optical-electrical
Route Co-design

Figure 1.2: Integration of proposed studies (orange blocks) into the routing
flow for advanced technologies.

nication. Compared to copper wires, optical connections provide faster speed,

higher bandwidth, and lower power consumptions. Hence optical and electrical

characteristics are exploited to implement a power-efficient co-design routing

engine.

As an important step in global routing, layer assignment is responsi-

ble for assigning net segments onto different layers. An intelligent assignment

can benefit both interconnect delay and the number of required buffers [46].

In emerging technology nodes, wires on top layers are significantly less re-

sistive than the bottom layers but should compete for much fewer available

tracks. Thus it becomes increasingly challenging to perform a legal layer as-

signment with limited routing resources. Many previous works target at via

minimization, which may easily assign wires onto the bottom layers with tim-

ing degradation [15, 43, 54]. Since via delay plays a non-negligible role in

interconnect delay [50,91], its impact should also be considered for timing op-

timization. With the increasing number of nets, a one-by-one strategy benefits

3

the runtime but results in local optimality [7]. Based on these observations,

it is motivated to propose efficient timing-driven incremental layer assignment

frameworks for solving all the nets in a global view.

For on-chip performance-critical signal groups, besides the wire-length

optimization, the routes are required to share equivalent topologies with con-

current bending points. One methodology is to regard one bundled group as a

virtual net for routing [60,89]. By condensing multiple bits into one group, sig-

nal routing necessarily entails the routability degradation [39]. Then a global

optimization is essential to allocate the feasible spaces and avoid congestion

issues. Besides the global routing design, some detailed explorations are also

operated for routing orientation and pin accessibilities [61]. In this disserta-

tion, an advanced synergistic engine is provided to direct the signal routing

considering routability, wire-length, and regularity in a 3D manner.

With the development of technologies, it brings about the feasibility to

combine electrical wires with the optical paradigm for power efficiency. Due

to the high bandwidth provided by optical interconnects, e.g. Wavelength

Division Multiplexing (WDM), on-chip communication density increases effi-

ciently [22]. Nevertheless, for the optical mechanism, the following issues have

been noticed: (1) Optical-electrical conversion overheads result from optical

modulators and detectors [23]; (2) Optical interconnect suffers from photon-

energy loss from various sources [9]; (3) Sensitivity to process and thermal

variation impacts the bit error rate (BER) for optical links [83]. By incorpo-

rating optical and electrical design, this dissertation proposes a power-efficient

4

co-design routing engine.

This chapter first summarizes the current developments and difficulties

regarding layer assignment and routing optimization. Then an overview of

this dissertation is provided in terms of proposed algorithms according to the

emerging challenges.

1.1 Challenges and Proposed Techniques in Layer As-
signment and Routing for Advanced Technologies

Timing-driven Incremental Layer Assignment Avoiding Slew

Violations As introduced, traditional layer assignment works mainly target

at via minimization without appropriate consideration about timing. Due to

the different timing requirements and capacity constraints, assigning all the

segments onto high metal layers is not the best way to utilize limited metal

resources. Also, the typical net-by-net strategy may lead to local optimal-

ity. Then chapter 2 introduces an incremental timing-driven layer assignment

framework, with both delay and slew optimization of all the nets simulta-

neously. Multiprocessing with the partition method is also utilized to reach

runtime speed-up. As an incremental approach, this layer assignment can

smoothly work with either type of global router. The effectiveness of the pro-

posed framework is verified through both academia and industrial benchmarks.

Incremental Layer Assignment for Timing Optimization For

the timing-critical nets, the maximum path timing may lead to potential de-

lay violations. Thus it should be optimized efficiently compared to the total

5

sum of segment and via delays. By considering the via delay and via capacity

constraints, the layer assignment problem, in essence, is a non-linear opti-

mization problem. This stimulates the requirement of promoting an accurate

formulation to solve the problem. Then chapter 3 proposes a novel incremental

layer assignment approach based on Semidefinite Programming. This frame-

work can improve the maximum path timing for the critical nets efficiently in

comparison to the previous one. By integrating the post-optimization stage,

it is able to further control via overheads and reduce delay violations greatly.

Synergistic Topology Generation and Route Synthesis for Sig-

nal Groups For the routing of on-chip signal groups, regular topologies with

parallel connections are highly preferred to reduce inter-bit variability spread

on silicon. Besides, in comparison to conventional two-pin bus routing, the

different number of pins for the signal bits increases the complexity to con-

trol topology regularity. The required parallel routes from multiple signals

bring challenges to the routability because of the congestion. Additionally,

the source-to-sink distance deviation should also be considered to avoid signal

degradation. Then chapter 4 presents the synergistic topology generation and

route synthesis for on-chip performance-critical signal groups. Besides the im-

provement of wire-length and routability, it also develops regular topologies

for the bundled signal bits. With the proposed metric of regularity ratio,

the solutions are determined while satisfying the capacity constraints. The

topologies are further revised through a post-optimization flow to encourage

the routability and reduce source-to-sink distance violations. It is shown that

6

the framework allocates the signal routes in a more balanced manner, com-

pared to the manual designs from experienced industry designers.

Optical-electrical Power-efficient Route Synthesis For the optical-

electrical route synthesis, optical interconnects are desired to collaborate with

electrical counterparts smoothly. Generally, optical configurations are de-

ployed for distant connections, which suffer from optical loss during the trans-

mission. To make sure the light power can be detected at the receiving side,

the overall loss should be in efficient control. With the satisfaction of de-

tection constraints, how to distribute the interconnections onto optical and

electrical layers is required to explore to save the power overheads. Then an

optical-electrical power-efficient routing flow is developed in chapter 5. For

the given signal bits, the hyper nets and pins are constructed, based on which

the optical-electrical co-design route solutions are derived. Then the appro-

priate solution is assigned selectively and waveguides are exploited sufficiently

for multi-channel routing. Compared to the existing optical router, power

consumptions are saved through this optical-electrical co-design.

In conclusion, chapter 6 provides a summary of this dissertation and

also discusses potential future research topics.

7

Chapter 2

Timing-Driven Incremental Layer Assignment

Avoiding Slew Violations

2.1 Introduction

As an important step in global routing, layer assignment is responsible

for assigning each net segment to a metal layer. It is commonly generated

during or after the wire synthesis to meet tight frequency targets, and to

reduce interconnect delay on timing critical paths [46]. In layer assignment,

wires on thick metals are much wider and thus, less resistive than those on

thin metals. If timing critical nets are assigned to lower layers, it will make

timing worse due to narrower wire width/spacing. Although top metal layers

are less resistive than those in lower (thin) metals, it is impossible to assign

all wires to top layers. That is, layer assignment should satisfy the capacity

constraints on metal layers. If an excessive number of wires are assigned

to a particular layer, it will aggravate congestion and crosstalk. Meanwhile,

the delay due to vias cannot be ignored in emerging technology nodes [14].

This chapter is based on the journal: Derong Liu, Bei Yu, Salim Chowdhury, and David
Z. Pan. “TILA-S: Timing-driven incremental layer assignment avoiding slew violations.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018).
I am the main contributor in charge of problem formulation, algorithm development and
experimental validations.

8

In addition, during timing closure slew violations could affect the utilization

of buffering resources [31]. Thus to guarantee signal integrity and reduce

buffering resources, slew violations need to be avoided during layer assignment.

Recently, layer assignment has been considered in two design stages,

i.e., buffered tree planning and 3D global routing. Some studies consider layer

assignment during buffer routing trees design [32,33,46]. Li et al. [46] proposed

a set of heuristics for simultaneous buffer insertion and layer assignment. Hu

et al. [32,33] proved that, even if buffer positions are determined, the layer as-

signment with timing constraints is NP-complete. During 3D global routing,

layer assignment is a popular technique for via minimization. Cho et al. [15]

proposed an integer linear programming (ILP) based method to solve the layer

assignment problem. Since via minimization is the major objective, all wires

tend to be assigned onto the lower layers. [21, 44] applied dynamic program-

ming to solve optimal layer assignment for a single net. To overcome the

impact of net ordering, different heuristics or negotiation techniques were pro-

posed in [7,54]. Ao et al. [7] considered the delay in layer assignment, but since

via capacity was not considered, more segments can be illegally pushed onto

higher routing layers. A min-cost flow based refinement was developed in [45]

to further reduce the number of vias. Furthermore, Lee et al. [43] proposed

an enhanced global router with layer assignment refinement to reduce possible

violations through a min-cost max-flow network. This framework works at one

edge each time in a sequential order. For slew optimization, repeaters/buffers

insertions are widely adopted to fix the potential slew violations [31, 46, 69].

9

Zhang et al. [94] utilized an ILP approach to reconstruct the over-the-block

steiner tree structure to improve slew.

Existing layer assignment studies suffer from one or more of the fol-

lowing limitations: (1) Most works only target at via number minimization,

but no timing issues are considered. Since timing requirements within a single

net are usually different for different sinks, assigning all segments of a set of

nets on higher metal layers is not the best use of critical metal layer resources.

That is, intelligent layer assignment should not blindly assign all segments of

a net to a set (a pair, for example) of higher metal layers. It should be aware

of capacitive loading of individual segments within a net to achieve better tim-

ing with the limited available higher metal layer resources. (2) In emerging

technology nodes, the via delays contribute a non-negligible part of total in-

terconnect delay. But the delay impact derived from vias is usually ignored in

previous layer assignment works. (3) During the post-routing stage, slew vio-

lations may result in significant buffering resources. There are limited works

to avoid slew violations globally during the layer assignment stage. (4) The

net-by-net strategy may lead to local optimality, i.e., for some nets the tim-

ings are over-optimized, while some other nets may have not enough resources

in high layers. Meanwhile, considering one edge at each time may lose po-

tential optimality because the edge ordering could also affect the subsequent

solutions.

To close on timing for critical nets that need to go long distances,

layer assignment needs to be controlled by multi-net global optimization. For

10

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 20 40 60 80 100 120 140 160

207807

max delay = 144 x 10
5

N
u

m
b

e
r

o
f

N
e

ts

Delay Distribution (10
5
)

NVM

(a)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 20 40 60 80 100 120 140 160

207894

max delay = 23 x 10
5

N
u

m
b

e
r

o
f

N
e

ts

Delay Distribution (10
5
)

TILA-S-5%

(b)

Figure 2.1: Net delay distribution for benchmark adaptec2. (a) Result by layer
assignment solver NVM [54]; (b) Result by our timing-driven incremental layer
assignment solver TILA-S, where 5% most critical nets are reassigned layers.

example, Fig. 2.1 compares the delay distributions of benchmark ‘adaptec2’

by conventional layer assignment solver [54] and the novel incremental timing-

driven solution, while Fig. 2.2 compares the slew distribution results. It is seen

that, since conventional layer assignment only targets at via minimization, the

maximum delay and the maximum slew can be very large. Since the presented

timing-driven planner is with a global view, the maximum delay can be much

11

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

519468

max slew = 12.74 x 10
5

N
u
m

b
e
r

o
f
S

in
k
s

Slew Distribution (10
4
)

NVM

(a)

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

528484

max slew = 2.16 x 10
5

N
u
m

b
e
r

o
f
S

in
k
s

Slew Distribution (10
4
)

TILA-S-1%

(b)

Figure 2.2: Sink slew distribution for benchmark adaptec2. (a) Result by layer
assignment solver NVM [54]; (b) Result by our timing-driven incremental layer
assignment solver TILA-S, where 1% most critical nets are reassigned layers.

better, i.e., the normalized maximum delay can be reduced from 144× 105 to

23×105. Meanwhile, the slew violations can also be reduced significantly. The

maximum slew decreases from 12.74× 105 to 2.16× 105.

For very large high-performance circuits, either long computation times

have to be accepted or routing quality must be compromised. Therefore, an

incremental layer assignment to iteratively improve routing quality is a must.

12

This chapter proposes an incremental layer assignment framework targeting at

timing optimization. Incremental optimizations or designs are very important

in physical design and CAD field to achieve good timing closure [19]. Fast in-

cremental improvements are developed in different timing optimization stages,

such as incremental clock scheduling [6, 12], incremental buffer insertion [36],

and incremental clock tree synthesis [74]. To further improve timing, incre-

mental placement is also a very typical solution [57, 73]. Besides, there are

several incremental routing studies (e.g. [93]) to introduce cheap and incre-

mental topological reconstruction.

To the best of our knowledge, this work is the first incremental layer

assignment work integrating via delay and solving all the nets simultane-

ously. A multilayer global router can either route all nets directly on multi-

layer solution space [72,84] or 2D routing followed by post-stage layer assign-

ment [13,29,53,62]. Note that as an incremental layer assignment solution, this

tool can smoothly work with either type of global router. The contributions

are highlighted as follows.

• A mathematical formulation gives the layer assignment solutions with

optimal total wire delays and via delays.

• A Lagrangian relaxation based optimization iteratively improves the

layer assignment solution.

• A Lagrangian relaxation subproblem (LRS) is solved via a min-cost flow

model that guarantees integer solutions due to the inherent uni-modular

13

property, thus, avoiding runtime extensive methods such as ILP.

• An iterative Lagrangian relaxation based slew optimization strategy is

proposed to reduce the violations globally.

• A post slew optimization algorithm searches potentially usable layers for

fixing local violations.

• Multiprocessing of K ×K partitions of the whole chip provides runtime

speed up.

• Both ISPD 2008 and industrial benchmarks demonstrate the effective-

nesses of our framework.

The remainder of this chapter is organized as follows. Section 2.2 pro-

vides some preliminaries and the problem formulation. Section 2.3 gives the

mathematical formulation and also proposes the sequence of multi-threaded

min-cost flow algorithm to achieve further speed-up. In addition, how to

mitigate slew violations is discussed in this Section. Section 2.4 reports exper-

imental results, followed by the summary in Section 2.5.

2.2 Preliminaries and Problem Formulation

This section introduces the graph model and the timing model applied

in this work. Then the problem formulation of timing-driven incremental layer

assignment is provided.

14

M9
M8
M7
M6

(a) (b)

Figure 2.3: Layer design and grid models. (a) A design with four routing
layers {M6, M7, M8, M9}; (b) Grid model with preferred routing directions.

2.2.1 Graph Model

Similar to the 3D global routing problem, the layer assignment problem

can be modeled on a 3D grid graph, where each vertex represents a rectangular

region of the chip, so called a global routing cell (G-Cell), while each edge

represents the boundary between two vertices. In the presence of multiple

layers, the edges in the z-direction represent vias connecting different layers.

Fig. 2.3(a) shows a grid graph for routing a circuit in a multi-metal layer

manufacturing process. Each metal layer is dedicated to either horizontal or

vertical wires. The corresponding 3D grid graph is shown in Fig. 2.3(b).

To model the capacity constraint, for each x/y-direction edge, we de-

note its maximum routing capacity as ce. Besides, the via capacity of each

vertex, denoted by cv, is computed as in [28]. In brief, via capacity refers to

the available space for vias passing through the cell, and is determined by the

available routing capacity of those two x/y-direction edges connected with the

vertex. If there is no routing space for those two edges, no vias are allowed to

15

be inserted in this cell. Thus, this via capacity model helps to keep adequate

routing space for vias through layers and places the limits of wires on higher

metal layers, which may result in wire delay degradation.

2.2.2 Delay Model

We are given a global routing of nets, where each net is a tree topology

with one source and multiple sinks. Based on the topology, for each net we

have a set of segments S. Here we give an example of net model in Fig. 2.4,

where each net contains two segments. To evaluate the timing of each net, we

adopt Elmore delay model, which is widely used during interconnect synthesis

in physical design. The delay of a segment si on a layer l, denoted by de(i, l),

is computed as follows:

de(i, l) = Re(l) · (C(l)/2 + Cdown(si)), (2.1)

where Re(l), C(l) refer to the edge resistance on layer l, and edge capacitance

on layer l, respectively. Cdown(si) refers to the downstream capacitance of si.

Note that the downstream capacitance of si is determined by the assigned lay-

ers of its all downstream segments. To calculate the downstream capacitance

for each si, we should traverse the net tree from sinks to source in a bottom-

up manner. Therefore, the downstream capacitance of the source segment,

i.e. the segment connected with the driver pin, should be calculated after all

the other segments have obtained their downstream capacitances.

For a via vm connecting segments between layers l and l + 1, its delay

16

S1 S2

S3

S4 Buffer

Driver

Figure 2.4: Example of net model.

can be calculated as follows.

dv(vm, l) = Rv(l) · Cdown(vm). (2.2)

Here Rv(l) is the resistance of via between layers l and l+ 1, and Cdown(vm) is

the downstream capacitance of the upstream segment connected to via vm. If

the downstream capacitance of a via is equal to zero, then we assume the via

delay is negligible.

In addition, buffer positions can be considered in our delay model. That

is, for one segment si, if there is one buffer at its end point, its downstream

capacitance Cdown(si) should be equal to the buffer input capacitance. As

shown in Fig. 2.4, Cdown(s2) is equal to the input capacitance of the buffer.

Because buffers are fabricated in silicon and have pins connected with a spec-

ified metal layer, integration with buffers in our assumption would affect the

downstream capacitance for the corresponding pin. Meanwhile, integration

with buffers would also introduce buffer intrinsic delay and driving delay for

each driving net. The intrinsic delay is dependent on the driving buffer, while

the driving delay is in proportion to the downstream capacitance. Because

17

capacitances of different layers vary less than resistances, we do not include

the buffer driving delay in our work. Therefore, through updating the down-

stream capacitances and including buffer intrinsic delay, our framework can

handle timing optimization for both pre-buffered and post-buffered designs.

2.2.3 Slew Model

Besides delay, our framework also considers slew computation to reduce

the potential slew violations. Since each routing net is a tree topology in

essence, we traverse the tree in a breadth-first manner from the driver to each

sink and calculate the slew for each pin. For each segment, the input slew is

represented by its upstream pin slew, and the output slew by its downstream

pin slew. To calculate the output slew, we adopt PERI model, which has

been shown to provide less than 1% error [37]. The calculation is given in

Eq. (2.3), where Slw(pu(si)), Slw(pd(si)) are the input and output slew of si,

respectively, while Slwstep(si) is the step slew.

Slw(pd(si)) =
√
Slw(pu(si))2 + Slwstep(si)2. (2.3)

Based on PERI model, the segment output slew depends on both its

input slew and step slew. The input slew is also the output slew of the up-

stream segment, so it can be obtained iteratively through Eq. (2.3). Regarding

the step slew, we calculate it through the combination of PERI model and

Bakoglu’s metric. It is proved to have an error within 4% [37]. The calcula-

tion is shown in Eq. (2.4), where l(si) is the layer on which si is assigned, and

18

de(i, l) is Elmore delay of segment si on layer l.

Slwstep(si) = Slwstep(i, l(si)) = ln9 · de(i, l(si)). (2.4)

With the calculated step slew, we can obtain the output slew for each

segment. To see the impact of layer assignment, the output slew can be rep-

resented as a function of its input slew and the layer to be assigned.

Slwe(i, l(si)) =
√
Slw(pu(si))2 + (ln9 · de(i, l(si)))2. (2.5)

Besides, via slew should also be considered during slew calculation and

computed in a similar way as segment slew. Eq. (2.6) gives the slew for via

vm from layer l to layer l + 1.

Slwv(vm, l + 1) =
√
Slw(pvm)2 + (ln9 · dv(vm, l))2. (2.6)

In contrary to downstream capacitance calculation in a bottom-up manner,

here we start from the segment connected with the net driver. Then each

segment and its connected via are traversed in a breadth-first manner until

every sink is reached. With this approach, we obtain the output slew for each

net sink sequentially. If the sink slew exceeds a specified slew constraint, we

assume there is a slew violation.

2.2.4 Problem Formulation

Based on the grid model and timing model discussed in the preced-

ing section, the timing-driven incremental layer assignment (TILA) problem is

19

defined as follows:

Problem 1 (TILA) Given a global routing grid, a set of critical net segments

and layer / via capacity information, timing-driven incremental layer assign-

ment assigns each segment passing through an edge to a layer, so that layer

assignment costs (weighted sum of segment delays, via delays, and slew viola-

tions) can be minimized, while the capacity constraints of each edge on each

layer are satisfied.

It shall be noted that in this work we only consider layer assignment for

timing optimization, while other techniques such as buffering are not discussed.

One instance of TILA problem with three nets is demonstrated in Fig. 2.5,

where nets n1 and n2 are non-critical nets, while net n3 is timing critical.

In the initial layer assignment, net n3 is assigned on lower layers. Since the

routing resources are utilized by nets n1 and n2, n3 cannot be shuffled into

higher layers to improve timing. Through a global layer reassignment, we are

able to achieve a better timing assignment solution, where both n1 and n2

release high layer resources to n3.

Naclerio et al. proved that even if no timing is considered, the decision

version of layer assignment for via minimization is NP-complete [64]. Thus

the decision version of TILA problem is NP-complete as well.

20

n1

n2

n3 n1
n2

n3

Non-Critical Nets: n1 n2 ; Critical Net: n3

Figure 2.5: An example of timing driven layer assignment. In initial layer
assignment net n3 is timing critical. Through resource releasing from nets n1

and n2, the total timing gets improvement.

2.3 TILA-S Algorithms

In this section, we introduce our framework to solve the TILA− S prob-

lem. First, a mathematical formulation targeting delay optimization will be

given. Then a Lagrangian relaxation based optimization methodology is pro-

posed to solve this problem. After the delay optimization, a Lagrangian re-

laxation based slew optimization is presented, followed by a post optimization

stage. For convenience, some notations used in this section are listed in TA-

BLE 2.1.

2.3.1 Mathematical Formulation

The starting mathematical formulation of TILA problem is shown in

Formula (2.7). In the objective function, the first term is to calculate the cost

of segments, while the second term is to calculate the cost from vias. Here

de(i, j) is calculated through Eq. (2.1), and dv(i, p, k) is derived from Eq. (2.2).

21

Table 2.1: Notations for timing-driven layer assignment.

L number of layers

S set of all segments considered

E set of all edges

G set of all g-cells on 2-D plane

Ex set of all pairs of crossing segments

P (si) nodes of segment si,

i.e. si’s upstream pin and downstream pin

N(vm) set of neighboring segments of via vm

Se(i) set of segments assigned to the same edge as si

Ex(g) set of crossing segment pairs passing through g-cell g

aij binary variable; if i-th segment is assigned to layer j
then aij = 1, otherwise aij = 0

de(i, j) timing cost if si is assigned to layer j

dv(i, p, k) timing cost of via v from layer k to k + 1,

where v ∈ P (si) ∩ P (sp)

l(si) layer where segment si is assigned

ce(i, j) routing capacity of edge e,

where segment si passes on layer j

cg(k) available via capacity of g-cell g on layer k

Constraint (2.7b) is to ensure that each segment of nets would be as-

signed to one and only one layer. Each edge e ∈ E is associated with one

capacity ce(i, j), and constraint (2.7c) is for the edge capacity of each layer.

Constraint (2.7d) is for the via capacity in each layer, which restricts the

available via capacity for each layer at certain grid position.

First, we show that if each Cdown(si) is constant, the TILA can be

formulated as an integer linear programming (ILP), then a mature ILP solver

22

min
∑
i∈S

L∑
j=1

de(i, j) · aij +
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

max(j,q)−1∑
k=min(j,q)

dv(i, p, k) · aij · apq, (2.7a)

s.t.
∑
j

aij = 1,∀i ∈ [1, S], (2.7b)∑
si∈Se(i)

aij ≤ ce(i, j), ∀e ∈ E,∀j ∈ [1, L], (2.7c)

∑
(i,p)∈Ex(g)

∑
min(j,q)≤k<max(j,q)

aij · apq ≤ cg(k),∀g ∈ G,∀k ∈ (1, L), (2.7d)

aij is binary . (2.7e)

is possible to be applied. Here Cdown(si) is the downstream capacitance of

segment si. We can use a boolean variable γij,pq to replace each non-linear term

aij · apq. Then Formula (2.7) can be transferred into ILP through introducing

the following artificial constraints:{
aij + apq ≤ γij,pq + 1,

aij ≥ γij,pq, apq ≥ γij,pq.
(2.8)

Due to the computational complexity, ILP formulation suffers from

serious runtime overhead, especially for those practical routing test cases. A

popular speedup technique is to relax the ILP into linear programming (LP)

by removing the constraint (2.7e). It is obvious that the LP solution provides a

lower bound to the original ILP formulation. We observe that the LP solution

would be like this: each aij is assigned to 0.5 and each γij,pq is 0. By this

way, all the constraints are satisfied, and the objective function is minimized.

However, all these 0.5 values to aij provide no useful information in guiding

23

the layer assignment, as we prefer each aij closes to either 0 or 1. In other

words, the LP relaxation is hard to provide a reasonable good solution. Instead

of expensive ILP formulation or its LP relaxation, our framework proposes a

Lagrangian relaxation based algorithm to solve the original Formula (2.7).

2.3.2 Lagrangian Relaxation based Optimization

Lagrangian relaxation [75] is a solution technique for solving optimiza-

tion problems with difficult constraints, where some or all hard constraints are

moved into the objective function. In the updated objective function, each

new term is multiplied with a constant known as Lagrange Multiplier (LM).

Our idea is to relax the via capacity constraint (2.7d) and incorporate it into

the objective function. We specify each aij · apq a non-negative LM λij,pq,

and move the constraint into the objective function. The modified formula

is called Lagrangian relaxation subproblem (LRS), as shown in Formula (2.9).

Through this relaxation methodology, via capacity overflow is handled with

timing optimization simultaneously.

min
∑
i∈S

L∑
j=1

de(i, j) · aij

+
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

max(j,q)−1∑
k=min(j,q)

dv(i, p, k) · aij · apq

+
∑

(i,p)∈Ex

λij,pq(aij · apq − cg(k)), (2.9)

s.t. (2.7b)− (2.7c), (2.7e).

24

It is known that for any fixed set of LM λij,pq, the optimal result to

the LRS problem is smaller or equal to the optimal solution of the original

Formula (2.7) [75]. That is, the original formulation is the primal problem

and the Lagrange multiplier optimization is the dual problem. Therefore, the

Lagrangian dual problem (LDP) is to maximize the minimum value obtained

for the LRS problem by updating LMs accordingly.

Algorithm 1 TILA

Input: Initial layer assignment solution;
Input: Critical net ratio α;
1: Select all segments based on α; . Section 2.3.4
2: Initialize Cdown(si) for each segment si;
3: Initialize LMs;
4: while not converged do
5: Solve LRS; . Section 2.3.3
6: Update Cdown(si) for all si;
7: Update LMs;
8: end while

Algorithm 1 gives a high-level description of our Lagrangian relaxation

based framework to the TILA problem. The inputs are an initial layer as-

signment solution and a critical net ratio value α. Based on the α value we

select some critical nets and non-critical nets (line 1). All the segments be-

longing to these (selected critical and non-critical) nets are reassigned layers

by our incremental framework. Please refer to Section 2.3.4 for more details

of our critical and non-critical net selection. Based on the initial layer assign-

ment solution, we initialize all the Cdown(si) for each selected segment si (line

2). The LMs are also initialized in line 3. In our implementation, the initial

25

values of all LMs are set to 2000. Our framework iteratively solves a set of

Lagrangian relaxation subproblems (LRS), with fixed LM values (lines 4–8).

In solving LRS, we minimize the objective function in Eq. (2.9) based on the

current set of LMs. The details of solving LRS are discussed in Section 2.3.3.

After solving each LRS, we re-calculate the downstream capacitances of all the

segments Cdown(si) based on Eq. (2.1) (line 6). We use a subgradient-based

algorithm [5] to update the LMs to maximize LDP (line 7). In more details,

the LM in the current iteration is dependent on the LM from the last iteration

λ′i,j,p,q, the step length θijpq, and the available resources.

λi,j,p,q = λ′i,j,p,q + θijpq · (aij · apq − cg). (2.10)

The available via resources can be obtained directly by updating the current

via capacity as in [28]. To decide the step length, we adopt the classic calcu-

lation as follows:

θijpq =
φ · [UB − L(λi,j,p,q)]

‖(aij · apq − cg)‖2
. (2.11)

Based on Eq. (2.11), UB refers to the upper bound of the total costs of via v

and segments connecting to v, while L(λi,j,p,q) refers to the current total costs.

φ is the scaling factor traditionally from 2 to 0, and here we choose it as 1 for

convenience. Through this updating procedure, LMs help to fix the potential

via violations. In our implementation, the iteration in line 4 will end if one of

the following two conditions is satisfied: either the iteration number is larger

than 20; or both the wire delay improvement and the via delay improvement

are less than a pre-specified fraction.

26

2.3.3 Solving Lagrangian Subproblem (LRS)

Through removing the constant items and reorganizing objective func-

tion of Formula (2.9), we re-write LRS into Formula (2.12).

min
S∑

i=1

L∑
j=1

c(i, j) · ai,j +
∑

(i,p)∈Ex

L∑
j=1

L∑
q=1

c(i, j, p, q) · aij · apq, (2.12)

s.t. (2.7b)− (2.7c), (2.7e),

where
c(i, j) = de(i, j),

c(i, j, p, q) =
max(j,q)−1∑
k=min(j,q)

dv(i, p, k) + λij,pq.

Theorem 1 For a set of fixed λij,pq, LRS is NP-hard.

Due to the space limit, the detailed proof is omitted. Because of the

nonlinear term aij · apq, the proof can be acquired through a reduction from

quadratic assignment problem [59]. In addition, unless P = NP , the quadratic

assignment problem cannot be approximated in polynomial time within some

finite approximation ratio [71]. Inspired by MacCormick Envelops, we prefer

to linearize the term aij · apq:

c(i, j, p, q) · aij · apq ≈ c(i, j, p, q) · (a′pq · aij + a′ij · apq), (2.13)

where a′pq is the value of apq in the previous iteration, and a′ij is the value of aij

in the previous iteration. This linearization is based on the segment assignment

27

of the last iteration. Since LRS is solved iteratively through updating LMs, this

approximation is acceptable. Taking a18 ·a29 as an instance, where a′18, a
′
29 are

1, we can obtain that segments s1 and s2 are assigned on layers 8 and 9 in the

previous iteration, respectively. This means that segments s1 and s2 should

belong to critical nets because they have been assigned on high metal layers by

our framework. Thus, in later iterations, when considering the assignment of

segment s1, we assume that segment s2 is assigned on layer 9, and vice versa,

according to Eq. (2.13). In this manner, segments s1 and s2 are probable to

be assigned on high metal layers as before. Since each critical segment has

a tendency to be assigned on high metal layers, the problem converges after

several iterations.

Through the linearization technique in Eq. (2.13), the objective func-

tion in Formula (2.12) is a weighted sum of all the aij. We will show that the

linearized LRS can be solved through a min-cost network flow model. The basic

idea is that the weighted sum of all the aij can be viewed as several assign-

ments from segments to layers, while the weight of each aij is the cost to assign

segment i to layer j. Constraints (2.7b) and (2.7c) can be integrated into the

flow model through specified edge capacity. Constraint (2.7e) is satisfied due

to the inherent uni-modular property of min-cost network flow [5].

An example of such a min-cost flow model is illustrated in Fig. 2.6.

Given four different segments s1, s2, s3, s4 and several edges, we build up a

directed graph G = (V,E) to represent the layer assignment relationships.

The vertex set V includes four parts: start vertex s, segment vertices VS, layer

28

vertices VL, and end vertex t. Here both the start and end vertices are pseudo

vertices. Segment vertices VS represent a collection of segments to be assigned,

where the collection size is equal to the number of segments. Similarly, a layer

vertex in VL represents a layer on which a segment can be reassigned. The

edge set E is composed of three sets of edges: {s → VS}, {VS → VL}, and

{VL → t}. Notably, here the edge set E represents the edges in the network

flow, while the layer vertices represent the layers of edges in the global routing

grid model. We define all the edge costs as follows: the cost of one edge

from VS to VL is the cost of assigning the segment to the corresponding layer;

the costs of all other edges are set to 0. For segments whose directions are

not compatible with certain layers, no edge exists between those segment and

layer vertices. We define all the edge capacities as follows: the capacity of

one edge from VL to node t is the capacity of the corresponding edge in the

routing grid model; while the capacities of all other edges are set to 1. Then

edge capacity constraint can be satisfied by the capacity of the edge from VL

to node t, and the capacity from node s to VS guarantees that one segment

can just be assigned on one layer. As shown in Fig. 2.6, segment s1 can be

assigned on either layer 6 or layer 8 of edge 1; similarly, segment s2 can also be

assigned on two layers of edge 2. The numbers shown in VL vertices indicate

the specified layer of this edge and the corresponding edge index, respectively.

The corresponding grid model is given in Fig. 2.4, where we can see that

segment s1 shares the same routing edge with s3, therefore s1 competes for

the routing resource with s3. Meanwhile, segment s4 has a different routing

29

s1
e6,1

e8,1

e6,2

e8,2

s2

s3

s4

s t

e7,3

e9,3

Figure 2.6: An example of min-cost flow model.

direction with the other three segments so it has to be assigned on other layers

for vertical routing. When the number of segments to be assigned on one edge

exceeds the edge routing capacity, our framework will assign the segments in

order to minimize the assigning costs. In this example, we assume that each

segment passes through one edge with its length equal to the grid size, as

shown in Fig. 2.4. For a segment passing through multiple edges, we prefer to

split it into a set of sub-segments, and each sub-segment has the same length

as the grid size. We construct the flow graph where each sub-segment has its

own assigning cost, and the number of sub-segments to be assigned on one

layer is also constrained by the layer node.

2.3.4 Critical & Non-Critical Net Selection

Given an input ratio value α, our framework would automatically iden-

tify α% of the total nets as critical nets, while other α% of the total nets as

30

non-critical nets. Both the selected critical nets and the selected non-critical

nets would be reassigned layers. The motivation of critical net selection is to

reassign their layers to improve timing, while the motivation of non-critical

net selection is to release some high layer resources to the critical nets. In this

way, our incremental layer assignment flow is able to overcome the limitation

of any net order in original layer assignment. In our implementation, the de-

fault value of α is set to 1, which means 1% of nets would be identified as

critical nets, while the other 1% of nets are selected as non-critical nets.

To identify all the critical nets can be trivial: first, all the net timing

costs in original layer assignment are calculated based on our delay model as in

Section 2.2, and then the α% of worst delays are selected. Yet, the non-critical

net selection is not so straightforward, as randomly selecting α% of best timing

nets may not be beneficial to improve critical net timing. Therefore, we prefer

to select those nets with the best timing sharing more routing resources with

the critical nets while these nets are assigned on high metal layers. Otherwise,

releasing the non-critical nets on lower layers has no benefits for final timing

results. In our implementation, we check the 2 · α nets with the best timing

and associate each net with a score to indicate their overlapping resources with

critical nets. Meanwhile, if there is an overlap with critical nets, the assigned

layer of this short net should be higher than the lowest layer of these critical

nets. Otherwise, it is not regarded as an effective overlap. Then we select a

half of them with the best scores as the non-critical nets.

31

thread 1 thread 2

thread 3 thread 4

(a)

thread 1

thread 2

thread 3

thread 4

(b)

Figure 2.7: Our parallel scheme to support multi-threading computing on
K ×K partitions. (Here K = 4). (a) Parallel pattern 1; (b) Parallel pattern
2.

2.3.5 Parallel Scheme

Our framework supports the parallel scheme by dividing the global

routing graph into K ×K parts. An example of such a division is illustrated

in Fig. 2.7, where K = 4. The timing-driven incremental layer assignment

is solved in each partition separately. During partitioning, each segment is

ensured to be solved in one and only one partition. To achieve this, for seg-

ments crossing boundaries between different partitions, they are assigned in the

same partition as its geometric center. If its geometric center is exactly on the

boundary, we assume this segment belongs to the partition in its left/bottom

side. The reason for such a division is twofold. Firstly, our Lagrangian relax-

ation based optimization is to solve a set of min-cost flow models, as discussed

in Section 2.3.2 and Section 2.3.3. The runtime complexity to solve a sin-

gle flow model is O(|V | · |E|), where |V | and |E| are the vertex number and

32

 Delay Optimization

 Partition
Critical Ratio α

Initial Layer
Assignment

Solution

K ⇥K

 Post Slew Optimization

 New Assignment

 Slew Optimization

 Iterative Slew Optimization

Figure 2.8: Overall timing optimization flow.

the edge number of the graph. Dividing the whole problem into a set of

sub-problems can achieve significant speed-up. In addition, multi-threading is

applied to provide further speed-up. For instance, in Fig. 2.7(a) four threads

are used to solve different regions simultaneously. Secondly, inspired by the

Gauss-Seidel method [25], when one thread is solving the flow model in one

partition, the most recently updated results by peer threads are taken into ac-

count, even if the updating occurs in the current iteration. Besides the above

example, we also propose a more general type of parallel pattern suitable for

any K×K partition, as illustrated in Fig. 2.7(b). In this example, neighboring

threads start in inverse directions and avoid operating on neighboring parti-

tions simultaneously as much as possible. After solving different partitions,

we synchronize the newly updated layer assignment results to eliminate the

potential conflicts. This second pattern is more suitable for multi-processing

considering its synchronization mechanism.

33

Driver
S2 S1

��

n1

Figure 2.9: An example of difference between delay and slew optimization.

2.3.6 Iterative Slew Optimization

During timing closure, slew violations are important performance met-

rics that may cause a huge demand for buffering resources. Thus, we should

also focus on reducing the number of slew violations besides delay optimiza-

tion. Fig. 2.8 depicts the overall algorithm flow, which mainly consists of

two stages: delay optimization and slew optimization. The details of delay

optimization are already introduced from Section 2.3.2 to Section 2.3.5. As

discussed in Section 2.2.3, segment step slew is in proportion to its delay. With

the constant segment input slew, the higher layer this segment is assigned, the

fewer output slew can be obtained. Therefore, delay optimization is deemed

to mitigate slew violations. Nevertheless, segment delay optimization mainly

considers the layer assignments of its downstream segments due to the exis-

tence of downstream capacitance, but neglects its upstream segments. Since

layer assignments of the upstream segments affect the segment input slew, the

upstream segments should also be taken into accounts.

34

An example is given in Fig. 2.9. Here we assume that both net n1 and

net n2 are critical while there is only one available routing capacity for each

edge, so segments s1 and s2 should compete for the higher layer resource. Re-

garding delay optimization, segment s2 is possible to be assigned on a higher

layer because it owes a larger downstream capacitance with a closer distance to

its driver; while in fact, segment s1 should be placed on a higher layer because

it is on a longer path which may introduce slew violations. Through slew opti-

mization flow as shown in Fig. 2.8, segment s1 will be assigned a higher priority

on a higher layer. The details of the algorithm flow will be given later. The

main reason is that slew optimization considers the impact of both upstream

segments and downstream segments. In this manner, slew optimization has a

different impact on the assignment of critical nets in comparison to delay op-

timization. If we consider both optimizations simultaneously, they may affect

each other to degrade the final performance. The detailed reasons are two-fold:

First, critical nets can be selected in a different way during the delay and slew

optimization. In the stage of slew improvement, these nets exceeding slew

constraints are to be selected as critical nets to fix their violations; however

in the first stage we mark these nets with higher total delays as critical nets.

This may induce potential discrepancies for nets to be optimized. Secondly,

delay improvement targets at total delay reduction considering via overflows,

while slew improvement targets at the reduction of slew violations. Due to

different optimal objectives, assigning costs for both delay and slew optimiza-

tion may lead to a trade-off based on their weights. Considering the assigning

35

Table 2.2: Notations used for slew model.

Nslw set of nets with slew violations

Pcritical path with slew violations

pd(si) downstream node of segment si

pu(si) upstream node of segment si

Slwsink(Pcritical) sink slew of critical path Pcritical

Slw(pd(si)) output slew of segment si

Slw(pu(si)) input slew of segment si

Slwstep(i, j) step slew of segment si on layer j

Slwe(i, j) output slew of segment si assigned on layer j

Slwc given slew constraint

Slwimp most slew improvement

δSlw(i, l) slew improvement by assigning si on layer l

δSlwip slew improvement by switching si and sp

differences of s1 and s2 in Fig. 2.9, possible oscillation may be introduced by

setting different weights to delay and slew optimization. Therefore, due to the

differences of selected nets and optimal objectives, we prefer to target delay

and slew separately in an explicit manner, and reduce slew violations globally

as a second stage after delay optimization.

Fig. 2.8 also outlines the slew optimization flow, whose input is the

assignment result after delay optimization. The slew optimization consists

of two steps: iterative slew optimization and post greedy optimization. This

section focuses on the first step to reduce slew violations based on the flow

model, while Section 2.3.7 provides the details of post slew optimization. Some

notations used in the slew optimization are listed in TABLE 2.2.

36

In the iterative optimization, similar to delay optimization flow, the

same ratio of critical and non-critical nets are selected based on their slews. To

calculate the net criticality, we divide the net into a set of paths, and calculate

the sink slew of each path. If the sink slew exceeds the given slew constraint,

this path is defined as a critical path, i.e. Pcritical, and the exceptional slew is

counted as the critical value. Meanwhile, segment input slews are initialized

based on the input result because each segment should be reassigned simul-

taneously. Then we reassign these nets through iteration-based Lagrangian

relaxation optimization. When the number of slew violations converges to a

certain ratio, the iteration-based optimization stops.

Now we go over the details about how to solve the problem through a

min-cost flow model. First, all the segments on critical paths are considered

because their layer assignments affect the path sink slew. During slew opti-

mization, we lower the slew constraint by 5% in order to leave enough slew

slacks. Eq. (2.14) gives the slew constraint:

Slw(pd(si)) ≤ 0.95 · Slwc, i ∈ Pcritical, (2.14)

where Slw(pd(si)) is the segment output slew, and Slwc is the slew constraint.

To solve this problem, we relax Eq. (2.14) through Lagrangian Relaxation by

moving the slew calculation into the objective function, and eliminate all the

0.95 · Slwc because they are constants. Eq. (2.15) provides the corresponding

slew optimization formulation, where each segment slew is multiplied with a

37

Lagrangian Multiplier (LM), i.e. βij, which is set to 1 as the initial value.

min
∑

i∈Pcritical

L∑
j=1

βij · Slwe(i, j) · aij, (2.15)

s.t. (2.7b)− (2.7e).

During each iteration, LMs are updated as shown in Eq. (2.16),

βij = β′ij ·
√
Slwsink(Pcritical)

Slwc

, (2.16)

where β′ij is the LM in the previous iteration, and Slwsink(Pcritical) is the sink

slew of critical path Pcritical. With the consideration of sink slew, we impose

more weights on longer paths. Therefore, in the example of Fig. 2.9, segment

s1 has a higher priority than s2.

Similar to Eq. (2.7), Eq. (2.15) is solvable through ILP because we

can obtain Slwe(i, j) based on the last iteration. Still, we incorporate the

via capacity constraints into the objective function with the same lineariza-

tion method as in Eq. (5.5). Ultimately, the problem can be formulated as a

weighted sum of aijs and solved through the min-cost max-flow model.

After solving the problem in each iteration, we update the input slews

and check if there is a convergence of slew violations. If the improvement is

below a certain ratio, then the slew optimization flow terminates. In summary,

this algorithm provides a slew targeted optimization because it considers both

the upstream segments and downstream segments. Meanwhile, more emphasis

is placed on critical paths by taking the sink slew into accounts.

38

Based on the slew model, the segment input slew can affect the output

slew directly, but during each iteration, we obtain the input slew of each

segment based on the last iteration. Thus, it may introduce slew discrepancies

by calculating the segment slew based on the previous assignments. Therefore,

we implement a post slew optimization algorithm, which mainly focuses on

fixing local violations while considering current layer assignments of the whole

path. The details of this algorithm are given in Section 2.3.7.

2.3.7 Post Slew Optimization

In this section, a post slew optimization algorithm is proposed to further

reduce the slew violations. The pseudocode is shown in Algorithm 2. Based

on the global optimization results, we traverse each net sink to check if there

exist slew violations. For those nets with violations, they are saved in a net

set, i.e. Nslw, and sorted in the descending order of slew violations (line 2).

The net with the highest priority is the one with the most segments causing

slew violations. To cope with slew violations, we start from the first segment

on the critical path (line 4), and adjust the layer assignment of each segment

si through two steps (lines 5–34).

First, if there exists any available routing capacity for si on higher

layers (line 7) and its segment slew can be improved (line 8), we record the

improvement and mark this layer as a candidate (line 9). Meanwhile, the in-

duced via capacity violations cannot exceed a given ratio, Ra. After traversing

each possible layer, the layer with the most improvement is selected for si to

39

Algorithm 2 Post Slew Optimization Algorithm

Input: Current layer assignment solution;
1: Save all slew critical nets in Nslw;
2: Sort nets in the descending order of slew violations;
3: for each net n ∈ Nslw do
4: for each si ∈ Pcritical do
5: Initialize Slwimp = 0;
6: for each l ∈ e(si) do
7: if Routing capacity exists for layer l then
8: if δSlw(i, l) ≥ Slwimp and OV ≤ Ra then
9: Update ltemp and Slwimp;
10: end if
11: end if
12: end for
13: Assign si on ltemp;
14: if No ltemp is found then
15: for each non-critical sp on e(si) do
16: if δSlw(i, l(sp)) ≤ 0 then
17: Continue;
18: end if
19: δSlwip = δSlw(i, l(sp)) + δSlw(p, l(si));
20: if δSlwip ≥ Slwimp and OV ≤ Ra then
21: if Slwn(sp) ≤ α · Slwc then
22: Update stemp and Slwimp;
23: end if
24: end if
25: end for
26: Switch layers between si and stemp;
27: Update Slw for n(si) and n(stemp);
28: end if
29: if Slwsink(Pcritical) ≤ Slwc||Slw(i, l′) ≥ Slwc then
30: break;
31: end if
32: end for
33: end for

40

assign (line 13). In this way, the sink slews of other nets are not affected while

the current segment output slew is improved. However, if no available layer is

found, a second step is required to improve the segment slew violation (lines

14–28).

In the second step, we search for a non-critical segment on the same edge

with si. When exchanging its layer with segment si, we would not degrade its

slew much while improving the output slew of si. In order to find this segment,

we traverse each non-critical segment sp that is assigned on a layer higher than

l(si) and able to bring slew improvements for si (lines 16–18). Then the slew

improvement is calculated by switching the layer of segment si and segment sp

(line 19). If the improvement outperforms the current most improvement, we

signify this segment as stemp, and record its layer (lines 20–24). Here we also

take into accounts the net which segment sp belongs to. When its sink slew

is close to the given slew constraint, then segment sp will not be considered

as an exchange candidate. After traversing each segment on higher layers, we

switch the assigned layers of segments si and stemp and update the slews of

the corresponding nets (lines 26–27). When the slew violation of Pcritical has

been fixed, then we continue to fix the next net in Nslw. The segments of each

net are traversed in a top-down manner from driver to sinks. When a segment

has already exceeded the slew constraint, we will skip the remaining segments

in this net because there is no further optimization space for sink slews of this

net. By this way, we can further reduce the runtime overhead. The algorithm

ends until all nets in Nslw are traversed. In comparison to slew optimization

41

Table 2.3: Normalized capacitance and resistance.

Wire [30] Via

Layer C R Layer R

M1 1.14 23.26 v1,2 25.9

M2 1.05 19.30 v2,3 16.7

M3 1.05 23.26 v3,4 16.7

M4 0.95 5.58 v4,5 16.7

M5 1.05 3.26 v5,6 5.9

M6 1.05 3.26 v6,7 5.9

M7 1.05 3.26 v7,8 5.9

M8 1.00 3.26 v8,9 1.0

M9 1.05 1.00 v9,10 1.0

M10 1.00 1.00 - -

in Section 2.3.6, this algorithm adjusts the layer assignment of segments based

on their real input slew, thus providing a more accurate slew optimization.

Meanwhile, if there are only a few slew critical nets, it is efficient to fix the

violations through this algorithm.

2.4 Experimental Results

We implemented the proposed timing-driven incremental layer assign-

ment framework in C++, and tested it on a Linux machine with 2.9 GHz

Intel R© Core and 192 GB memory. We selected open source graph library

LEMON [2] as our min-cost network flow solver, and utilized OpenMP [3] to

provide parallel computing. In our implementation, the default K value is set

to 6, and the default thread number is set to 6.

42

Table 2.4: Performance comparisons on ISPD 2008 benchmarks.

NVM [54] TILA-1% TILA-5%

Bench OE# OV# Davg Dmax via# CPU OE# OV# Davg Dmax via# CPU OV# Davg Dmax via# CPU

(103) (103) (105) (s) (103) (103) (105) (s) (103) (103) (105) (s)

adaptec1 0 48588 7.26 8776.6 19.03 36.2 0 50716 6.84 7126.0 19.26 124.6 53472 6.37 7107.2 20.18 146.6

adaptec2 0 39468 4.35 14424.9 19.01 31.5 0 36824 3.61 2365.8 19.38 115.6 32266 3.19 2365.8 20.63 145.3

adaptec3 0 91996 9.70 24998.9 36.29 89.3 0 89800 8.67 7861.3 36.77 396.5 89598 7.89 7860.0 38.83 796.3

adaptec4 0 77542 6.96 38646.7 31.56 55.1 0 67946 5.89 9745.2 32.55 330.7 56037 5.25 9746.0 34.80 562.5

adaptec5 0 79101 10.95 9958.0 54.30 98.5 0 81956 9.98 8740.2 55.43 493.4 85590 9.11 8693.1 58.54 587.2

bigblue1 0 43029 13.50 3675.4 21.25 48.4 0 46151 12.93 3434.7 21.68 235.7 52779 12.10 3390.4 22.67 246.9

bigblue2 12 117989 3.02 58259.1 42.70 48.8 12 114215 2.63 18294.9 43.44 208.4 114220 2.44 18279.0 45.35 239.3

bigblue3 0 66790 4.98 3122.2 51.29 81.4 0 65437 4.15 2708.9 53.22 378.4 66639 3.49 2710.1 60.04 675.6

bigblue4 447 97355 8.22 53401.4 107.65 169.4 447 114215 7.08 35310.7 111.01 743.6 113744 6.08 35320.1 122.08 984.4

newblue1 179 58656 1.21 670.7 22.03 21.6 179 56602 1.00 566.2 22.39 99.1 51721 0.93 565.4 23.67 122.8

newblue2 0 40959 4.31 12265.2 28.36 35.3 0 33941 3.97 10569.2 29.02 159.2 19997 3.57 10567.1 31.04 253.3

newblue4 108 88220 4.17 15478.3 46.85 83.2 108 84273 3.88 8976.9 47.65 302.7 77931 3.55 8963.8 50.41 429.5

newblue5 0 160141 6.19 11910.3 84.61 136.6 0 151300 5.64 4551.7 86.88 644.2 141974 5.12 4552.9 93.86 991.8

newblue6 0 94425 7.28 18987.0 77.43 103.4 0 96740 6.57 3963.7 78.67 686.8 105034 5.99 3964.6 82.39 842.6

newblue7 369 146737 7.01 13416.0 160.57 236.7 369 141936 5.91 12028.2 166.58 1213.3 158329 5.06 12033.0 183.94 1427.9

average 74 83400 6.61 19199.4 53.5 85.0 74 81121 5.92 9082.9 54.93 408.8 81289 5.34 9074.6 59.23 563.5

ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.90 0.47 1.03 – 0.97 0.81 0.47 1.11 –

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 8x10
6

 1 2 3 4 5 6

D
m

a
x

ratio (%)

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6

D
a
v
g

ratio (%)

(b)

 0

 50

 100

 150

 200

 1 2 3 4 5 6

ru
n

ti
m

e
 (

s
)

ratio (%)

adaptec1
adaptec2
bigblue1

(c)

Figure 2.10: Performance impact on different ratio values. (a) The impact of
ratio on maximum delay; (b) The impact of ratio on average delay; (c) The
impact of ratio on runtime.

2.4.1 Evaluation on ISPD 2008 Benchmarks

In the first experiment, we evaluate our timing-driven layer assignment

framework on ISPD 2008 benchmarks [65]. The NCTU-GR 2.0 [53] is utilized

to generate the initial global routing solutions. The initial layer assignment

results are from NVM [54], which is targeting at via and overflow minimization.

Our framework is tested the effectiveness to incrementally optimize the timing.

43

To calculate the wire delay in Eq. (2.1) and via delay in Eq. (3.2), all the

metal wire resistances, metal wire capacitances, and via resistances are listed

in TABLE 2.3. Column “C” lists the capacitance. Columns “R” list the

resistances for wire layers and via layers, respectively. The resistances and

capacitances of wires are directly from [30], while the via resistance values are

normalized from industry settings in advanced technology nodes. Since ISPD

2008 benchmarks do not provide the input capacitance and output resistance

values of sinks, here we assume they are zero.

TABLE 2.4 compares NVM [54] with our incremental layer assignment

tools TILA-1% and TILA-5%. NVM provides a minimum number of vias

during layer assignment with very low runtime overhead. In “TILA-1%” and

“TILA-5%” the ratio value α are set to 1% and 5%, respectively. That is, in

TILA-1%, 1% of timing critical nets and 1% of non-critical nets are reassigned

layers. In TILA-5%, 5% of timing critical nets and 5% of non-critical nets are

reassigned layers. For each methodology, columns “OE#”, “OV#”, “Davg”,

“Dmax”, and “via#” list the resulting edge overflow, via overflow, average

delay, maximum delay, and the total number of vias, separately. Here the

calculation of via overflow is described in [28]. Besides, “CPU(s)” reports the

runtime in seconds for both NVM and TILA. We do not test our tools on

test case newblue3 as NCTU-GR [53] cannot generate a legal global routing

solution where the number of segments passing one edge in 2-D dimension

exceeds the total edge capacities. We also cannot report the results from

another recent work [7], as for this benchmark suite their binary gets assertion

44

fault before dumping out results.

From TABLE 2.4 we can see that in TILA-1%, when 1% of the most

critical nets are shuffled layers, maximum delay can be reduced by 53% on the

ISPD 2008 benchmarks. Meanwhile, the number of overflows and the average

delay are reduced by 3% and 10%, respectively. The penalty for such timing

improvement is that the number of vias is increased by only 3%. On the

average, TILA-1% requires around 409 seconds for each test case. Compared

with extreme fast net-by-net solver NVM, although our planner solves a global

optimization problem, its runtimes are reasonable. For instance, based on [54],

for test cases adaptec1 and adaptec5, NVM needs around 36 and 99 seconds,

respectively. Our planner needs around 125 and 493 seconds, respectively.

In TILA-5%, when 5% of the most critical nets are reassigned layers, the

maximum delay is reduced by 53%. Meanwhile, the number of overflows and

the average delay are reduced by 3% and 19%, respectively. The penalty of

TILA-5% is that the number of vias is increased by 11%. From TABLE 2.4 we

can see that even small amounts of critical nets (e.g. 1%) are considered, the

maximum delay can be effectively optimized. When more nets are inputted in

our planner, better average delay and less overflow number are expected. We

pay a penalty of increasing via counts to achieve better timing results with

more released nets. Meanwhile, runtime shows a slight increase with more

reassigned nets because of the larger problem size. In addition, our framework

is with good scalability, i.e., with problem size increases fivefold, the runtime

of TILA-5% is just around one and half times of TILA-1%.

45

Table 2.5: Performance comparisons on 20nm industrial benchmarks.

Bench
Industry Layer Assignment TILA

OV# Davg Dmax via# OV# Davg Dmax via# CPU(s)

Industry1 0 6204.0 68444.4 51805.0 0 3696.6 28667.2 49302.0 6.6

Industry2 0 6049.6 68713.0 52996.0 0 3796.4 27416.3 50331.0 7.0

Industry3 0 6025.4 81030.3 53905.0 0 3906.2 38230.8 51726.0 8.0

Industry4 0 5702.8 58478.5 56393.0 0 3669.2 25858.9 54188.0 9.3

Industry5 0 5531.4 78391.4 58944.0 0 3799.3 34347.0 56623.0 11.5

Industry6 0 5443.5 77803.0 60083.0 0 3692.9 33096.3 57456.0 12.7

Industry7 0 5066.0 114597.7 70658.0 0 3693.7 29348.7 70106.0 38.5

Industry8 0 4096.4 46893.7 75790.0 0 3040.2 20137.7 78823.0 127.8

average 0 5514.9 74294.0 60071.6 0 3661.8 29637.9 58569.4 127.8

ratio 0 1.00 1.00 1.00 0 0.66 0.40 0.97 -

Critical net ratio α is a user-defined parameter to control how many

nets are released to incremental layer assignment. In TABLE 2.4, ratio α is set

to 1% and 5%. Fig. 2.10 analyzes the impact of ratio value to the performance

of incremental layer assignment framework. Fig. 2.10(a) shows the impact

of ratio value on the maximum delay, where we can see that the maximum

delays are kept the same. This means for these test cases, releasing 1% of

critical nets is enough for maximum delay optimization. Fig. 2.10(b) shows

the impact of ratio value on the average delay, where we can see increasing the

ratio value can slightly improve the average delay. Fig. 2.10(c) is the impact

on the runtime, where we can see that the runtime increases along with the

increase of ratio value. From these figures, we can see that the ratio value can

provide a trade-off between average delay and the speed of our tool.

Our incremental layer assignment utilizes OpenMP [3] to implement

multi-threading. Fig. 2.11 analyzes the performance of our layer assignment

framework under different partition and thread numbers. Thread 1 corre-

46

 0

 2x10
6

 4x10
6

 6x10
6

adaptec1 adaptec2 bigblue1

D
m

a
x

1-thread
2-thread
4-thread

6-thread
8-thread

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

adaptec1 adaptec2 bigblue1

D
a
v
g

(b)

 0

 10000

 20000

 30000

 40000

 50000

adaptec1 adaptec2 bigblue1

O
V

#

(c)

 0

 1000

adaptec1 adaptec2 bigblue1

C
P

U
(s

)
(d)

Figure 2.11: Evaluation thread number impact on three test cases in ISPD
2008 benchmark suite. (a) The impact on maximum delay; (b) The impact on
average delay; (c) The impact on overflow; (d) The impact on runtime.

sponds to 1 × 1 partition, thread 2 corresponds to 2 × 2 partitions, and so

on. With more partitions, the size of the network flow model is reduced

quadratically thus benefiting the runtime significantly together with multi-

threads. From Fig. 2.11(a) and Fig. 2.11(b) we can see that the impact of

thread number on both maximum delay and average delay is insignificant.

Similarly, through Fig. 2.11(c) we can see the impact on overflow is also negli-

gible. From Fig. 2.11(d) we can observe that more thread number can achieve

more speed-ups. However, when thread number is larger or equal to 6, the

benefit to runtime is not clear. Therefore, in our implementation, the thread

number is set to 6.

To demonstrate the benefit of solving the problem in a global manner,

47

 0

 4000

 8000

 12000

 16000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
a
v
g

Greedy-1% TILA-1%

(a)

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
m

a
x

(b)

 0

 40000

 80000

 120000

 160000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

O
V

 #

(c)

 0

 50

 100

 150

 200

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

R
u
n
 t
im

e
(d)

Figure 2.12: Comparison between greedy methodology and TILA on some
small test cases: (a) on average delay; (b) on maximum delay; (c) on via
overflow; (d) on runtime.

we implement a greedy strategy to assign segments in a net-by-net manner.

All the reassigned nets are sorted based on their timing priorities so that a

more critical net has higher priority for higher metal resources. For each net,

segments are traversed sequentially and layers are selected based on the same

costs as that in the min-cost max-flow network. Here we release 1% critical nets

and 1% non-critical nets. The results are shown in Fig. 2.12. From the figure,

we can observe that for both average and maximum delay TILA can achieve

a little bit better results compared with the greedy method. The main reason

is that the greedy methodology assigns higher priorities to those critical nets

so that these nets are able to take advantage of higher layer resources. Since

those nets utilize high metal layers efficiently, significant timing optimization

48

can also be achieved through this greedy methodology. Nevertheless, they

sacrifice the via capacity violations due to their preferences for high layer

resources. Regarding the runtime, as shown in Fig. 2.12(d), due to the net-

by-net scheme, the greedy method is faster than TILA. Therefore, to control

timing optimization and capacity constraint in a reasonable manner, a global

optimization engine is more promising.

2.4.2 Evaluation on 20nm Industry Benchmarks

In the second experiment, we test our incremental layer assignment

framework on eight 20nm industry test cases (Industry1–Industry8). We

called an industry tool to generate initial global routing and layer assignment

solutions. Different from the preceding experiment, here we use industry resis-

tance and capacitance values to calculate the wire delays and the via delays.

TABLE 2.5 lists the details of performance evaluation, where for each method

columns “OV#”, “Davg”, “Dmax”, and “via#” provide the overflow number,

average delay, maximum delay, and total via number. Since all the critical

nets are provided in the benchmarks, the critical and non-critical selection

phases are skipped in this benchmark suite. We can see that compared with

industry layer assignment solution, our framework can achieve 60% maximum

delay improvement and 34% average delay improvement. The total number

of vias after our iterative optimization is very similar to the initial solution.

The reasons to reach a similar number, or even a slightly better number of

vias are due to the following factors: Firstly, critical segments are assigned

49

Table 2.6: Comparisons on ISPD 2008 benchmarks for slew optimization.

NVM [54] TILA-1% TILA-S-1%

Bench SV# SV# VO# Davg Dmax via# CPU SV# VO# Davg Dmax via# CPU

(103) (103) (103) (103) (105) (s) (103) (103) (103) (105) (s)

adaptec1 8.57 4.59 50716 6.84 7126.0 19.26 110.8 3.76 50873 6.80 7128.8 19.30 185.5

adaptec2 24.75 10.38 36824 3.61 2365.8 19.38 98.6 6.22 36518 3.55 2365.9 19.53 158.7

adaptec3 19.77 8.22 89800 8.67 7861.3 36.77 361.2 7.09 89963 8.63 7861.4 36.88 614.9

adaptec4 54.23 16.05 67946 5.89 9745.2 32.55 330.7 12.28 67611 5.84 9744.9 32.66 510.6

adaptec5 54.65 21.35 81956 9.98 8740.2 55.43 493.4 14.32 83207 9.88 8724.2 55.70 869.3

bigblue1 16.68 8.12 46151 12.93 3434.7 21.68 158.8 6.21 46724 12.85 3438.8 21.75 407.0

bigblue2 81.77 59.00 114215 2.63 18294.9 43.44 184.7 43.59 113332 2.58 18299.9 43.77 437.1

bigblue3 67.42 38.06 65437 4.15 2708.9 53.22 378.4 19.86 63974 4.00 2710.2 54.33 732.4

bigblue4 118.28 67.48 98987 7.08 35310.7 111.01 743.6 28.50 98307 6.87 35414.9 113.11 1484.1

newblue1 46.67 36.60 56602 1.00 566.2 22.39 82.7 21.26 55417 0.98 566.1 22.78 132.6

newblue2 62.98 29.76 33941 3.97 10569.2 29.02 144.2 9.73 30043 3.85 10269.3 29.76 265.1

newblue4 52.56 25.43 84273 3.88 8976.9 47.65 302.7 12.42 83412 3.82 8973.8 48.14 396.4

newblue5 155.50 70.99 151300 5.64 4551.7 86.88 644.2 39.12 150477 5.53 4553.8 88.08 1169.0

newblue6 88.69 49.83 96740 6.57 3963.7 78.67 686.8 22.22 100305 6.39 3963.5 79.61 993.0

newblue7 181.17 89.48 141936 5.91 12028.2 166.58 1213.3 34.23 141209 5.71 12030.2 169.80 1695.7

average 68.91 35.69 81122 5.92 9082.9 54.93 408.8 18.68 80758 5.82 9069.7 55.68 670.1

ratio 1.00 1.00 1.00 1.00 1.00 1.00 0.52 1.00 0.98 1.00 1.01 1.69

on high metal layers while non-critical segments are assigned on low layers

together with their neighboring segments. Few vias will be induced for those

connecting segments are on close layers. Secondly, via delays are also included

in our mathematical formulation, which also helps to control the via counts.

Finally, industrial benchmarks provide a more even layer assignment of seg-

ments through all the layers. This provides us with a potential space for via

counts optimization. The initial layer assignment solution is with zero over-

flow, and our framework can also maintain such zero overflow performance.

In summary, from TABLE 2.5 we can see our incremental layer assignment

framework can achieve significant timing improvement.

50

 0

 4000

 8000

 12000

 16000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
a
v
g

w/o. post w. post

(a)

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

D
m

a
x

(b)

 0

 20000

 40000

 60000

adaptec1

adaptec2

bigblue1

bigblue2

new
blue1

new
blue2

S
V

 #

(c)

Figure 2.13: Comparison between with and without post slew optimization
stage on some small test cases: (a) on average delay; (b) on maximum delay;
(c) on slew violations.

2.4.3 Slew Comparisons on ISPD & 20nm Industry Benchmarks

In this section, we compare TILA with slew optimization (TILA-S)

against TILA without slew improvement (TILA). Still, the effectiveness is

verified by both ISPD and industry benchmarks with slew constraints. For

ISPD benchmarks, the problem sizes are so different that one single constraint

is not applicable to all benchmarks. Thus, we set the slew constraint of each

benchmark as 5 times its initial average delay as shown in TABLE 2.4. In this

manner, the initial number of slew violations is in proportion to the number of

total segments for each benchmark. However, the slew constraints for industry

benchmarks are given based on industrial settings.

51

TABLE 2.6 lists the results for ISPD benchmarks by comparing TILA-

S-1% with TILA-1% while releasing 1%. Besides the performance metrics

shown in TABLE 2.4, we introduce an additional column “SV#” which gives

the number of slew violations, and the second column lists the initial number

of violations. TILA-1% provides the intermediate results after delay optimiza-

tion, while TILA-S-1% shows the final results. We can see that TILA-1% is

able to reduce the slew violations significantly from 6.89 × 104 to 3.57 × 104,

because delay optimization also benefits slew violations considering the down-

stream segments. However, with the slew targeted optimization, this number

can further be reduced by 48%. Meanwhile, the average delay also decreases

by 2%, which shows that slew optimization can also benefit delay slightly.

The maximum delay keeps similar with TILA, because its optimization space

is limited after delay optimization. For vias and violations, there is no obvious

difference between TILA-S and TILA. The main penalty of TILA-S is the 69%

increase of runtime due to additional two-stage slew optimization. Based on

the results, we observe that TILA-S can handle slew violations efficiently while

keeping similar delay and via performance.

Fig. 2.13 shows the effect of adopting post slew optimization for some

small cases of ISPD 2008 benchmarks. It is shown that the post slew optimiza-

tion stage improves the number of slew violations slightly without affecting av-

erage delay and maximum delay. The main reason is that during the selection

of switching candidate segments, we take its current slew into consideration.

Once the candidate is selected with the smallest slew degradation, its impact

52

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5

D
a

v
g

Iter

adaptec1
adaptec2
bigblue1

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5

S
V

#

Iter

(b)

Figure 2.14: Convergence with iteration number of TILA-S on some small test
cases: (a) on average delay; (b) on slew violations.

on delay is also negligible because slew is closely related with delay.

To illustrate the timing convergence of our iterative framework, we

relax the convergence constraint for the delay and slew optimization, and

record the average delay and slew violation number for each iteration till the

fifth iteration. Fig. 2.14 shows the timing convergence with iteration number.

The 0-th iteration corresponds to the initial solution, where we can see a clear

convergence after the first two iterations.

As stated in Section 2.3.6 and Section 2.3.7, our slew optimization flow

reduces the number of slew violations and benefits the buffering overhead. To

make this explicit, we measure the number of buffers we may adopt for each

ISPD 2008 benchmark in Fig. 2.15. Here we implement a top-down algorithm

to insert buffers in a net-by-net manner. For each net with slew violations, we

traverse from its driver and insert one buffer when there is a slew violation;

53

 0

 5000

 10000

 15000

 20000

 25000

 30000

adaptec1

adaptec2

adaptec3

adaptec4

adaptec5

bigblue1

bigblue2

bigblue3

bigblue4

new
blue1

new
blue2

new
blue4

new
blue5

new
blue6

new
blue7

Avg

B
U

F
 #

No Slew Opt With Slew Opt

Figure 2.15: Buffering overhead saving with slew optimization.

Table 2.7: Comparisons on 20nm industry benchmarks for slew optimization.

Bench
TILA TILA-S

SV# Davg Dmax via# CPU(s) SV# Davg Dmax via# CPU(s)

Industry1 24 3606.6 28667.2 49302 6.6 19 3686.2 27202.3 49308 7.1

Industry2 18 3796.4 27416.3 50331 7.0 14 3779.7 25934.5 50333 7.2

Industry3 10 3906.2 38230.8 51726 8.0 3 3898.8 34092.1 51742 8.5

Industry4 7 3669.2 25858.9 54188 9.3 2 3665.2 24159.9 54188 9.3

Industry5 0 3799.3 34347.0 56623 11.5 0 3799.3 34347.0 56623 11.5

Industry6 0 3692.9 33096.3 57456 12.7 0 3692.9 33096.3 57456 12.7

Industry7 0 3693.7 29348.7 70106 38.5 0 3693.7 29348.7 70106 38.5

Industry8 0 3040.2 20137.7 78823 127.8 0 3040.2 20137.7 78823 127.8

average 7.4 3650.6 29637.9 58569 27.7 4.8 3657.0 28539.8 58572 27.8

ratio 1.0 1.00 1.00 1.00 1.00 0.64 1.00 0.96 1.00 1.01

meanwhile, we assume the input slew of each net and the output slew from

the buffer are both equal to 0. After traversing one net, we can obtain the

number of buffers used in this net to fix the violations. It is shown that the

average buffering overhead can be reduced from 9258 to 7586 in Fig. 2.15.

Therefore, our post slew-targeted optimization helps to reduce the buffering

overhead, and is also able to provide an estimate of buffering overhead at the

pre-buffering stage.

For the 20nm industry benchmarks, besides delay and via metrics, we

54

also take slew violations into account. TABLE 2.7 shows that the violations

are reduced by 36%. This proves the efficiency of our slew optimization flow to

fix some local violations. Meanwhile, since we target at improving the current

segment slew without affecting others considerably, the average delay keeps the

same as before. In addition, the maximum delay is reduced by 4%, because

slew optimization considers the layer assignments of both upstream segments

and downstream segments. We can also see that there is almost no difference

for vias between TILA-S and TILA. Because of the very few numbers of slew

violations in industrial benchmarks, we prefer to skip the first global optimal

stage. The results from TABLE 2.7 show the ability of post-optimization

stage to reduce violations with little runtime overhead. Therefore, with the

additional slew optimization flow, TILA-S contributes lots of efforts to fixing

slew violations while keeping similar delay performance as TILA, both for

ISPD benchmarks and industrial benchmarks.

2.5 Summary

This chapter includes a set of algorithms to the timing-driven incre-

mental layer assignment problem while mitigating slew violations. At first,

the mathematical formulation is given to search for optimal total wire delays

and via delays. Then the Lagrangian relaxation-based method is proposed

to iteratively improve the timing of all the nets. The Lagrangian relaxation

subproblem (LRS) is modeled through the min-cost flow model to provide ef-

fective integral solutions. In addition, multiprocessing of K ×K partitions of

55

the whole chip provides runtime speed up. Then we integrate the slew viola-

tion optimization method into our framework to mitigate the violations. Our

incremental layer assignment tool with/without slew optimization, TILA-S, is

verified in both ISPD 2008 and industrial benchmark suites, and has demon-

strated its effectiveness.

56

Chapter 3

Incremental Layer Assignment for Timing

Optimization

3.1 Introduction

The previous chapter has introduced one timing-driven incremental

layer assignment framework, targeting the optimization of the total segment

and via delays. To conquer its shortcomings, this chapter describes a novel

incremental layer assignment for timing optimization of critical paths in nets.

As a key step of global routing, layer assignment is important for assigning net

segments into appropriate metal layers. Many metrics should be considered

during layer assignment, such as via counts, congestion, timing issues, etc.

Since each net may have one or several timing paths, layer assignment should

also pay attention to the segments on these critical paths to avoid potential

timing violations. Besides, in advanced technology nodes, resistance and ca-

pacitance values vary significantly among different metal layers [30]: higher

metal layers are wider with lower resistance, while lower metal layers are thin-

ner with higher resistance values. Thus, high layers are more attractive for

This chapter is based on the journal: Derong Liu, Bei Yu, Salim Chowdhury, and David
Z. Pan. “Incremental layer assignment for timing optimization.” ACM Transactions on
Design Automation of Electronic Systems (2017). I am the main contributor in charge of
problem formulation, algorithm development and experimental validations.

57

timing critical nets that may introduce serious timing issues. Nevertheless,

since there exist edge capacity constraints for edges on global routing grids for

each metal layer, not all segments are allowed to be assigned on higher layers.

The segments leading to critical sinks of a net are preferred to be assigned

on high metal layers to reduce the potential timing violations. Therefore, an

intelligent layer assignment framework is necessary to reduce the critical path

timing.

There are many layer assignment works, targeting at minimization of

via count, antenna effect avoidance, and timing optimization, etc [7, 20, 44,

45, 54, 76, 91]. For via count minimization, a polynomial-time algorithm de-

termines the net order and then solves one net each time through dynamic

programming considering congestion issues [44]. [20] also applies a dynamic

programming for net-by-net layer assignment. However, the sequential net or-

dering lacks a global view and thus, affects the final performance because nets

with higher priorities have more layer selections while those nets with lower

priorities lack better resources. To alleviate the net order limitation, [54]

adopts a negotiation-based methodology to minimize via count and capacity

violations. Meanwhile, antenna avoidance is included during layer assignment

where via counts are also reduced through min-cost max-flow model [45]. [7]

focuses on optimizing via counts and net delay. Nevertheless, the via capac-

ity model is not considered, and thus, more wires may be assigned on high

metal layers, resulting in capacity violations. Very recently, [91] proposes an

incremental layer assignment integrated with timing optimization engine. The

58

 4
 8

 16
 32
 64

 128
 256
 512

 1024

 300 320 340 360 380 400 420 440

#
 o

f
P

in
s

Delay Distribution (10
4
)

TILA

(a)

 4
 8

 16
 32
 64

 128
 256
 512

 1024

 300 320 340 360 380 400 420 440

#
 o

f
P

in
s

Delay Distribution (10
4
)

ours

(b)

Figure 3.1: Pin delay distribution of critical nets for benchmark adaptec1,
where 0.5% of the nets are released as critical nets. (a) Results from TILA [91];
(b) Results from our incremental layer assignment framework.

proposed framework, TILA, is able to provide a global view of minimizing the

total net delay for the selected nets. As an extension, [50] additionally reduces

the slew violations with a control of via overheads. Also, [55] guides the global

optimization of timing critical paths by decoupling the layer assignment from

timing analysis.

Although TILA [91] can achieve the most state-of-the-art layer assign-

ment results targeting at timing optimization, it may still suffer from the

following shortcomings: (1) The optimization engine of TILA is based on La-

grangian relaxation, whose performance may heavily rely on the initial values

59

of multipliers. (2) In addition, when via delay and via capacity are considered,

layer assignment is similar to a quadratic assignment problem [71], which is

essentially a non-linear optimization problem. However, to achieve extremely

fast speed, TILA artificially approximates some quadratic terms to a linear

model, which may impact the layer assignment accuracy and performance.

(3) Compared to TILA, critical path timing in each net is more focused, in-

stead of the total sum of net delays.

This chapter proposes a novel incremental layer assignment framework

targeting at timing optimization for critical timing paths in nets, where our

layer assignment tool is able to achieve better timing optimization. Fig. 3.1

compares the layer assignment results between TILA and our work. To have

a clear view of the maximum delay distribution, we start from 3.0 × 106.

Fig. 3.1(a) gives the results from TILA, where many pins have delay over

4.2× 106. On the other hand, from Fig. 3.1(b) we can see that our framework

can reduce the maximum delay since the worst pin has the delay around 4.2×

106. The results have been reported in [49], and the contributions of our work

are listed as follows.

• An integer linear programming (ILP) formulation is presented to opti-

mize the critical path delay of selected critical nets.

• A self-adaptive partitioning methodology based on K ×K division ben-

efits the runtime.

• A semidefinite programming (SDP) relaxation is adopted for further

60

speed-up with a post mapping methodology to guarantee integer so-

lutions.

• A concurrent matching flow is attached to provide more concrete solu-

tions for SDP results, followed by a post delay optimization algorithm.

The remainder of this chapter is organized as follows. Section 3.2

provides some preliminaries and the problem formulation. Section 3.3 first

presents the mathematical formulation to optimize critical path timing. Then

a set of novel techniques are discussed to further achieve a better trade-off

between solution quality and runtime. The experimental results are reported

in Section 3.4 and the summary is given in Section 3.5.

3.2 Preliminaries

In this section, we give a brief introduction to the graph model and the

timing model in our work. Then we propose the incremental layer assignment

targeting at critical path timing optimization.

3.2.1 Graph Model

For the graph model adopted in this layer assignment, please refer to

the details in Section 2.2.1. In general, each layer supports uni-directional

wires and is divided into a set of rectangular tiles, represented by the vertices

in the grid model. The edges connecting vertices are divided into two sets:

edges in the x/y-direction for wires and edges in the z-direction for vias. For

61

M3

M2
(a)

Released
Segment

Non-released
Segment

(b)

Figure 3.2: Illustration of capacity model. (a) Edge capacity model; (b) Via
capacity model.

x/y-direction edges, each of them has a specified routing capacity on different

layers, i.e. cape(l) for each layer l. This is to say that the number of wires

placed on layer l of this edge should not be higher than cape(l). Fig. 3.2(a)

provides a detailed illustration of edge capacity model, where the number

of wires passing on Metal 2, i.e. M2, should not exceed 4. Notably, for an

incremental layer assignment tool, considering that the non-released segments

also occupy the routing resources, we should deduct these segments from the

original cape(l) so that the total number of passing wires cannot exceed the

number of physical tracks. Therefore, as seen in Fig. 3.2(a), when there is a

non-released segment routed on the edge marked as blue on M2, the current

edge capacity, cape(l), should be set to 3 for released segments to assign.

Similarly, there is also a specified via capacity constraint for vias pass-

ing through each routing grid. The via capacity constraint is determined by

the available routing capacity of two edges associated with this vertex. Addi-

tionally, since stacked vias are known to consume extra routing resources in

each grid, here we mainly consider the overflow caused by stacked vias in our

62

framework, same as [28]. To make it explicit, an illustration of via capacity

model is shown in Fig. 3.2(b). Due to the existing non-released nets, we should

also take care of those non-released vias based on the original via capacity. In

fact, capg(l) represents the available routing via spaces for those released nets

in our framework. Therefore, for the lower left grid in Fig. 3.2(b), the gray

square represents a via from a non-released net, so its occupied area should

be counted for residual via capacity constraints. As layer assignment works as

an important step in global routing, the available via capacity is computed as

follows [28],

capg(l) = b(ww + ws) · Tilew · (rcape0(l) + rcape1(l))

2 · (vw + vs)2
c − n′v, (3.1)

where ww, ws, vw, vs, T ilew represent wire width, wire spacing, via width, via

spacing and tile width, respectively. And n′v denotes the number of vias from

non-released nets. For vias between two layers, each layer have two edges con-

necting with grid g, i.e. e0 and e1. Their available routing capacities are rep-

resented by rcape0(l), rcape1(l), respectively, which are the residual available

routing tracks considering the assignments of segments. Different from cape(l)

above which does not consider released segments on edge e, here rcape(l) pro-

vides the exact residual edge capacity including both released and non-released

segments. Therefore, in Eq. (3.1), we can see that the allowable number of

vias in each tile should not exceed the residual space divided by the via area.

This means the resulting stacked vias can only take advantage of the residual

routing spaces after all the wires have been routed. In Fig. 3.2(b), for the

63

circled edge, its cape(2) is set to 2 but rcape(2) is set to 0 since 2 released

segments occupy the left routing resources. Then no vias are allowed to pass

through this grid because two connected edges are full to the capacity, i.e. no

residual space.

3.2.2 Timing Model

To calculate the timing cost of each net, we adopt Elmore delay model,

which is generally utilized to estimate the wire delay during timing analysis.

The timing costs consist of segment delays and via delays, both of which de-

pend on the layer resistance and their corresponding downstream capacitance.

The calculation of segment delay has been introduced in Section 2.2.2. The

timing cost of segment depends on its downstream capacitance Cd(i) and the

corresponding resistance/capacitance values of its assigned layer.

Then via timing cost is calculated as in Eq. (3.2), which is determined

by via resistance and the downstream capacitance of its connected segments

[91].

tv(i, j, p, q) =

q−1∑
l=j

Rv(l) · Cd(V (si, sp)), (3.2)

where segment si on layer j is connected with segment sp on layer q, Rv(l)

is the resistance of via between layers l and l + 1, and we assume layer j is

lower than layer q; while V (si, sp) corresponds to the set of stacked vias con-

necting segment si and segment sp. Thus, the calculation of via delay mainly

depends on via resistances between layers and its corresponding downstream

capacitance. In this work, the via downstream capacitance, i.e. Cd(V (si, sp)),

64

is equal to that of its upstream segment, which refers to the segment closer

to the net driver, because via capacitance is not considered in this work. Ad-

ditionally, for vias through multiple layers, it is required to add the via delay

between two adjacent layers from the lowest to the highest layer. And the

via delay from two adjacent layers can be calculated based on Eq. (2.2) in

Section 2.2.2. Therefore, the integration of via delay is also able to benefit via

consumptions.

3.2.3 Problem Formulation

Based on the grid model and timing model discussed in the preceding

section, we define the critical path layer assignment (CPLA) problem as follows:

Problem 2 (CPLA) Given a 3-D grid graph, edge and layer information,

initial routing and layer assignment, and a set of critical nets, layer assignment

reassigns layers among critical and non-critical nets sharing metal resources

onto layers in order to minimize their critical path timing while satisfying the

edge capacity constraints.

3.3 CPLA Algorithms

In this section, we discuss the details of our framework to solve the

CPLA problem. First, we propose an integer linear programming (ILP) for-

mulation. Then we relax this formulation into a semidefinite programming

(SDP). To make this problem solvable for SDP, a self-adaptive quadruple par-

titioning methodology is also presented to select appropriate problem sizes for

65

SDP. Then, we give the sequential mapping algorithm to locate integer solu-

tions; and a further concurrent matching strategy follows for better optimiza-

tion. Finally, we present a post delay optimization step to reduce potential

path timing violations.

3.3.1 ILP Formulation

As an incremental layer assignment work, similar to TILA, we take an

initial solution as an input and release a certain ratio of nets to be optimized.

This ratio is termed as “critical ratio”, which determines the problem size

intuitively. From the perspective of timing optimization, we prefer to locate

those critical nets on high and thick layers; while the same ratio of nets with

good timing will also be released and reassigned on low layers to provide the

required routing resources. These nets are termed as “non-critical nets”. To

make it explicit, both critical and non-critical nets will be reassigned in our

framework. Each net is composed of a sequence of segments which have the

same length as a routing grid. Thus, those segments belonging to “critical

nets” are denoted as “critical segments”, and vice versa.

It is seen that CPLA utilizes a similar framework as TILA but dis-

tinguishes from TILA in the following aspects: Firstly, TILA cares about the

sum of segments’ delay in a net while CPLA focuses on each net’s worst timing

path. As a single net can be divided into a set of paths, where each path cor-

responds to a single sink, the sink with the worst timing overhead is identified

as the critical sink, and its connected path is this net’s critical path. Then

66

the maximum path timing of each net can be acquired through the delay of

its critical sink. Here we do not take the cell information into accounts, so we

focus on the maximum path timing of each critical net. Therefore, during the

selection of critical nets, we choose those with the worst maximum path timing

rather than total delays. Secondly, the same ratio of non-critical nets should

also be selected to release high layer resources for those critical nets. Instead

of optimizing all the critical and non-critical nets simultaneously in TILA,

CPLA places more emphasis on those critical nets which will be assigned at

first. After the assignment of critical nets, a greedy method is adopted to

assign these non-critical nets in a one-by-one way. Since our optimal target

is the maximum path timing of those critical nets, the assignment details of

non-critical nets will not be covered but we follow a dynamic programming

method in order to control the via counts in [44]. Through optimizing critical

and non-critical nets separately, CPLA is able to provide sufficient high layer

resources for those critical nets to achieve better timing.

During the selection of critical nets, we measure the maximum path

timing of each net and select those with the worst values based on the specified

ratio. Then, to select a set of non-critical nets efficiently, we should search for

those nets with the best timing which also share the same edges with the

critical ones as much as possible. And the assigned layers of the non-critical

nets should be higher than critical nets’ for resource releasing. In summary,

the selection procedure of non-critical nets is similar as in [91], but with one

main difference: here we select the critical/non-critical nets based on their

67

maximum path timing instead of their total sum delays. Therefore, with the

maximum path timing and given critical ratio, a set of critical nets and non-

critical nets are selected for reassignment. More details of our proposed ILP

formulation are given as follows, while non-critical nets are not included in

this formulation. For convenience, notations used are listed in Table 3.1.

Thus, we can obtain the integer linear programming (ILP) formulation

as shown in formula (3.3). This formulation concerns all the segments and

vias along the critical timing paths in all critical nets, and also contains the

branches due to the fact that they would affect the downstream capacitance

of the maximum path.

In our mathematical formulation, constraint (3.3b) guarantees that one

segment can be assigned on one and only one layer. Constraint (3.3c) sets the

routing wire limit for those released segments of edge e on layer j, i.e. cape(j).

Notably, cape(l) not only depends on its initial track number but also those

non-released segments passing through e on layer l. As shown in Fig. 3.2(a),

when the blue edge on M2 has 4 available tracks initially but one of them

has already been occupied by a non-released net, the exact allowable routing

capacity, i.e. cape(2), should be set to 3. This means that at most 3 wires are

allowed to be routed through this edge for the released nets. In this way, we can

see that cape(l) may vary for each edge e on the same layer, due to the variance

of existing non-released nets. Thus, for an incremental assignment problem,

the edge capacity constraint is more stringent than the initial problem.

Considering the possible existing edge overflows from the input, we

68

Table 3.1: Notations used for ILP formulation.

Nc set of all critical nets

L set of all layers

S set of all segments

E set of all edges in the whole grid model

G set of global routing grids

S(Nc) set of all segments for all critical nets Nc

Sx(Nc) set of all pairs of segments of critical nets Nc while two
segments in a pair are being connected by one or more vias

Sx(Nc, g) set of all pairs of segments of critical nets Nc passing
through one routing grid g

Se set of released critical segments on edge e ∈ E
V (si, sp) set of vias connecting critical segments si and segment sp

xij binary variable, set to 1 if segment si is assigned to layer j

ts(i, j) timing cost when critical segment si is assigned to layer j

yijpq binary variable, set to 1 if both xij and xpq are set to 1

tv(i, j, p, q) timing cost for vias in V (si, sp) from layer j to q

cape(l) available routing capacity of edge e on layer l for released segments

rcape(l) residual routing capacity of edge e on layer l after routing all nets

capg(l) available via capacity of node g on layer l for released nets

extend this constraint to comply with both legal and illegal solutions. For legal

solutions free of overflows, it is clear to keep cape(l) as above, i.e. the initial

number of edge capacity excluding those non-released segments; however, for

those solutions with edge overflows, we increase cape(l) to accommodate the

routing wires accordingly. This is to say, for an edge e on layer l, if the input

solution provides 5 routing wires but its capacity should be 4, then an edge

overflow does exist. To deal with that, if there are 2 non-released segments

on it, then cape(l) will be set to 3 for those released segments and no further

edge overflows will be produced.

Similarly, constraint (3.3d) places the limitation of the via number to

69

min
∑

i∈S(Nc)

L∑
j=1

ts(i, j) · xij +
∑

i,p∈Sx(Nc)

L−1∑
j=1

L−1∑
q=1

tv(i, j, p, q) · yijpq, (3.3a)

s.t.
∑
j

xij = 1, ∀i ∈ S(Nc), (3.3b)∑
i∈S(e)

xij ≤ cape(j), ∀e ∈ E, (3.3c)

∑
(i,p)∈Sx(Nc,g)

yijpq + nv(xij + xpq) ≤ capg(l), ∀l, j < l < q, g ∈ G,

(3.3d)

xij ≥ yijpq, ∀(i, p) ∈ Sx(Nc), j, q ∈ L,
(3.3e)

xpq ≥ yijpq, ∀(i, p) ∈ Sx(Nc), j, q ∈ L,
(3.3f)

xij + xpq ≤ yijpq + 1, ∀(i, p) ∈ Sx(Nc), j, q ∈ L,
(3.3g)

yijpq is binary, ∀(i, p) ∈ Sx(Nc), j, q ∈ L,
(3.3h)

xij is binary, ∀i ∈ S(Nc), j ∈ L. (3.3i)

pass through each grid g for different layers. Similar as cape(l), the calculation

of capg(l) should take those non-released nets into consideration as well. Still,

as shown by the lower left grid in Fig. 3.2(b), we assume that the initial via

capacity for this grid from M2 to M3 is 16 where each track is able to locate

4 vias and there are totally 4 tracks. Meanwhile, there is already a non-

released via passing through M2 and one track is also occupied by another

non-released net. Then we reduce the available via space further by deducting

70

the utilized resources of non-released nets, i.e. 5 vias in total. Notably, a

newly-assigned segment will also take another available track for routing, thus

resulting in further reduction of 4 vias. The final residual space is for routing

vias belonging to those released segments. Therefore, in constraint (3.3d), we

should consider not only those existing non-released nets but also the newly-

assigned segments. Take Fig. 3.2(b) as an example, at most 7 stacked vias are

allowed to be inserted from released segments for the lower left grid. Through

this setting, our framework is able to provide an estimation of the number of

allowable vias for an incremental approach.

In Eq. (3.3a), yijpq represents the via connecting segment si on layer j

and segment sp on layer q. Affected by xij and xpq, yijpq should be set to 1 if

and only if both xij and xpq are set to 1 simultaneously. Therefore, yijpq can

be understood as the product of xij and xpq. Then in the constraints (3.3e)–

(3.3g) yijpq is the product of xij and xpq because all xij and yijpq are binaries

according to constraints (3.3h) and (3.3i).

Nevertheless, there is a potential problem for constraint (3.3d). If via

capacity violations already exist in initial layer assignment inputs and cannot

be eliminated completely, this constraint may be too stringent that no legal

solutions can be obtained. To avoid this condition, we relax this constraint

by adding a slack variable Vo, representing the number of maximum allowable

violations. Then constraint (3.3d) can be re-written as follows:

∑
(i,p)∈Sx(Nc,g)

yijpq + nv · (xij + xpq) ≤ capg(l) + Vo,∀l, j < l < q,∀g ∈ G.

71

Vo is considered in the objective formulation with a weighting parameter

α, which is set to 2000 in our implementation. Thus, the ILP formulation can

guarantee reasonable solutions with legal edge capacities and controllable via

violations. Similar to [91], our framework solves layer assignment through an

iterative scheme and stops when no further optimizations can be achieved.

However, for large benchmarks, ILP could lead to huge calculation overhead

with the considerable runtime. In order to alleviate this overhead, speed-up

techniques are introduced in the following sections.

3.3.2 Self-Adaptive Partition Algorithm

(a) (b)

Figure 3.3: Example of grid partition. (a) Nets partition; (b) Routing density
for benchmark adaptec1 by NCTU-GR.

For layer assignment work, the routing wires are adjusted in z-dimension

among different layers. Thus, the whole grid model can be divided into K×K

partitions in x/y-dimensions, and each division is solved separately from its

neighbors. Also, as mentioned in [25], the newly updated assignment results

of neighboring partitions benefit each current partition. Fig. 3.3(a) gives ex-

72

amples of several nets to be divided by 3 × 3 divisions, which are identified

with different colors. Through partitioning, the problem size can be reduced

by 1
K×K times on average. However, Fig. 3.3(b) shows that the routing con-

gestion density varies significantly for each division. Here various colors imply

the routing distribution of nets passing through these regions. We can see that

uniform division by K ×K may lead to unbalanced computing resource allo-

cation among these congested regions and those marginal regions containing

fewer routing nets. Therefore, we propose a self-adaptive quadruple partition

algorithm to further divide all K ×K regions so that each region contains a

similar number of critical segments.

(a)

……

……

(b)

Figure 3.4: Sub-grid partition illustration. (a) Sub-grid partition; (b) Sub-grid
corresponding partition tree.

Fig. 3.4(a) gives the example of partition results for the lower left one

in 5 × 5 divisions, where each division contains a similar number of critical

segments. Here we limit the allowable maximum number of critical segments

in each partition by setting a constraint. If the original division does not

satisfy this constraint, then further partition operations are executed. Be-

73

sides, Fig. 3.4(b) shows the quadruple tree corresponding to Fig. 3.4(a). If

a partition has a small enough problem size, it will exist as a leaf node in

the tree; otherwise, further quadruple partition continues until it meets the

requirement. Note that for some dense regions, the constraint may be so tight

that the number of segments on one edge may exceed the requirement but no

further partition should be allowed in fact. To avoid this, we also check if the

current partition size is smaller than the tile width/height. If so, the partition

should stop to avoid deadlocks.

After partitioning is completed, we obtain the leaf nodes as colored

in Fig. 3.4(a). There are two leaf nodes in the first level representing these

two left partitions. In Fig. 3.4(b), the bottom colored nodes represent four

partitions with the same colors. With this partition methodology, we can

adjust constraints to suit different algorithms efficiently. Furthermore, each

partition can be solved in parallel with multiple threads. Since each of them

has a similar problem size, each thread deals with a workload in a well-balanced

manner.

3.3.3 Semidefinite Programming Relaxation

In the previous section, we propose a self-adaptive algorithm to parti-

tion the original problem to the appropriate size considering the density dis-

tribution. This provides us with an opportunity for further speed-up. In our

work, we relax this problem from ILP into semidefinite programming (SDP).

SDP also contains a linear objective function constrained by linear equations,

74

similar to Linear Programming (LP), but it is more general than LP due

to its symmetric matrix forms. SDP is solvable in polynomial time and it

provides a theoretically better solution than LP [79], and thus it has been

applied in many circuit design problems, such as circuit sizing [80], high-level

synthesis [18], power/ground network optimization [24,34], and layout decom-

position [40, 92]. To the best of our knowledge, this is the first work to adopt

SDP to solve layer assignment problem. We re-write the formulation into the

following standard SDP form:

min T •X, (3.4a)

s.t. C •X = b, (3.4b)

X � 0. (3.4c)

where

T •X =
∑

i∈S(Nc)

∑
j∈L

TijXij. (3.5)

In Eq. (3.4), matrices T and X are both |S · L|-dimension symmetric

matrices, where |S| is the number of segments belonging to the critical nets in

each partition and |L| is the number of layers. In Eq. (3.5), T •X is the inner

product of these two matrices T and X. Besides, Tij and Xij are the entries

lying in the ith row and the jth column of matrices T and X, respectively.

Eq. (3.6) shows all coefficients in matrix T, where the items on the

diagonal line represent the timing costs, i.e. ts(i, j), for assigning segment i on

layer j. Besides, tv(i, j, p, q) is the via cost on assigning segments i and p onto

75

layer j and layer q, respectively. Each tv(i, j, p, q) is in the same row as ts(i, j)

and the same column as ts(p, q). Matrix X in Eq. (3.7) gives the SDP solution

to the layer assignment, where each xij is on the diagonal line. Similarly, yijpq

is in the same row as xij and the same column as xpq.

T =

 ts(i, j) . . . tv(i, j, p, q)
.

tv(i, j, p, q) . . . ts(p, q)

 , (3.6)

X =

 xij . . . yijpq
.
yijpq . . . xpq

 . (3.7)

For each xij, it is expected to be binary and placed in the diagonal line

of objective matrix X. If xij is equal to 1, then x2ij is also 1; if xij is equal to

0, then its square form is also 0. The item yijpq needs to satisfy constraints

(3.3e)–(3.3g), which also apply for continuous solutions. Because constraints

(3.3e)–(3.3g) are mainly inequalities, then extra slack variables are added into

the objective matrix, for SDP cannot support inequality constraints. With

these constraints, SDP considers via costs as quadratic terms (same as in

Eq. (3.3a)).

To guarantee an effective solution, the constraints in ILP formulation

(3.3) should also be included in SDP through (3.4b). Constraints (3.3b) and

(3.3c) can be formulated into the constraints of SDP easily since they are linear

constraints. As all the constraints are constructed in a similar way, here we

mainly provide the details for the first constraint (3.3b). Evidently, a set of

coefficient matrices, Cbs, is required, and the set size is equal to the number of

76

segments in the critical nets belonging to each division. The dimension of each

Cb is the same as T and X. Thus, for each Cb, according to constraint (3.3b),

we set each location in Cb corresponding to each xij in X as 1; meanwhile,

the value of b in the right side of (3.4b) is also 1. Through this setting, for

segment si, the sum of xij is equal to 1 constrained by this equation. During

construction of (3.3c), because of the existences of inequalities, we require

more slack variables in the objective matrix as the sum of variables should be

smaller than the given edge capacity. The number of additional slack variables

is equal to the number of edge capacity constraints. For constraint (3.3d), we

prefer to move it into the objective matrix by adding the penalty to save

the runtime. Then the penalty is represented as λi,j,p,q, which is added to

tv(i, j, p, q) in matrix T. The penalty is calculated by dividing the existing

number of vias by its capacity.

To make it more clear, here we give an example of how SDP can be

applied to the presented layer assignment problem. Fig. 3.5 shows a part of

one net. Due to the space limitation, we just focus on two segments, s1 and

s2. We also assume there are only two available layers in each x/y-dimension:

layer 1 and layer 3 for x-dimension, while layer 2 and 4 for y-dimension. Thus,

the matrices T and X should be both 4 × 4 matrices, for each segment has

two layers to assign. For convenience, we skip the slack matrices here because

they are helping to satisfy the constraints. In our formulation, the entries on

the diagonal line of matrix T are basically xijs, representing whether they are

assigned on the corresponding layers. The entries in the same column and row

77

�

�
�

�

S1

S2

Figure 3.5: An example of layer assignment through SDP.

T =

35.2 0 5.8 6.7

0 15.6 2.3 3.5
5.8 2.3 47.8 0
6.7 3.5 0 23.9

 X =

0.01 0 0 0

0 0.99 0.09 0.89
0 0.09 0.10 0
0 0.89 0 0.90

Figure 3.6: T matrix and solution X matrix of the example.

with xij and xpq represent the potential via costs from layer j to layer q. Based

on Fig. 3.5, s1 only connects with s2, so we just need to consider the via costs

between s1 and s2.

In Fig. 3.6 we list an example of matrix T, as well as matrix X after

solving the SDP. For matrix X, four values on the diagonal line represent

x11, x13, x22 and x24, respectively, where xij denotes segment si to be assigned

on layer j. Thus, we see that s1 should be assigned on layer 3 as x13 is very

close to 1. Meanwhile, for s2, both x22 and x24 are not so close to 1 because

there is one segment released on the same edge. The edge capacity constraints

may limit its value as floating points. In this case, we adopt a sequential

mapping strategy to determine its layer to be assigned.

78

3.3.4 Sequential Mapping Algorithm

SDP provides us a continuous solution, which, however, cannot be ap-

plied to our problem directly. Therefore, an efficient mapping algorithm is

necessary to provide discrete integer solutions, while satisfying the stringent

edge capacity constraints. In this section, we propose a sequential mapping al-

gorithm to transfer a continuous SDP solution into a discrete layer assignment

solution.

Algorithm 3 Sequential Mapping Algorithm

Input: Solution matrix X;
1: Save entries (xij) for each segment i;
2: for each edge e containing critical segments do
3: for j = Lm; j ≥ 1; j = j − 2 do
4: nej = cape(j);
5: Select nej highest xijs on edge e;
6: Assign selected segment i on layer j;
7: Update cape(j);
8: end for
9: end for

As stated, the basic idea of this sequential mapping algorithm is to map

each continuous solution to an integer solution, while satisfying the hard edge

capacity constraints. Therefore, we should focus on each edge e on which some

critical segments are assigned. Since a critical segment has a specified solution

for each candidate layer of edge e, we should take advantage of the solution

value to provide a reasonable assignment. By this way, we prefer to traverse

each layer and select those segments endowed with the highest solutions on

this layer, because these segments are most competitive for this layer. Due to

79

the existing competition of high metal layers, we start from the highest layer

for each edge and locate each segment based on their solutions.

The details of our mapping algorithm are shown in Algorithm 3, whose

input is the original solution matrix X. Initially, we read all the solution

entries, and save those xijs to each corresponding segment. Then we traverse

each edge with these released segments in the whole grid (line 2) following the

order from the highest layer to the lowest layer (line 3), for a higher metal layer

has a lower resistance and more competitive for segments to assign. Since edges

are divided into x-dimension and y-dimension for different layers, we skip the

layers containing all y-dimension edges for x-dimension edges and vice versa.

As for layer j of edge e, there is a specified edge capacity constraint, i.e. cape(j).

This means that the number of those released segments to assign should not

exceed this constraint. Here we select top cape(j) entries and assign these

segments to layer j (line 6). In this way, edge capacity overflows can be avoided

based on the value of cape(j). To avoid unnecessary conflicts, those segments

that have been assigned on higher layers in previous iterations are skipped.

In this way, the edge capacity constraint can be satisfied. Finally, the edge

capacity is updated for this division. The runtime of this mapping algorithm

is O(|E||L|log|Se|), where |E| is the number of edges with critical segments,

|L| is the number of layers, and |Se| is the number of critical segments on this

edge.

80

3.3.5 Concurrent Matching Algorithm

The mapping algorithm proposed in Section 3.3.4 gives a sequential

assignment of segments for different edges. The assignment is acquired based

on the solutions from SDP, but for those segments whose solution values on one

single layer are very close, their assignments may be a little coarse without

considering detailed neighboring conditions. For instance, when both SDP

solution values of two segments, i.e. s1 and s2, routed on the same edge, are

equal to 0.5 for one layer but only one track is available, which segment to be

assigned may be decided randomly. Although the impact of this assignment

on timing may be slight, due to the closure of exact SDP results, the previous

sequential algorithm still lacks a global view of optimizing all nets to some

extents. To handle this conflicting assignment on limited resources, in this

section we propose a concurrent matching methodology, which adopts new

rounding strategies and targets more concrete solutions.

From the sequential algorithm, we obtain only one exact assignment

for each edge based on non-integer solutions. Nevertheless, when the number

of released segments on one edge is very high, keeping on one assignment may

lose some potential optimal solutions. In the following, we present how to

produce more assignment candidates based on the SDP results.

As depicted in Section 3.3.2, the whole grid graph is partitioned into

collections of divisions, and thus each division is able to possess one or more

candidates. In one division, all the candidates are formed as a single solution

set, while only one assignment is selected from this set as the result. Fig. 3.7(a)

81

provides an instance of four nets in different divisions. To make it explicit,

all the segments in a division share the same color, even for multiple nets,

as shown by net N1 and N2. For net N4, although some of its segments are

on the boundary between two divisions, we assume these segments belong to

their connecting left/bottom division. After making sure the division details,

we generate possible assignment candidates based on the SDP solutions.

Compared with the sequential mapping method, our concurrent match-

ing flow mainly consists of two steps: candidate generation and solutions map-

ping. The first step, how to generate a set of candidate solutions according to

the floating-point solutions, is deserved to explore. A procedure of candidate

generation for segments in net N3 is shown in Fig. 3.7(b), where we adopt a

top-down method to traverse all the possible assignments of net N3. Since

there are totally three segments for N3, three levels are essential to seek for

promising solutions. For each reassigned segment, if its SDP value is smaller

than a threshold, we will take its second-highest solution as its alternate as-

signment. The threshold value is set to 0.9 here. To reduce the solution space,

at most two possible layers are allowed for each segment to reassign. Even in

this way, the whole solution size will get doubled after each segment has its

second layer candidate. Furthermore, edge capacity checking is accompanied

with each stage to guarantee the legality of possible solutions. As shown in

Fig. 3.7(b), when there is a violation, symbolized as a gray node, this interme-

diate solution will be abandoned. This stage guarantees that illegal solutions

will be bounded beforehand and the solution candidates to be selected can sat-

82

N3

N2

N1

N4

(a) (b)

Figure 3.7: Example of solution candidate generation. (a) Nets partition; (b)
Solution candidate generation for N3.

isfy the required capacity constraint. Through these two bounding methods,

the solution space is controlled efficiently, and possible long runtime overhead

can be prevented. In Fig. 3.7(b), the bottom circle indicates a set of candidates

for the division where net N3 is. For the divisions with a significant number of

solutions, we sort the solutions based on their internal via violation costs, and

the best 20 solutions with the least via violations are taken as final candidates

for such a division.

With these generated solution candidates, we formulate our solution

selection problem as an integer linear programming (ILP) as in Eq. (3.8). The

notations are listed with details in Table 3.2. Explicitly, ILP formula (3.8)

targets at optimizing both division’s internal via violation costs and its exter-

nal costs with neighboring divisions. Since timing has been devoted to much

attention throughout candidate generation, only vias and via violations are

counted as elements of costs in Eq. (3.8a). For a solution n of division m, its

corresponding cost, cd(m,n), is the sum of its internal vias and violations, both

83

Table 3.2: Notations for post stage algorithms.

D set of all divisions containing segments

D(Nc) set of all divisions containing critical nets Nc

Dx(Nc) set of all pairs of divisions containing critical nets Nc

Dm the mth division in D(Nc)

Sol(m) set of solutions of division Dm ∈ D(Nc)

amn binary variable, set to 1 if the nth solution is selected for Dm

bmnuv binary variable, set to 1 if the nth solution is selected for Dm,
and the vth solution is selected for Du

cd(m,n) cost when the nth solution is selected for division Dm

cdx(m,n, u, v) via costs of the selected solutions of neighboring divisions Dm, Du

Pc set of critical paths violating timing constraints

t(p) current timing of path p

sc, ss a segment of critical path pc; a segment to switch with sc

l(s) layer on which segment s is assigned

of them multiplied with weights; while considering vias on the boundary be-

tween two divisions m and u, as shown in red points in Fig. 3.7(b), we attempt

all the combinations of different candidates belonging to these two divisions,

and calculate cdx(m,n, u, v) based on the via costs, still. As the number of via

violations is much fewer than the vias, we prefer to set the violation weight 10

times as high as the weight of vias. The constraint (3.8b) guarantees that only

one solution can be selected for each division, Dm. Meanwhile, constraints

(3.8c)–(3.8e) limit that bmnuv is the product of amn and auv, based on the con-

dition that amn is binary from constraint (3.8g). Its form is very similar to

Eq. (3.3), due to their essence of solving the same assignment problem, and

thus we save the very detailed description of this formulation.

84

min
∑

m∈D(Nc)

∑
n∈Sol(m)

cd(m,n) · amn+

∑
m,u∈Dx(Nc)

∑
n∈Sol(m)

∑
v∈Sol(u)

cdx(m,n, u, v) · bmnuv, (3.8a)

s.t.
∑
n

amn = 1, ∀m ∈ D(Nc), n ∈ Sol(m), (3.8b)

amn ≥ bmnuv, ∀(m,u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u),
(3.8c)

auv ≥ bmnuv, ∀(m,u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u),
(3.8d)

amn + auv ≤ bmnuv + 1, ∀(m,u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u),
(3.8e)

bmnuv is binary, ∀(m,u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u),
(3.8f)

amn is binary, ∀m ∈ D(Nc), n ∈ Sol(m). (3.8g)

To make this whole process more clear, we provide an overall algorithm

flow including the proposed algorithm flow in Fig. 3.8. After the selection of

critical nets and solving SDP, as shown in the left block, the iterative flow

assigns segments through the sequential method to ensure the convergence of

SDP solutions. Consider that if we integrate this concurrent algorithm into

the same flow, the runtime overhead may be non-negligible because of its ILP

form. Therefore, we prefer to add this strategy as a post stage, as listed in the

right block.

The flow in the right box takes the acquired SDP solutions as inputs.

Based on these solutions, we generate more potential solution candidates

85

Solution Candidate
Generation

Solve Matching Prob.

Selected Solution
Assignment

Algorithm Flow

Assignment
Finish?

N

Y

End

Grid File

Initial
Routing File

Critical Net Selection

Self-adaptive Partition

Solve SDP Prob.

Sequential Mapping

Converge?N
Post Delay Violation

Optimization

N

Post Optimization

Y

Figure 3.8: Algorithm flow including matching algorithm.

to take more possibilities into accounts. Through the presented generation

methodology, a few candidate solutions are generated for each partition based

on their obtained SDP solutions. Due to the massive number of divisions, we

prefer to relax the Eq. (3.8) to iterative linear programming (LP) so that the

promising solution can be selected for each division to form a whole assignment

progressively. As the LP flow provides the non-integer solutions, we still set a

threshold to determine its assignment. Here the threshold is set to 0.6. During

each iteration, if the candidate’s value exceeds 0.6, it is assigned to its corre-

sponding division. Finally, to guarantee the completeness of solution, when

the number of residual divisions is small enough, i.e. smaller than 2000, we

prefer to resolve the rest divisions through the ILP and terminate this concur-

rent matching flow. In this manner, more solutions can be selected efficiently

86

to avoid potential via violations and provide more reliable assignments.

3.3.6 Post Delay Optimization

The algorithm flow aforementioned gives a global view of timing op-

timization for critical path timing in the nets, where these critical nets are

selected as those with most timing overheads. Considering existing timing

constraints in practice, here we present a post sequential algorithm to reduce

the timing violations as much as possible. As depicted beforehand, a net con-

sists of one or more paths, where each path may lead to a possible timing vio-

lation. For those paths violating the specified constraint, they are symbolized

as critical paths and endowed with priorities for high metal layers. With this

premise, we present the details of our post greedy algorithm in Algorithm 4.

The outline of the post delay violation algorithm is listed in Algo-

rithm 4, while the notations are also listed in Table 3.2. As seen, a group of

violating paths belonging to different critical nets are taken as the input to

this algorithm. Different from ILP formulation, the post delay strategy tar-

gets at reducing potential delay violations for a specified timing constraint.

Thus, without over-utilizing high layer resources for those nets with large tim-

ing overheads, we allocate layer resources in a more balanced manner because

these nets are no longer critical if they satisfy the timing constraint. This could

provide more opportunities for those nets with slight violations. Notably, here

we still focus on the maximum path timing of the nets with violations, which

complies with the ILP formulation. In our future work, we will consider timing

87

Algorithm 4 Post Delay Violation Algorithm

Input: A set of critical paths Pc;
1: Sort p with decreasing t(pc);
2: for each pc ∈ Pc do
3: for each sc ∈ pc do
4: for j = Lm; j ≥ 1; j = j − 2 do
5: if j ≤ l(sc) then
6: Break;
7: end if
8: Select ss with the least vias;
9: Switch l(sc) and l(ss);
10: Update t(pc) and t(ps);
11: if t(ps) < T0 then
12: Break;
13: else
14: Restore l(sc), l(ss), t(pc), t(ps);
15: end if
16: end for
17: if t(pc) ≤ T0 then
18: Break;
19: end if
20: end for
21: end for

paths consisting of multiple nets and cells simultaneously as an extension.

Since the clock frequency is generally affected by the path with the

worst timing, we sort all the critical paths in the decreasing order of their

critical path timing (line 1). By starting from the path which has the worst

violations compared to the given constraint, we traverse each critical segment,

sc, from its driver to sinks in a top-down manner, and search for higher metal

layers to meet the delay constraint. With this objective, we search from the

highest metal layer, same as Algorithm 3, for a switching segment, ss, which

88

exists on a non-critical timing path.

To reduce its algorithmic complexity, instead of traversing all the seg-

ments on this edge, we prefer to choose one switching segment from a collection

of segments sharing the edge with sc. In this collection of segments, all their

corresponding sink timing is smaller than 95% of the given constraint, T0.

Thus, we are able to avoid further delay violations induced by these reas-

signed segments. Before selecting ss, as stated in lines 5–7, we check if the

current layer is lower than the assigned layer of sc. If so, we would turn to the

next sc on this path to reduce the timing overhead.

Then, during the selection of ss, since all the segments with possible

timing violations have been discarded before, we pay more attention to the

resulting via costs. Thus, we prefer to select the segment with the least via

costs as ss. When there exists such an appropriate segment to switch with

sc, we exchange their assigned layers and update their path delays (lines 9–

10). Before moving to the next sc, we prefer to check the updated timing of

path ps and guarantee its legality (line 11). If ps still satisfies the constraint,

it is evident that a legal switching segment has been found for current sc,

and the rest lower layers can be skipped; otherwise, we should restore the

previous assignment and seek for the next possible layer (line 14). To bound

the surplus search, we evaluate the updated timing of this critical path after

each adjustment. If it meets the timing requirement, we freeze this path and

continue to the next critical path. Through this improvement, delay violations

can be reduced explicitly with certain timing constraints.

89

 0

 100

 200

 300

 400

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

A
v
g
 (

T
c
p
)

ILP-0.5% SDP-0.5%

(a)

 100

 1000

 10000

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

M
a

x
 (

T
c
p
)

(b)

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

R
u
n
 t
im

e
 (

s
)

(c)

Figure 3.9: Comparison between ILP and SDP on some small test cases: (a)
on average delay for all critical paths; (b) on maximum delay for all critical
paths; (c) on runtime.

3.4 Experimental Results

3.4.1 Timing Results

The proposed layer assignment framework is implemented in C++,

and tested on a 32-core Linux machine with 2.9 GHz Intel R© Core and 192

GB memory. We select GUROBI [26] as the ILP solver, and CSDP [10] as the

SDP solver. Besides, we utilize OpenMP [11] for parallel computing, and set

the thread number to 16. As that in [91], we test our framework on ISPD 2008

global routing benchmarks [65]. It should be noted in our experiments, both

90

the resistance and capacitance values are from industrial settings, and thus

our experimental results may have better agreement with industry timing.

In the first experiment, we compare the ILP formulation (see Section

3.3.1) with the SDP-based methodology (see Section 3.3.3 and Section 3.3.4).

Since ILP formulation may suffer from runtime overhead problem, i.e., it can-

not finish in two hours for some large test cases, we select some small test cases

for the comparison as shown in Fig. 3.9. Note that the partitioning technique

is applied to both methods. We can see from Fig. 3.9(a) and Fig. 3.9(b) that

SDP can obtain very similar average timing and maximum timing with ILP

for these cases. This means that our SDP-based methodology provides an ef-

ficient relaxation with ILP formulation. Meanwhile, for these test cases, SDP

can achieve significant speed-up (see Fig. 3.9(c)).

In the second experiment, we further evaluate our SDP-based method

by comparing it with TILA [91]. To make a fair comparison, we release the

same set of nets for both TILA and our SDP. Table 3.3 lists the comparison

results for the SDP-based method with TILA-0.5%. Here “0.5%” means 0.5%

of most critical nets are released for both methodologies. Columns “Avg (Tcp)”

and “Max (Tcp)” give the average and maximum timing of the critical path

for all critical nets, respectively. Meanwhile, Columns “# of OV” and “# of

via” list via capacity overflow and via count. The runtime is also reported

in the Column “CPU(s)”. From Table 3.3 we can see that compared with

TILA, our SDP-based method can reduce the average timing by 11%, while

the maximum timing can also be decreased by 4%. Since TILA also devotes

91

Table 3.3: Performance comparison with TILA on ISPD 2008 benchmarks.

TILA-0.5% [91] SDP-0.5%

bench Avg(Tcp) Max(Tcp) # of OV # of via CPU(s) Avg(Tcp) Max(Tcp) # of OV # of via CPU(s)

(103) (103) (105) (s) (103) (103) (105) (s)

adaptec1 228.57 4378.42 49205 19.31 132.9 204.88 4205.71 50947 19.26 112.5

adaptec2 97.94 1435.79 38173 19.25 133.8 93.88 1421.68 38480 19.32 91.2

adaptec3 220.00 4613.89 90961 36.74 322.5 209.41 4583.29 92299 36.76 569.0

adaptec4 121.67 5616.23 72695 32.22 272.4 117.43 5590.84 73185 32.44 494.3

adaptec5 249.51 5406.11 81151 55.21 444.8 216.15 5311.75 84537 55.26 472.0

bigblue1 402.81 2673.18 44399 21.69 174.7 322.41 2065.42 46256 21.56 142.1

bigblue2 100.94 10821.67 114343 43.38 188.7 95.58 10728.23 115240 43.49 264.9

bigblue3 27.38 789.61 65718 52.62 333.5 21.53 373.80 66795 52.92 547.7

bigblue4 37.98 3779.11 95348 109.94 747.1 33.56 3750.95 97148 110.37 804.3

newblue1 43.11 344.32 57063 22.34 106.9 39.52 343.09 57744 22.44 98.7

newblue2 110.76 6171.37 35994 28.97 151.4 107.85 6130.09 35566 29.25 146.4

newblue4 111.53 5660.31 84684 47.57 305.9 105.53 5395.42 85159 47.73 365.2

newblue5 170.45 2789.52 152770 86.65 605.1 151.41 2771.55 157944 87.00 1564.4

newblue6 144.42 2373.86 94489 78.47 683.4 124.75 2298.74 97859 78.53 562.2

newblue7 30.03 1301.30 143087 163.81 1161.2 25.33 1254.22 144580 164.28 1555.7

average 139.81 3896.98 81339 54.54 384.3 124.61 3748.32 82916 54.71 519.4

ratio 1.00 1.00 1.00 1.00 1.00 0.89 0.96 1.02 1.00 1.35

efforts in maximum timing optimization, the improvement of maximum timing

is reasonable. Our work also pays a slight penalty of via violations by 2%, and

keeps the same via count number as TILA. In addition, the reported runtime

of SDP increases by 1.35 times in comparison with TILA, due to the nature

that the SDP problem is more complicated than the min-cost flow problem.

However, since we adopt the adaptive partitioning in the SDP-based method

(see Section 3.3.2), this method can still achieve reasonable runtime. During

partitioning, we set its allowed number of segments in each partition as 10 for

the further self-adaptive partitioning methodology.

In the third experiment, we demonstrate the effectiveness of our self-

adaptive partitioning methodology for SDP, as shown in Fig. 3.10. We try dif-

92

 0

 50

 100

 150

 200

 250

 300

 350

 8 16 32

A
v
g
 (

T
c
p
)

(x
1
0

3
)

of segment in each partition

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 8 16 32

M
a
x
 (

T
c
p
)

(x
1
0

3
)

of segment in each partition

(b)

 100

 1000

 8 16 32

R
u
n
ti
m

e
 (

s
)

of segment in each partition

adaptec1
adaptec2
bigblue1

(c)

Figure 3.10: Partition size impact on three small cases. (a) The impact on
Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on runtime.

 0

 50

 100

 150

 200

 250

 8 16 32

A
v
g
 (

T
c
p
)

(x
1
0

3
)

of segment in each partition

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8 16 32

M
a
x
 (

T
c
p
)

(x
1
0

3
)

of segment in each partition

(b)

 1000

 10000

 8 16 32

R
u
n
ti
m

e
 (

s
)

of segment in each partition

adaptec3
adaptec4
adaptec5

(c)

Figure 3.11: Partition size impact on three large cases. (a) The impact on
Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on runtime.

ferent partition granularities (from 5 to 40) for three small test cases, where the

maximum number of segments in each partition is limited. From Fig. 3.10(a)

and Fig. 3.10(b), the average and maximum timing are quite similar, which

means that partitioning has a negligible impact on performance because the

tighter constraints would lead to more partitions. Although each partition is

dealt in parallel with multiple threads, the impact of the performance is in-

significant. Furthermore, Fig. 3.10(c) shows that the runtime increases dras-

tically with the partition granularity. Notably, without the self-adaptive par-

93

titioning methodology, the number of critical segments to deal with is so high

that it takes around 1000 seconds to run even a small benchmark by releasing

0.5%. Therefore, we can see that the self-adaptive partitioning methodol-

ogy benefits the runtime for SDP significantly. Meanwhile, we can observe

that when the constraint is set to 10, the runtime can reach its lowest point.

Considering that small benchmarks may not be able to represent all the cases,

here we also adopt the same set of experiments on three relatively large bench-

marks, as shown in Fig. 3.11. With the same selection of granularity, almost

no difference is observed for the average and maximum timing results, respec-

tively. Notably, the best runtime is still acquired when the granularity reaches

10 for each partition. One difference from small benchmarks is that the gran-

ularity of 20 segments in each partition is able to reach similar runtime for

benchmark “adaptec3”, and 20-segment granularity can even spend less run-

time than 5-segment granularity, on average. The main reason is that, for

larger benchmarks, a higher number of tasks are acquired from fine-grained

partitions, which may lead to more runtime overheads. Thus, to balance the

trade-off between partition granularity and task number, a slightly larger parti-

tion granularity can be desired, because a fine-grained partition provides more

opportunities for parallel execution while a coarse-grained partition reduces

the number of tasks. But even for large benchmarks, the granularity of 10

segments can still achieve the lowest point while maintaining the similar per-

formance of average and maximum timing. Therefore, in our implementation,

we set the default partition granularity as 10.

94

 0

 1500

 3000

 4500

adaptec1

adaptec2

bigblue1

M
a

x
 (

T
c
p
)

(x
1

0
3
)

4-thread
8-thread

12-thread
16-thread

(a)

 0

 150

 300

 450

adaptec1

adaptec2

bigblue1

A
v
g
 (

T
c
p
)

(x
1
0

3
)

(b)

 0

 200

 400

 600

adaptec1

adaptec2

bigblue1

R
u

n
ti
m

e
 (

s
)

(c)

Figure 3.12: Performance evaluation based on the number of threads on some
small test cases: (a) Maximum delay for critical paths; (b) Average delay for
critical paths; (c) Runtime.

In the fourth experiment as given in Fig. 3.12, we evaluate the impact of

thread number with the same partition granularity on three small benchmarks.

As limited by machine resources, the number of threads can be lower than 16

and higher than 4, so we select four numbers, i.e. 4, 8, 12 and 16, as the

thread number for comparison. Observe that for both average and maximum

timing results the performance differences are negligible, similar to the results

95

 0

 50

 100

 150

 200

 250

 0.5 1 1.5 2 2.5

A
v
g
 (

T
c
p
)

(x
1
0

3
)

Critical Ratio

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.5 1 1.5 2 2.5

M
a
x
 (

T
c
p
)

(x
1
0

3
)

Critical Ratio

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.5 1 1.5 2 2.5

R
u
n
ti
m

e
 (

s
)

Critical Ratio

TILA
SDP

(c)

Figure 3.13: Critical ratio impact on benchmark adaptec1. (a) The impact
on Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on runtime.

shown in Fig. 3.10 and Fig. 3.11. In comparison, with the increase of threads,

the runtime keeps decreasing until it reaches 16. It is seen that with the

same problem size, a slight increase of threads will lead to obvious speed-ups;

but when the number reaches a certain threshold, the speed-up space will be

limited due to the increasing communication overheads among various threads.

Therefore, we set the number of threads in our framework to 16 which would

lead to most speed-ups.

To prove the effectiveness of our post delay optimization, we show the

results by excluding this stage in the framework. Since a similar number of

vias and via violations can be achieved, we provide the differences of maximum

path timing and delay violations with and without the post optimization, as

shown in Table 3.4. From Table 3.4, the maximum path timing of those

selected critical nets can be improved slightly by 0.2%. Because we start to

fix delay violations from the most critical net, for some designs the maximum

path timing can be improved sufficiently; nevertheless, considering that both

96

Table 3.4: Performance comparison with/without post opt.

WO Post W Post

bench Max(Tcp) # of Vio Max(Tcp) # of Vio

(103) (103)

adaptec1 4205.71 6215 4205.71 5474

adaptec2 1421.68 5148 1421.68 3820

adaptec3 4583.44 9812 4583.40 8367

adaptec4 5591.10 11091 5591.10 8429

adaptec5 5311.75 21273 5273.78 17583

bigblue1 2065.42 12871 2056.57 11329

bigblue2 10728.70 18211 10725.35 16004

bigblue3 373.80 5122 304.20 1149

bigblue4 3751.01 10451 3751.06 2294

newblue1 343.09 8282 343.09 7044

newblue2 6130.09 11065 6130.09 6961

newblue4 5395.42 12599 5395.42 9327

newblue5 2771.74 40471 2771.74 32196

newblue6 2298.74 15288 2298.74 11286

newblue7 1254.22 13823 1254.22 4555

average 3748.39 13448 3740.41 9721

ratio 1.000 1.000 0.998 0.723

TILA and CPLA have placed adequate emphasis on that of critical nets, the

further improving space has been constrained. Thus, this little improvement

is reasonable. Also, we can observe that the number of delay violations can

be well controlled with the integration of post delay optimization. In our post

optimization strategy, when a critical net satisfies the timing constraint, we

will turn to the next violating one and this will leave more routing resources

for the residual critical nets. In this way, this post optimization stage helps to

fix 27.7% delay violations on average.

In the sixth experiment, we further analyze the impact of critical ratio

97

on the performance of the SDP-based method. Critical ratio is an important

parameter to determine how many critical nets are released. In Table 3.3, we

release 0.5% critical nets to see the improvement. Here we evaluate the SDP-

based method by releasing more critical nets. Meanwhile, we compare the

average critical path timing, maximum critical path timing, and runtime with

TILA for one small benchmark adaptec1. From Fig. 3.13(a) and Fig. 3.13(b),

we see that the average timing decreases slightly with the increase of criti-

cal ratio for both SDP and TILA. However, for the comparison of maximum

timing, we see that TILA does not control the maximum timing well. The

reason may be that TILA applies a Lagrangian-based relaxation optimization

for via capacity constraints, which may affect the timing improvements. In

Fig. 3.13(c), we observe that for the SDP-based method the runtime increases

in proportion to the critical ratio. This illustrates that our method has a

well-controlled scalability.

3.4.2 Timing Violation Results

The third last experiment manifests the effect of our post stage to

reduce timing violations. To compare with CPLA results in [48], we work on

the same ISPD 2008 global routing benchmarks, which do not contain any

delay constraint information. Considering the different sizes of test cases, we

prefer to arrange appropriate criterion based on their initial timing conditions.

Therefore, we set the delay constraint to 80% of the minimum timing of those

critical nets in Table 3.3. Table 3.5 lists the compared delay violations, also

98

T
ab

le
3.

5:
D

el
ay

v
io

la
ti

on
co

m
p
ar

is
on

on
IS

P
D

20
08

b
en

ch
m

ar
k
s.

C
P

L
A

in
[4

8]
C

P
L

A
N

ew

b
en

ch
#

of
V

io
A

v
g(
T
cp

)
M

ax
(T

cp
)

#
of

O
V

#
of

v
ia

C
P

U
(s

)
#

of
V

io
A

v
g(
T
cp

)
M

ax
(T

cp
)

#
of

O
V

#
of

v
ia

C
P

U
(s

)

(1
03

)
(1

03
)

(1
05

)
(s

)
(1

03
)

(1
03

)
(1

05
)

(s
)

a
d
a
p
t
e
c
1

62
15

20
4.

88
42

05
.7

1
50

94
7

19
.2

6
12

7.
4

54
74

20
4.

21
42

05
.7

1
50

86
5

19
.2

6
19

2.
8

a
d
a
p
t
e
c
2

51
47

93
.8

8
14

21
.6

8
38

48
0

19
.3

2
10

5.
2

38
20

94
.0

6
14

21
.6

8
38

47
9

19
.3

3
16

7.
2

a
d
a
p
t
e
c
3

98
12

20
9.

41
45

83
.2

9
92

29
9

36
.7

6
56

9.
0

83
67

20
9.

28
45

83
.4

0
92

31
1

36
.7

7
79

3.
4

a
d
a
p
t
e
c
4

11
08

9
11

7.
43

55
90

.8
4

73
18

5
32

.4
4

49
4.

3
84

29
11

7.
60

55
91

.1
0

73
18

3
32

.4
6

63
9.

1

a
d
a
p
t
e
c
5

21
26

9
21

6.
15

53
11

.7
5

84
53

7
55

.2
6

47
2.

0
17

58
3

21
5.

08
52

73
.7

8
84

47
2

55
.2

6
64

8.
0

b
i
g
b
l
u
e
1

12
85

2
32

2.
41

20
65

.4
2

46
25

6
21

.5
6

15
0.

4
11

32
9

32
1.

27
20

56
.5

7
46

21
9

21
.5

7
24

2.
6

b
i
g
b
l
u
e
2

18
21

5
95

.5
8

10
72

8.
23

11
52

40
43

.4
9

26
4.

9
16

00
4

95
.4

0
10

72
5.

35
11

52
17

43
.4

9
39

1.
1

b
i
g
b
l
u
e
3

51
22

21
.5

3
37

3.
80

66
79

5
52

.9
2

54
7.

7
11

49
21

.9
2

30
4.

20
66

76
8

52
.9

6
82

2.
1

b
i
g
b
l
u
e
4

10
43

4
33

.5
6

37
50

.9
5

97
14

8
11

0.
37

80
4.

3
22

94
34

.9
8

37
51

.0
6

97
12

7
11

0.
46

12
72

.2

n
e
w
b
l
u
e
1

82
96

39
.5

2
34

3.
09

57
74

4
22

.4
4

98
.7

70
44

39
.5

1
34

3.
09

57
75

6
22

.4
5

16
1.

8

n
e
w
b
l
u
e
2

11
05

6
10

7.
85

61
30

.0
9

35
56

6
29

.2
5

14
6.

4
69

61
10

8.
03

61
30

.0
9

35
55

2
29

.2
6

21
3.

2

n
e
w
b
l
u
e
4

12
59

9
10

5.
53

53
95

.4
2

85
15

9
47

.7
3

36
5.

2
93

27
10

5.
68

53
95

.4
2

85
13

9
47

.7
4

53
9.

3

n
e
w
b
l
u
e
5

40
44

4
15

1.
41

27
71

.5
5

15
79

44
87

.0
0

15
64

.4
32

19
6

15
1.

43
27

71
.7

4
15

79
55

87
.0

6
19

78
.5

n
e
w
b
l
u
e
6

15
27

3
12

4.
75

22
98

.7
4

97
85

9
78

.5
3

56
2.

2
11

28
6

12
4.

26
22

98
.7

4
97

68
5

78
.5

3
90

9.
0

n
e
w
b
l
u
e
7

13
82

3
25

.3
3

12
54

.2
2

14
45

80
16

4.
28

15
55

.7
45

55
25

.2
9

12
54

.2
2

14
45

68
16

4.
36

21
66

.1

av
er

ag
e

13
44

3
12

4.
61

37
48

.3
2

82
91

6
54

.7
1

52
1.

8
97

21
12

4.
53

37
40

.4
1

82
88

6
54

.7
3

74
2.

4

ra
ti

o
1
.0

0
1
.0

0
1
.0

0
1.

00
1.

00
1.

00
0
.7

2
1
.0

0
1
.0

0
1.

00
1.

00
1.

43

99

with the corresponding timing and via results.

From the results, it is shown that the overall number of timing viola-

tions is reduced by 28%. Meanwhile, both average and maximum critical path

timing are very similar compared to CPLA. Considering the partial adjust-

ment of the layers of segments on these paths, we can see the timing effect

is quite obscure. Meanwhile, the number of vias costs and violations are also

well controlled. The only penalty we pay is the runtime overhead, which in-

creases by 43%. Due to the integration of concurrent mapping and post delay

optimization, this runtime overhead is acceptable.

Additionally, we provide a comparison on the via costs between sequen-

tial mapping and concurrent mapping, both of which occur in those divisions

with one more candidate. The evaluation is tested on five benchmarks with dif-

ferent sizes to show its effectiveness. As seen in Fig. 3.14(a), around 2% of via

violations can be reduced; meanwhile, the number of via violations decreases

by 0.34% in Fig. 3.14(b). Therefore, under a reasonable runtime overhead, the

concurrent matching strategy is deserved.

 0

 400

 800

 1200

 1600

adaptec1

adaptec2

adaptec3

adaptec4

adaptec5

#
 o

f
V

ia
 V

io

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

adaptec1

adaptec2

adaptec3

adaptec4

adaptec5

#
 o

f
V

ia
s

Sequential
Concurrent

(b)

Figure 3.14: Comparison between sequential mapping and concurrent match-
ing: (a) via violations; (b) number of vias.

100

 0

 30

 60

bigblue2

new
blue1

new
blue4

#
 o

f
E

O
V

L1
L2

L3
L4

L5
L6

(a)

 0

 30

 60

bigblue2

new
blue1

new
blue4

#
 o

f
E

O
V

(b)

 0

 30

 60

bigblue2

new
blue1

new
blue4

#
 o

f
E

O
V

(c)

 0

 30000

 60000

 90000

bigblue2

new
blue1

new
blue4

#
 o

f
O

V

L1-2
L2-3

L3-4
L4-5

L5-6

(d)

 0

 30000

 60000

 90000

bigblue2

new
blue1

new
blue4

#
 o

f
O

V

(e)

 0

 30000

 60000

 90000

bigblue2

new
blue1

new
blue4

#
 o

f
O

V

(f)

Figure 3.15: Violation comparison of NVM, TILA and CPLA: (a) Edge over-
flows in NVM; (b) Edge overflows in TILA; (c) Edge overflows in CPLA; (d)
Via overflows in NVM; (e) Via overflows in TILA; (f) Via overflows in CPLA.

Besides, to provide an explicit view of edge/via overflow distribution

among layers, we measure the number of edge overflows on each layer and

via violations between every two adjacent layers for NVM [54], TILA and

CPLA. As the initial input from NVM provides very few edge overflows, here

we selectively pick three test cases with edge violations originally to show the

violation distribution. Due to the existent control mechanism, both TILA

and CPLA will not aggravate the initial edge violations throughout the whole

procedure. Thus, they are able to keep the same edge violations as NVM, as

shown in Fig. 3.15(a), Fig. 3.15(b) and Fig. 3.15(c). Then, in the view of via

violations, we observe that the majority of them occur in the bottom layers

101

for all the results, although high metal layers have been utilized efficiently for

timing optimization. This observation is also acceptable because ISPD 2008

global routing benchmarks provide much fewer tracks for lower metal layers

than higher layers. Based on Eq. (3.2), when there is no free track on a cer-

tain layer, via violations cannot be avoided anyway. From this perspective,

via violations tend to appear on the layers with few available routing tracks.

Meanwhile, we can also see that CPLA shows a similar distribution of via vio-

lations of TILA, based on the fact that they have a similar optimal objective.

Additionally, the number of via violations on high layers in Fig. 3.15(f) shows

slightly higher than that in Fig. 3.15(e). This corresponds to the fact that high

layers have been employed more sufficiently through CPLA for better timing

achievement. Here we assume that via violations result only from stacked vias,

so no via violations exist on the lowest and highest layer.

3.5 Summary

This chapter targets at optimizing critical path timing during the layer

assignment stage. First, we propose the ILP formulation for the problem,

and then present the self-adaptive partition algorithm to benefit the runtime.

Based on this partition algorithm, the SDP-based method is developed and

applied to each division. Additionally, an iterative LP framework is integrated

as the post stage with an algorithm to reduce delay violations for paths. The

experimental results show that our work can outperform TILA by 11% for the

average delay and 4% for the maximum delay of the critical paths, and little

102

performance degradation is observed from multiple threads but with much

speed up. With the post delay optimization, timing violations can also be

reduced efficiently.

103

Chapter 4

Synergistic Topology Generation and Route

Synthesis for Signal Groups

4.1 Introduction

The previous chapters have introduced two layer assignment approaches,

which aim to adjust the assigned layers for timing optimization. This chapter

provides an extensive view to develop competitive topology generation and

route synthesis for on-chip interconnections. In current industrial designs,

data and control signals loading messages from various sources can be bound

as signal groups, as shown in Fig. 4.1. Observe that there are three signal

groups marked with different colors. The signal bits in one group may have

different numbers of pins, resulting in different routing styles. In this exam-

ple, one style is signified with a pair of solid lines and a dashed line in the

middle. The solid lines represent two signal bits on the border, as pointed

in Fig. 4.1, while the dashed lines represent multiple bits inside. For signal

bits with different pin locations in one group, they have to be routed in a

This chapter is based on the journal: Derong Liu, Bei Yu, Vinicius Livramento, Salim
Chowdhury, Duo Ding, Huy Vo, Akshay Sharma, and David Z. Pan. “Synergistic topol-
ogy generation and route synthesis for on-chip performance-critical signal groups.” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2018). I am
the main contributor in charge of problem formulation, algorithm development and experi-
mental validations.

104

regular manner. That is to say, common topologies are preferred to be shared

among all the bits for design regularity, which is an extension of classic bus

routing [42, 61, 70]. Meanwhile, with more metal layers integrated, it faces

more challenges to control the routing congestion among multiple layers. For

the performance-critical signal bits, the routability and wire-length should also

be optimized to avoid functional inaccuracy and timing issues. Therefore, an

advanced synergistic router should be able to not only control routability and

wire-length but also guide each bit routing intelligently for design regularity.

To realize these requirements, we propose an automatic topology gen-

eration and synthesis engine which is able to guide the routing of signal groups

with a global view. Besides the improvement of routability and wire-lengths

for the signal bits, we should also pay attention to the specific constraints

brought by signal groups, where the bits in one group are encouraged to be

routed in parallel tracks and share common topologies/layers for regularity.

Meanwhile, instead of a bit-by-bit routing, signal bits can be clustered based

on their possible route styles, as seen in Fig. 4.1, where two styles in Group1

are circled to be treated as an individual object. Then the problem size can

be reduced by condensing several bits into an object, but with the resulting

parallel routes, capacity constraints become more stringent. During the whole

procedure, all these constraints should be taken into accounts carefully.

There are a few previous works focusing on bus architecture synthesis

for on-chip designs. Some bus-oriented work incorporates with floorplanning

to satisfy the timing constraints [66], minimize total bus area [86], or improve

105

Data Bits

Control Bits

Group 2 Group 3Group 1

Bit

Figure 4.1: Example of on-chip signal groups.

dead space [58]. For timing targeted analysis, an automated bus synthesis

framework, FABSYN, incorporates the floorplanning with wire delay estima-

tion engine to detect the potential timing violations [67]. Considering the im-

pact of vias on lithography, a revisiting methodology is proposed to minimize

the routing vias while controlling the loss of chip area and wire-length [27].

Furthermore, an OPC-friendly bus floorplanning algorithm allocates the bus

positions with the consideration of the impact of Off-Axis Illumination (OAI)

on pitches [85]. Especially, multi-bend shapes are considered in [58] for provid-

ing more topology candidates through simulated annealing. Additionally, an

effective algorithm minimizes the deviation for large-scale buses while improv-

ing the dead spaces and wire-length [82]. And a bus thermal analyzer models

the potential hot spots on chips [38]. There is also some literature about es-

cape routing on printed circuit board (PCB) design: such as pin ordering and

untangling [88], layer resource minimization [87], and an automatic planning

106

flow in [81] including bus decomposition, escape routing, layer assignment, and

global routing. Compared with the previous works, our proposed routing syn-

thesis tool provides a more extensive view to deal with bundled signal groups

with more possibilities.

Very few of the previous routing works target at synergistic topology

generation and routing synthesis of signal groups with multi-pin connections.

For current industrial designs, regular topologies with parallel routes are highly

preferred to reduce inter-bit variability spread on silicon. Therefore, an effi-

cient topology generator should be able to facilitate the routes of signal bits

directing to different cells with low twisting or distorted connections. Besides,

compared to two-pin buses, signal groups contain the bits with varying num-

bers of pins according to their specified logic connections. This also increases

the problem complexity by providing more routing possibilities and conges-

tion challenges. Additionally, considering the requirement of source-to-sink

distance control, appropriate twisting routes are required to complement the

deviation among multiple bits in groups. Therefore, an intelligent framework

is essential to guide the routing with the respect of regularity and wire-length

efficiently.

In this chapter, we propose an automatic topology generator and rout-

ing synthesis flow for on-chip performance-critical signal groups. The results

have been reported in [51], and the contributions are highlighted as follows.

• An automatic framework directs topology and routing synthesis of bun-

107

dled groups with multi-pin connections.

• An identification stage partitions signal groups into a set of objects where

each bit has an equivalent topology.

• A mathematical formulation improves routability and wire-length while

handling the topology similarity.

• A primal-dual flow benefits the runtime while keeping very comparable

quality.

• A bottom-up clustering strategy integrates with layer prediction to en-

hance the routability of signal groups.

• A refinement stage allows appropriate twisting routes to reduce the

source-to-sink distance deviation.

The remainder of this chapter is organized as follows. Section 4.2

presents the overview of our framework and adopted models. Section 4.3

describes our synergistic topology generation procedure, presents a mathe-

matical formulation to optimize wire-length and routability while controlling

regularity, and a prime-dual flow benefits the runtime. Section 4.4 provides a

post optimization stage to further enhance the signal routability and match

the source-to-sink distances among different bits. Section 4.5 reports the ex-

perimental results, and followed by conclusion in Section 4.6.

108

4.2 Preliminaries

In this section, we provide the overview of our proposed framework,

and illustrate the adopted model and methodology, based on which a problem

formulation is given.

4.2.1 Streak Flow

To provide an explicit view of Streak framework, the overall flow is

illustrated in Fig. 4.2. Initially, the information of specified track allocation

and pin locations from bits bundled in signal groups is provided. To make it

explicit, the definition of signal groups is given as follows, and signal groups

are pre-defined and provided by users:

Definition 1 (Signal Group) The performance-critical signal bits whose pins

are located in adjacent physical locations and required to share common topolo-

gies are defined as a signal group.

Considering that the bits in a group may require various routing types,

as shown in Fig. 4.1, we identify the possible routing types of each bit based

on its pin locations. Those bits are combined as one routing object and able

to obtain equivalent topologies. Since our framework targets at multi-layer

structure, 3-D topology candidates are required for the objects on different

layers. To achieve this, we construct a set of 2-D backbones for each object

and derive equivalent topologies for each bit in an object. In our flow, a back-

bone contains a complete routing solution of all the bits in reference to this

109

Signal Identification
Track Info

Signal
Group Info

Backbone Generation

Synergistic Routing

Candidate Generation Complete?

Streak Output

Y

Primal-Dual

Solution Update

N

Figure 4.2: Overall Streak flow.

backbone. Then the acquired topology candidates are developed to different

layers for a 2-D solution, all of which are considered as candidates for selec-

tion. After handling the equivalence of each object, we further quantify the

dissimilarity among objects in a group through regularity ratio. Based on

these operations, a primal-dual flow solves all the objects efficiently. During

the primal-dual flow, we search for the most appropriate solution for each sig-

nal routing object in a progressive manner. The details of each step in the

flow will be given in Section 4.3. The following sections describe the routing

model adopted through our framework to handle the topology generation and

route synthesis for synergies.

4.2.2 Proposed Signal Model

Similar to global routing, a signal route can also be modeled on a 3-D

global grid model. In real industrial designs, 3-D routing is preferred to avoid

the sub-optimality of a post layer assignment step. Similarly, each layer is

110

(a) (b)

Figure 4.3: Illustration of signal routing model: (a) Example of 2-D routing;
(b) Example of 3-D routing.

also divided into a set of rectangular routing cells in a 2-D manner, i.e. G-

Cell, shown as a vertex in Fig. 4.3(b). Additionally, the edges connecting

vertices in 2-D planes are for routing wires, whose capacity constraints have

to be satisfied. This means that the number of passing bits cannot exceed the

maximum capacity for each edge. Different from traditional routing, signal

bits prefer to be routed in parallel tracks and share common topologies as

much as possible for regularity. For a signal group, several bits may occupy the

same edge simultaneously, which aggravates the routing congestion. Therefore,

edge capacity constraint becomes more challenging through guiding the overall

route of all signal bits.

Based on the 3-D grid model, efficient routes can be generated consid-

ering the specified requirements of signal groups. By modeling Group1 from

Fig. 4.1 on a 2-D grid, as shown in Fig. 4.3(a), this group is to be divided into

two routing styles based on their pins’ locations as circled. Each style corre-

sponds to an individual object consisting of several bits, and the topologies

111

of these two objects are encouraged to be shared as much as possible. There-

fore, it turns out that they are routed in horizontal tracks from the drivers,

and their corresponding 3-D solutions are provided in Fig. 4.3(b), where the

horizontal trunks are assigned on the same metal layer.

4.2.3 Proposed Bit Model

As shown in Fig. 4.1, one signal group contains a specified number of

bits, which may have various numbers of pins located in different directions.

For the bits belonging to one group, their routes should be coordinated and

adhere to some constraints: topology variance should be well controlled by

matching the connection with the mapped pins located at the similar direction

in the bits; for a pair of mapped pins, their source-to-sink distances should be

within certain bounds to reduce the deviations. As shown in Fig. 4.4(a), three

bits are listed with the mapped pins as clustered together, where the red dashed

squares signify the drivers of all the bits. Observe that the distances between

the driver and each mapped pin are all the same though these bits possess

different numbers of pins. Nevertheless, not all the bits in one signal group

are able to achieve the equivalent distance ideally. An example is provided

in Fig. 4.4(b), from which a much shorter distance exists for one sink in the

leftmost bit compared to the other bits. This will induce the source-to-sink

distance deviation for this mapped pin, and further result in non-negligible

diverse arrival times for connecting modules. To avoid the possible resulting

malfunction for these modules, it is essential to control the distance deviation

112

(a) (b)

Figure 4.4: Illustration of source-to-sink distance for signal bits: (a) Example
of equivalent distance for all bits; (b) Example of inter-bit distance deviation.

in an acceptable range. Therefore, a deviation threshold is introduced so that

the deviation should be under this constraint.

4.2.4 Proposed Similarity Vector Model

Based on the examples in Fig. 4.3 and Fig. 4.4, it is imperative to

present a model which distinguishes the bits in a bundled group according

to their different pin connections. That is to say, all the bits in a distin-

guished object are to acquire equivalent topologies. FLUTE [16] provides an

elegant definition of equivalent topology through vertical sequences, where the

same sequence is guaranteed to produce an equivalent topology. By extend-

ing this, we develop a similarity vector for each pin, SV (pm), to capture its

relative location in its bit. Furthermore, SV (pm) is also utilized to find the

corresponding pin in another bit from one signal group. Based on the corre-

sponding pins from other bits, their routes can be coordinated in a synergistic

manner through appropriate mapping and calibration.

113

Since the corresponding pins of different bits can be located in various

G-Cells, we prefer to use the relative direction rather than distance to describe

each pin’s location. As shown in Fig. 4.5(a), the SV for pin pm in it’s net is

decided through a quadrant-based model, which characterizes the connecting

directions in comparison to pm. It is seen that there are 8 directions in total:

each quadrant contributes a direction while both X and Y axes contribute two

directions. Then a similarity vector is presented as shown in Equation (4.1),

SV (pm) = {np(+x), np(I), np(+y), · · · , np(IV)}, (4.1)

which records the number of other pins in this bit, i.e. np, from each direction

by a counter-clockwise sequence. For the example shown in Fig. 4.5(a), assume

that the driver is in the middle and each “X” represents a sink, then SV of this

driver is {1,1,1,1,1,1,1,1}. Taking the example in Fig. 4.3(a) as an instance,

there are two routing styles which can be distinguished through the vector. For

the top style, the SV of the driver is {1,0,0,0,0,0,0,0}, while the sink has the SV

as {0,0,0,0,1,0,0,0}. Thus, in each routing style, every pin has the same SV ,

and these pins belonging to various bits in a group can be mapped mutually.

Based on the mapped pins, we are able to provide equivalent topologies for

the bits in an object, while the topologies among different objects can also be

coordinated to reduce the dissimilarities. Therefore, SV plays an important

role in processing topology synergy of the bits in a group.

114

4.2.5 Problem Formulation

Based on the proposed flow and routing model discussed in the preced-

ing section, we define the synergistic topology generation and route synthesis

(Streak) problem as follows:

Problem 3 (Streak) Given signal bits in bundled groups and layer capacity

information, Streak determines the routing topology and layer assignment for

each signal bit so that the routability, wire-length and topology regularity can

be optimized while the edge capacity constraints are satisfied.

4.3 Algorithms

In this section, we present the technique details adopted through Streak

flow. A pre-processing stage partitions each signal group into a set of routing

objects; a set of backbone structures is constructed and equivalent topologies

are developed; a mathematical formulation selects the appropriate topology

and assigns penalties to control irregular topologies; and a primal-dual algo-

rithm is presented finally for speed-up.

4.3.1 Identification of Signal Isomorphism

Besides covering general bus routing, our framework provides more fea-

sibilities to handle groups of signal bits, which can be loaded from data or

control information. A pre-processing stage provides a set of bits clustered

in different groups, which can belong to multiple buses and prefer to share

common topologies as much as possible. In comparison to general bus plan-

115

X

IV

X

X
X

X X
X

X

III

III

(a)

X

XX

X
X

(b)

Figure 4.5: Example of signal identification: (a) Quadrant-based similarity
vector; (b) Hierarchical isomorphic identification.

ning, these binding signal bits possess different numbers of pins which lead to

a set of adjacent physical locations. Therefore, with the integration of signal

groups, the algorithmic complexity increases with more possibilities.

To provide regular routes for bundled signals, we prefer to partition a

provided signal group into a set of sub-groups, and deal with each sub-group

as an individual routing object. In each object, every bit is able to acquire an

equivalent topology and all its pins have the same SV s as the pins in other

bits. That is to say, each pin is able to find its corresponding reflection from

any other bit in the same object. After the routing flow, each bit in an object

obtains an equivalent topology while for different objects in a signal group,

they are preferable to share common topologies as much as possible.

With this objective, the partition strategy is illustrated as shown in

Fig. 4.5(b). The input is one complete signal group represented by the white

root node, and the output is a set of routing objects represented by the gray

116

nodes, containing the bits owning the same similarity vectors for the pins.

The squares in the right side provide the pin distributions of each signal bit

belonging to an object. It is seen that all the bits are able to reach the same

topology when their pins have the same relative direction. The methodology is

intuitive but naive by calculating the similarity vector for each net pin, which

would result in considerable calculation overhead. For those bits that are

deemed to obtain different topologies based on their pin locations, we prefer

to distinguish them as soon as possible without comparing each pin’s similarity

vector. Therefore, we adopt a hierarchical strategy based on the premise that

the driver pins of various bits in the same group can be mapped mutually. In

this way, we calculate the similarity vector of the driver for each bit at first.

Those bits with different vectors are separated as blue nodes in the middle in

Fig. 4.5(b). For the signal bits in the top blue node, their drivers have the

same SV as {0,2,0,0,0,0,0,0}, although not all of them are able to obtain the

same topology. It is easy to see equivalent topologies are infeasible for the bits

whose drivers have different vectors. With this stage, the complexity decreases

without traversing all the pins for each bit due to the fact that the number

of pins in each direction in comparison to the driver is quite limited. Then,

for those bits with multiple pins in one direction to the driver, as shown in

Fig. 4.5(b), we only need to evaluate those pins for mapping. By taking the

top blue node as an example, we can just compare the SV s of the pins in

the first quadrant to the driver. Finally, the bits with the same SV for all

the pins are combined as an object, and common topologies are encouraged

117

for the objects from one signal group. In industrial designs, the signal groups

are user-defined by referencing the specifications from many aspects, such as

signal shielding, cell connection, etc.

4.3.2 Topology Generation and Evaluation

Before solving the signal routing problem, an efficient topology gener-

ation procedure is essential to provide candidate solutions. In this section, we

propose a synergistic topology generation strategy for multi-pin connections

which require equivalent topologies in one object and sharing topologies among

objects in one group. It consists of three steps: backbone generation for every

single object, equivalent routes generated for the bits based on the backbone

and regularity evaluation among backbone topologies of various objects.

4.3.2.1 Backbone Structure Construction

After the isomorphic identification, a set of routing objects can be ac-

quired from a group where all the bits can be routed with a topology, i.e. back-

bone structure. In essence, it is a topology prototype of all the bits in this

object. The pins of one representative bit serve as the input information, and

the output is a set of rectilinear connections of the pins and bending points

with the same X/Y coordinates. Its formal definition is given as follows. To

select a bit in the object, we choose one bit in the center region of an object

and take its pins as the input. Since the identification stage distinguishes

the bits sufficiently, a selected bit can be representative of all the bits in one

118

object.

Definition 2 (Backbone Structure) With a representative bit’s pin loca-

tions, backbone structure is defined as a routing topology which every bit in the

same object is able to use.

For the topology generation, we extend the Batched Iterated 1-Steiner

(BI1S) algorithm [35] based on an industrial flow. Since the topologies with

many bends are not suitable for signal groups, the number of bending points

is also an important index besides the wire-length. Considering that a back-

bone would affect all the bits in an object, it is essential to save wire-length

while keeping as few bending points as possible. Therefore, a set of promising

bending points should be selected for BI1S. It is known from Hanan grids that

Steiner points should be located at the crossing points of input/output pins,

which also conforms to bending points in our flow. Nevertheless, it is trivial

to traverse all the internal edges connecting the pins and points, which may

result in too many inferior candidates. Thus, we only extract the promising

points and remove those resulting in long wire-lengths or complicated topolo-

gies. Then the selected points are saved into one queue with the priorities

which indicate their potential wire-lengths and bending costs. To generate a

set of topologies, we pick and insert the points from the queue to construct

Steiner trees with the consideration of both wire-length and bending costs.

Through the combination of pins and inserted points with a set of rectilinear

connections (RCs), we are able to achieve a rectilinear Steiner tree. Then

119

we select a non-inserted point from the queue with the highest priority to

construct another tree. For each tree, at least one different bending point is

adopted for the topology candidate. After visiting all the promising points

at least once, we obtain an appropriate set of backbones on a 2-D plane for

post-processing.

Since the objective of this procedure is to provide a set of topology

prototypes for the objects, here we do not consider the required demands of

tracks and the capacity constraints. For the demands through G-Cells, the

following equivalent topology generation phase will collect the topologies of

the bits and calculate the total required tracks. With the exact topology

of each bit, then the calculation will be accurate for reference. Besides, the

possibly-occurring conflicts from different objects will be taken into careful

consideration in Section 4.3.3. The reasons are as follows: Firstly, the routing

layer has not been decided in the current stage, so the conflicts cannot be

obtained due to the various capacities in multi-layer structure; secondly, as our

optimal objective is to coordinate the routes from the objects while satisfying

the capacity constraints, a comprehensive formulation with the global view of

all these points is provided in Formula (4.3), which will be discussed in detail

later.

4.3.2.2 Equivalent Topology Generation

Compared with classic escape routing, signal routing has more stringent

constraints for the bits in a binding group: topology equivalence is required for

120

Algorithm 5 Equivalent Topology Generation

Input: Initial backbone to;
1: Build LUT with SV (p), p ∈ to;
2: Record bt(to) with its connecting pins;
3: for each bit b ∈ do
4: Map p ∈ b to p ∈ to;
5: while ∃ non-visited bt(to) do
6: Select a non-visited bt(to) ∈ to;
7: Find px(bt, to), py(bt, to);
8: Acquire px(bt, b), py(bt, b) from map;
9: Determine bt(b) based on px(bt, b), py(bt, b);
10: bt(b) connect px(bt, b), bt(b) connect py(bt, b);
11: end while
12: end for

those bits in an object; common topologies among objects should be shared

as much as possible. Section 4.3.1 describes how to partition a signal group

into a set of objects, and a set of backbones is constructed for each object

in Section 4.3.2.1. This section focuses on equivalent topology generation for

an object according to each backbone. To achieve this objective, we refer to

the similarity vector presented in Section 4.2.2. Through making sure the

corresponding pin in the backbone for each bit, we are able to generate a

topology same as backbone.

After the identification stage, all the bits in one object have the same

SV for each pin. Thus, it is explicit to find the corresponding pin in backbone

for each bit, and build a map to show this relationship. Based on a set of

backbones generated beforehand, each equivalent topology is accompanied for

each bit with the same connection of corresponding pins. To achieve this

121

source pin 1 pin 2 pin 3 bending point

(a) (b) (c)

Figure 4.6: Equivalent topology generation example: (a) Pin mapping through
similarity vector; (b) Bending points aligning; (c) Topology generation by
connecting mapping pins and points.

objective, we first construct a look-up table (LUT) which captures the relative

location of each pin in the corresponding bit. Taking the example in Fig. 4.6(a),

pin1 in the backbone will be mapped to the SV as {0,2,0,0,0,0,0,1}. During

LUT construction, all the pins are traversed to record their SV s for further

matching (line 1). Meanwhile, based on Hanan grids, bending points in the

backbone are located with the same X/Y coordinates as its pins. Hence each

bending point can be recognized easily through its neighboring connected pins

(line 2). For instance, the circled bending point in Fig. 4.6(a) can be located

by pin1 and the source pin. Then we traverse each bit for topology generation

in reference to each given backbone.

For each bit, through the LUT, each pin can be mapped to its reflection

in the backbone according to its SV (line 4). For pin1 of the non-routed bit in

Fig. 4.6(a), due to the equivalence of its SV to pin1 in the backbone, these two

pins are mapped to each other. In the shown example, each pair of mapped

122

pins is identified with the same shape in one color. After setting this matching

relationship of pins, we start to build the topology by calibrating the bending

points in each signal bit. During each iteration, a non-visited bending point is

selected arbitrarily from the backbone, which has both horizontal and vertical

connections to the pins (line 6). These connected pins, px(bt, to), py(bt, to), are

taken and utilized as the reference to align this bending point bt(to) (line 7).

Based on these pins, we obtain the corresponding matched pins in this signal

bit, px(bt, b), py(bt, b), with the assistance of the constructed map (line 8).

Then, the bending point in the bit can be located with the same X coordinate

as the vertical pin px(bt, b), and Y coordinate as the horizontal pin py(bt, b)

(line 9). For the circled bending point in Fig. 4.6(a), the corresponding point

will be aligned based on the X coordinate of the source pin, and Y coordinate of

pin1 in Fig. 4.6(b), and so on for the other bending points. By connecting the

bending points with these neighboring pins with the same X/Y coordinates,

an equivalent topology is able to be obtained (line 10). It is seen that with the

LUT, the runtime of this algorithm is within O(|Pb||Nb| log |Pb|), where |Nb|

represents the number of bits in an object, and |Pb| represents the number of

pins in a bit.

An explicit example is illustrated with three phases in Fig. 4.6. Fig. 4.6(a)

provides the backbone and the mapped pins through LUT, while each cor-

responding pin is identified with the same shape in one color. With these

mapped pins, the internal bending points are determined and aligned as shown

in Fig. 4.6(b). Finally, an equivalent topology is given by connecting the pins

123

and inserted points for the specified bit in Fig. 4.6(c).

Additionally, considering the existing multi-layer structure for current

industrial designs, we develop a series of topologies with different layers based

on each 2-D routing tree. For regularity, the horizontal and vertical trunks

should be assigned on the same uni-directional layer; in the meantime, these

trunks are preferred to be assigned on the neighboring layers in order to save

the unnecessary via overheads.

4.3.2.3 Regularity Evaluation

Through the previous stages, equivalent topologies are guaranteed in

each routing object. Nevertheless, since the signal groups are user-defined

with pin locations in different directions, it is infeasible to enforce topology

equivalence for all the objects in a given group. Therefore, we prefer to use a

novel metric to quantify their topology differences. Considering that a back-

bone is able to represent the key structure for each object, it is explicit to take

backbones into accounts for irregularity evaluation.

As described in Section 4.3.1, the pins in two bits can be mapped

reciprocally according to their SV s when these two bits have the same number

of pins, which could also be achieved through vertical sequences in FLUTE.

However, for the bits with different numbers of pins, SV is able to target the

most probable pin of another bit. To reach this objective, we adjust SV by

incrementing the weight of driver pin which should be mapped to the drivers

of other bits as expected. The weight is set to a value higher than the overall

124

number of pins. Through this adjustment, the relative position of each pin to

its driver is emphasized. Also, we calculate the SV for each bending point so

that they can also be mapped to the pins or bending points of other topologies.

By matching the pins/points with the closest SV in two topologies, t1 and t2,

the regularity ratio is computed as in Equation (4.2). It is equal to the number

of mapped rectilinear connections (RCs) formed by two mapped pins/points,

NMRC , divided by the minimum number of RCs in t1 and t2. As shown in

Fig. 4.3(a), although the bottom object has one more bending point than the

other, the topologies of these two objects are still regarded as similar topologies

since this point can be mapped to the sink of the other object. Therefore, for

this example, the ratio is set to 100% because both the number of mapped

RCs and minimum number of RCs are equal to 1. In our algorithm flow, it

is preferable to keep this ratio as high as possible to eliminate the dissimilar

topologies. Since the denominator is more than or equal to the numerator in

Equation (4.2), the highest value of the ratio is 1, which indicates that the

given two topologies, t1, t2, share one topology.

Ratio(t1, t2) =
NMRC(t1, t2)

min{NRC(t1), NRC(t2)}
. (4.2)

4.3.3 Mathematical Formulation

The mathematical formulation of Streak is provided in Formula (4.3).

In the objective function, the first term is to calculate the total costs of all the

objects, where c(i, j) gives the cost of candidate xij of object i based on its

wire-length and assigned layers. Since layering is taken into accounts, a post

125

layer assignment stage can be saved to avoid potential sub-optimality. The

second item is to enforce the routing of objects and M is a large penalty for

those non-routed objects, whose si will be set to 1. Here Sc refers to the set of

solution candidates, while So refers to the set of routing objects. To minimize

the topology variance, we add the third item in Formula (4.3a). It helps to

quantify the topology irregularity of any two objects in one group g, which

is equal to the reciprocal of the regularity ratio. For two topologies which do

not share any common rectilinear connections, a large number will be set to

give the variance penalty but it should be smaller than M to ensure the first

priority of signal routability. Meanwhile, for xij and xpq, if they share any

rectilinear connections but their assigned layers are not adjacent, a penalty

proportional to the layer difference will also be assigned.

min
∑

(i,j)∈Sc

c(i, j) · xij +
∑
i∈So

M · si+∑
(i,p)∈g

∑
(i,j)∈Sc

∑
(p,q)∈Sc

c(i, j, p, q) · xij · xpq (4.3a)

s.t.
∑

(i,j)∈Sc

xij + si = 1, ∀i ∈ So, (4.3b)

∑
(i,j)∈el

uel(i, j) · xij ≤ capel , ∀e ∈ E,∀l ∈ L, (4.3c)

si ≥ 0, xij is binary, ∀i ∈ So,∀j. (4.3d)

Meanwhile, constraint (4.3b) is to ensure that at most one topology

is selected for each routing object; while constraint (4.3c) places the capac-

126

ity limitation of each edge on different layers, i.e. capel . Due to the sharing

topologies, we deal with a stringent edge capacity constraint for one edge can

be utilized multiple times by several bits in an object concurrently, as shown

in Fig. 4.3(a). Thus, we prefer to add one constant to provide the edge usage

by the current topology, i.e. uel(i, j). Finally, with the constraints of both xij

and si as binary variables, it is seen that this quadratic programming problem

can be solved through integer linear programming (ILP).

4.3.4 Primal-Dual Algorithm

Although an ILP solver can be utilized to solve Formula (4.3), in real

design it is not preferable due to its prohibitive runtime when a significant

number of variables exist. We thus design a primal-dual algorithm to provide

an efficient solution. With the generated topologies for each object, a fast

and efficient flow is essential to make a sensible selection of candidates while

satisfying the given requirements. A primal-dual algorithm is generally utilized

for vertex covering problem, such as layer decomposition work in [90], which

could also be applied in the routing flow by incrementing the dual variables

accordingly. This section provides the details of how to solve the current

routing flow through a primal-dual algorithm.

At first, we prefer to linearize the quadratic terms in Formula (4.3) for a

primal formulation. Some previous works pre-define one of these two variables

as a known value through an iteration-based framework [50,91], while [48] takes

the quadratic terms through extensive Semidefinite Programming for more ac-

127

curacy. Considering the properties of primal-dual, we search for the allowable

minimum value of each term based on the states of xij and xpq. Therefore,

Equation (4.4) is utilized to provide a relatively accurate approximation:

∑
(i,p)∈g

∑
(i,j)∈Sc

∑
(p,q)∈Sc

c(i, j, p, q) · xij · xpq ≈ c′(i, j) · xij, (4.4)

where

c′(i, j) =

{
c(i, j, p, q), ∃xpq = 1,
min{c(i, j, p, q)}, ∀xij · xpq 6= 0.

(4.5)

Since the primal-dual algorithm is a progressive flow through which

xijs increase in a step-by-step manner, for a determined solution xpq as 1, its

combining cost with xij will be integrated with c(i, j) as an additional cost.

Nevertheless, if no solution has been decided for p, the minimum combining

cost with any feasible xpq will be considered as the cost. Here the feasibility

refers to whether the combining topologies of xij and xpq can still satisfy the

current edge capacities. If not, this combination will be removed from the

solution set. With this linear approximation, a dual problem (DP) can be

acquired as in Formula (4.6).

DP : max
∑

(i,j)∈Sc

αij +
∑

el∈E,L

capel · βel (4.6a)

s.t. αij +
∑

i,j:el∈xij

uel(i, j) · βel ≤ c(i, j) + c′(i, j),∀i, j, (4.6b)

αij ≤M, ∀i ∈ So,∀j, (4.6c)

βel ≤ 0, ∀e ∈ E,∀l ∈ L. (4.6d)

128

Formula (4.6) provides the dual form of Formula (4.3) with the lineariz-

ing item, which incorporates two types of dual variables: αij for constraint

(4.3b) and βel for constraint (4.3c). Based on the strong duality, the optimal

solution for Formula (4.3) can be determined by satisfying the constraints in

Formula (4.6). Therefore, we prefer to start with a primal infeasible but dual

feasible solution set, and increment the primal solutions accordingly until a

feasible solution is obtained.

The outline of the primal-dual algorithm is described in Algorithm 6,

where the input is a set of routing objects with their candidate topologies. The

initial primal solutions are set to 0 while keeping the dual variables also to 0

for their feasibilities (lines 1–2). Then the minimum required cost is calculated

for each candidate to reach the upper bound of constraint (4.6b) (line 3). For

each iteration, we check whether there still exist infeasible xijs and si, and the

infeasible one with the minimum cost will be selected to increase its primal

solution value (lines 5–6). Notably, here xij should be able to satisfy the

current edge capacity constraints without any violations. Then the value of

xij increases to 1 while si is kept to 0 due to the primal constraint. With the

integration of solution xij, we update the available routing tracks of each edge

passed by xij (line 8). Meanwhile, considering the decreasing usable tracks,

some xpqs become infeasible and their values are not allowed to rise. Thus,

they can be removed securely without affecting the solution quality. For a

specified object p, if all its xpqs have been abandoned, sp can be set to 1 (lines

10–12). Considering the existence of xij · xpq in Formula (4.3), c′(p, q) should

129

be updated if it relates with xij (line 13). Since the physical characteristic of

this quadratic term is the combining topology of xij and xpq, c
′(p, q) should

be re-calculated when some combining topologies are not available due to the

reduced capacities. Through the search procedure, the sum of these dual

variables keeps enhancing until an upper bound is reached by finishing all the

solutions. During the whole process, edge capacity constraints are always held

for infeasible solutions are already bounded beforehand.

Algorithm 6 Primal-Dual Algorithm

Input: A set of routing objects with its candidate set.
1: Initiate primal solutions xij, si to 0;
2: Initiate dual solutions αij, βel to 0;
3: Calculate c(i, j), c′(i, j) for each xij;
4: while ∃ ∑xij + si = 0 do
5: Search for a set of infeasible objects i;
6: Select xij with the minimum c′(i, j) + c(i, j);
7: xij ← 1, si ← 0;
8: Update capel where el ∈ xij;
9: Remove infeasible primal solutions;
10: if no feasible xpq for p then
11: sp ← 1;
12: end if
13: Update c′(p, q) for residual feasible solutions;
14: end while

4.4 Post Optimization

Section 4.3 provides a complete flow to coordinate topology selection

and layering assignment for signal groups appropriately. Through the proposed

Similarity Vector model in Section 4.2.4, the set of bits in a single object can

130

(a) (b)

Figure 4.7: Example of blocked routing instance: (a) Routing of some bits
blocked by obstacles; (b) Multiple topology selection for each cluster.

be determined to reach an equivalent topology. By generating a set of topology

candidates for these signal bits, we are able to obtain the topology and layer

assigning result for each object. Nevertheless, after the primal-dual flow, some

signal objects may not be routed due to the very high number of bits for an

object. That is to say, even for an object where its bits are able to reach the

same topology, we may not be able to provide adequate routing resources for

all the bits because of its required high widths. Therefore, it is imperative

to provide further division for the non-routed objects as a post optimization

stage so that more flexibilities are allowed, and the topology variance should

also be controlled well among the bits for regularity.

To make it explicit, a blocked instance is given in Fig. 4.7(a), where

the dashed circles signify the mapped pins for each bit. It is seen that all the

bits can reach the same topology if there exists no such obstacle. Thus, to

deal with this blocked issue, we prefer to allow further division for those bits

so that more opportunities can be acquired to enhance the final routability.

131

Fig. 4.7(b) provides one possible solution, where three routing patterns are

shown for all the bits instead of one. In this way, the blockage is bypassed

from both the upper and lower direction without paying a high penalty of

wire-length and topology variance. Generally, with a slight degradation of

regularity, the existence of multiple clusters will offer more opportunities for

those blocked objects. To ensure the effectiveness, it is essential to balance

the trade-off between routability and design regularity.

Fig. 4.8 lists the outline of our post-optimization, which targets at im-

proving the routability and refining topologies of signal groups. Instead of

adopting common rip-up and reroute technique for nets, during signal routing

we prefer to maintain the current topology and layer assignment solutions.

The reasons are two-fold: Firstly, since one signal group contains many bits

with regular routes and concurrent bending points, this increases the complex-

ity of splitting those bits simultaneously. It is also hard to find another feasible

routing space for re-routing the bits based on the limited track resources, and

a domino effect can be caused by ripping up others continuously, resulting in

unexpected distortion. Secondly, the proposed Primal-Dual flow considers the

optimization of wire-length and topology regularity concurrently. Based on

its closure to a global optimal result, it is intuitive to provide an incremental

approach to take advantage of the residual resources without causing further

disturbance. Therefore, we provide an outline of our post optimization flow in

Fig. 4.8. For the signal groups to be routed, the preferable layers are predicted

based on the congestion; and a bottom-up clustering methodology combines

132

Layer Prediction

Bottom-up Clustering

 Visit all?N Y

 Post Refinement

 Complete?

Streak Output

N

Y

Figure 4.8: Post-optimization flow.

the bits while keeping legality for capacity constraints. This procedure con-

tinues until all these groups have been traversed. After this stage, we check if

there exist source-to-sink distance deviation violations. If so, we will introduce

appropriate twisting detours to refine the topologies. The details of each step

are given in the following sub-sections.

4.4.1 Possible Layer Prediction

Different from traditional layer assignment works which behave after

2-D routing, we take layering into consideration before exact routing. Consid-

ering the occupied resources of those routed objects, it helps to narrow down

the solution space efficiently by predicting the possible layers for the residual

signals. Due to unidirectional routing on layers, it is required to select two

layers favoring horizontal and vertical directions respectively, which offer the

most available resources for the given group. Since the eventual routes have

not been decided, a predictive methodology is utilized to give an estimation

of track usages on each layer. Based on this approximation, the appropriate

layers are selected with the least conflict values regarding the already routed

bits.

133

To provide an estimation of track utilization, we take all the available

topologies of the bits into accounts. For a 2-D edge e, its possible usage by a

group g is calculated as follows,

u(e, g) =
∑
b∈g

∑
tj∈Sc(b)

1

|Sc(b)|
· u(e, tj), (4.7)

where Sc(b) denotes the set of solution candidates for bit b, and u(e, tj) de-

notes whether this edge will be used by the jth topology candidate of bit b.

Different from before, here we handle a non-routed bit as an individual ob-

ject. Thus, even the bits belonging to one object can have different routing

styles in order to reach a higher routability. Since the backbone generation

stage provides a series of topologies for objects, every bit owns the same set of

topologies according to its backbones, i.e. Sc(b). Based on an assumption that

each candidate has the same probability to be routed for bit b, we divide the

summation of track usages from all the candidates by the candidate set size.

This calculation is able to offer a close approximation of resource utilization

by accumulating the bits in group g. Through considering all the bits’ candi-

dates, we obtain an estimated usage map of each concerned 2-D edge. Based

on this usage map, we calculate the possible routing conflicts for each layer,

as shown in Equation (4.8),

cf(l, g) =
∑
el∈e

max(u(e, g)− capel , 0), (4.8)

where el is the corresponding 3-D edge on layer l for 2-D edge e in Equa-

tion (4.7), capel provides the available tracks for el, and cf(l, g) is the esti-

134

mated conflict value of routing group g on layer l. In each routing direction,

the layer with the minimum conflict has the highest probability for group g

to assign. Notably, this conflict value is based on an approximated conges-

tion map which does not reflect the exact routing. In other words, even for a

positive value, an overflow-free solution can still be achieved, and vice versa.

Therefore, an efficient clustering and routing scheme plays an important role

to avoid the conflicts while keeping regularity.

4.4.2 Bottom-up Clustering & Routing

In order to enhance the routability for signal groups, it is feasible to

allow different topologies for the bits in one object. In this way, each bit

can be handled as an individual for routing so that a higher routability can

be achieved. Based on the layers obtained beforehand, it is important to

search for appropriate routing solutions, which encourages both the routability

enhancement and topology sharing among all the bits. Taking the example

in Fig. 4.7(b), there are overall three routing styles, instead of only one in

Section 4.3.1. Here one style corresponds to one cluster where the bits take

the advantage of existing spaces to share a common topology for regularity. To

achieve this, we propose a bottom-up clustering strategy to handle multi-bit

routing intelligently.

The whole procedure is listed in Algorithm 7, where a set of non-routed

groups serves as inputs. Initially, we produce the same set of topologies for

the bits based on the backbones (line 1), and predict the layers with the

135

highest probability for every group in both horizontal and vertical dimension

(line 2). In each group, we construct a cluster for each bit so that they can be

combined with others later (line 4). As a bottom-up clustering method, during

each iteration, we ensure if there is a non-visited pair of clusters (line 5). If

so, we will select a pair with the minimum achievable cost (line 6). To obtain

this cost, we employ a similar way of cost calculation in Algorithm 6. For two

clusters, if neither of them is routed, all the candidates will be traversed and

the feasible solutions will be recorded with the corresponding cost; if one of

them has been routed successfully, we will only take the non-routed cluster

into accounts during the calculation. However, if no legal solution has been

found, then a large penalty value will be counted. By considering all the

available routes in two clusters, we acquire the minimum cost, which is set

to the weighted sum of wire-length and regularity ratio. For the non-routed

cluster, the candidate route with the best cost will be adopted (lines 7–9), and

this pair of clusters will be marked as a visited one (line 10). Also, based on the

routing styles, we check the regularity ratio to see if they share the equivalent

topology (line 11). In this case, these two clusters should be combined further

and the second one will be removed (lines 12–13). Through traversing and

combining the cluster pairs appropriately, the bottom-up scheme explores the

solution space efficiently with adequate options for the signal bits.

136

Algorithm 7 Bottom-up Clustering Algorithm

Input: A set of non-routed signal groups.
1: Topology candidate generation for bits in groups;
2: Possible layer prediction of signal groups;
3: for each group do
4: Build one cluster clus for each bit;
5: while ∃ non-visited pair of clusters do
6: Find a pair (clus1, clus2) with the minimum cost;
7: if clus1, clus2 not routed then
8: Route with the minimum cost route;
9: end if
10: Mark this pair as visited;
11: if Ratio(clus1, clus2) = 1 then . Equation (4.2)
12: Merge two clusters clus1 & clus2 into clus1;
13: Remove clus2;
14: end if
15: end while
16: end for

4.4.3 Post-Routing Refinement

The techniques above provide efficient routing control of signal bits

through both top-down and bottom-up methodologies. Nevertheless, it still

suffers the shortcoming that non-negligible source-to-sink distance variations

result in possible signal malfunction. Different from classic bus routing, our

framework deals with signal groups in which bits may have a different number

of pins in various locations. Considering that the movement of one pin may

disturb the other pins’ conditions in a multi-pin bit, the problem becomes

more complicated regarding signal routing. Meanwhile, topology regularity

should also be taken into accounts throughout the whole procedure. Therefore,

we present the following routing refinement methodology which shrinks the

137

source pin 1 pin 2
steiner 2pin 3 steiner 1

(a) (b)

Figure 4.9: Example of bit-based source-to-sink distance adjustment: (a) Pin
2 violates the distance constraint; (b) Violation is fixed by introducing detour
for pin 2.

distance difference with the consideration of regularity simultaneously.

As stated, it is likely that only a partial number of pins in one bit

violate the source-to-sink distance constraint. Thus, our objective is to adjust

the distances of those violating pins while trying to maintain the other pins’

connections. An example is illustrated in Fig. 4.9, where two bits possess

the same number of pins and each pair of mapped pins is signified with the

same shape in one color. It is observed that the given two bits have the same

topology and their regularity ratio is equal to 1. However, in Fig. 4.9(a),

large distance difference exists for pin2 but pin1 and pin3 share similar values

without exceeding the threshold. To handle this, we split the topology of each

bit into a set of rectilinear connections and only consider those connecting

to pin2. This is to say, only the connection from steiner2 to pin2 should be

reconstructed. In this manner, not only does the problem size reduce, but the

138

topology regularity is also under control by keeping the major topology. The

resulting topology is shown in Fig. 4.9(b), where a twisting route is added for

pin2 to alleviate the distance violation.

Algorithm 8 Post Routing Refinement

Input: Set of violating signal groups gvs;
1: Find violating bits bvs and pins pvs in gvs;
2: Calculate current distance dstpv for pv, pv ∈ bv;
3: Calculate target distance dst′pv for pv, pv ∈ bv;
4: Acquire connection conn(pv) for pv, pv ∈ bv;
5: for each group gv do
6: for each bit bv do
7: for each pin pv do
8: Get starting point sppv of conn(pv);
9: Get ending point eppv of conn(pv);
10: if conn(pv) is horizontal then
11: VerticalShift(conn(pv), dst

′
pv);

12: else if conn(pv) is vertical then
13: HorizontalShift(conn(pv), dst

′
pv);

14: else
15: for x← 0 to dst′pv do
16: y ← dst′pv − x;
17: VerticalShift(conn(pv), x);
18: HorizontalShift(conn(pv), y);
19: if conn(pv) is updated then
20: Break;
21: end if
22: end for
23: end if
24: if conn(pv) is updated then
25: Re-connect sppv and eppv ;
26: end if
27: end for
28: end for
29: end for

139

The refinement details are provided in Algorithm 8, where a set of

violating groups is taken as the input. First, we locate those bits which exceed

the distance threshold. As the wire-length has been taken into consideration

during the Primal-Dual flow, there is little space to reduce the maximum

distance for its close to optimality. Thus, we select and signify the bits whose

pins show much shorter distances compared to the other mapped pins (line

1). Then the current distances of these pins, i.e. dstpv , are recorded while the

target distances, i.e. dst′pv , are also calculated (lines 2–3). Since there may

exist only a few violating pins for a multi-pin bit, we traverse the original

topology and locate these connections to be adjusted (line 4). After making

sure the bits and corresponding pins to be handled, we will come to the details

about allowing appropriate detours.

During detour production, our flow takes multi-layer capacity con-

straints into careful consideration to avoid further overflows. Thus, the ex-

pected twisting route is employed to complement the distance difference, i.e. dst′(pv)−

dst(pv), without any capacity violations. To exploit the residual available

tracks, we allow the twisting route in four directions, i.e. left, right, lower

and upper directions. As shown in Fig. 4.10, three possible types of horizontal

shifting (left and right) can make up for the distance deviation, where the

red (blue) points refer to the starting (ending) points of the given connection.

Each type of them has an equal probability to be adopted as long as capacity

constraints can be satisfied. Similarly, vertical shifting operations (lower and

upper) are also performed when the starting and ending points have the same

140

(a) (b)

Figure 4.10: Example of horizontal shifting for source-to-sink distance match-
ing: (a) Left shifting; (b) Right shifting.

Y coordinate. In the shifting methodology, as we focus on modifying the con-

nections to the violating pins, topology regularity can still be maintained as

much as possible.

Taking advantage of this shifting method, we adjust the distance of

connections by traversing every violating pin pv in the bit. Based on the ac-

quired connection before, we ensure its starting point, sppv , and ending point,

eppv (lines 8–9). Then we investigate whether the corresponding connection

is an L-shape or a straight horizontal/vertical connection. For the horizontal

connection, we perform vertical shifting to result in an additional distance

in either upper or lower direction (lines 10–11). Similarly, horizontal shift-

ing occurs to tune the vertical connection (lines 12–13). Nevertheless, for an

L-shape connection, we are able to search for twisting routes in both two di-

rections and obtain more choices for successful adjustment (lines 17–18). Due

to the stringent capacity constraint, we traverse all the possible candidates in

order to search for a legal solution. If it is found in both directions, then this

searching procedure can be terminated to save the runtime overhead (lines

141

Table 4.1: Performance comparisons on 10nm industrial benchmarks.

Manual Design ILP Primal-Dual

Bench #SG #Net Npmax Wmax Route WL Route WL Avg(Reg) CPU Route WL Avg(Reg) CPU

(105) (105) (s) (105) (s)

Industry1 230 3722 2 75 100% 7.01 99.13% 7.30 99.13% 5.7 99.13% 7.30 98.12% 0.8

Industry2 492 12239 2 136 100% 17.24 99.59% 17.93 98.75% 107.6 99.59% 17.93 98.14% 2.0

Industry3 234 4402 2 70 100% 7.41 98.72% 7.34 96.94% > 3600 98.72% 7.34 96.94% 1.2

Industry4 146 3446 2 147 100% 7.82 100.00% 7.79 97.72% 4.6 100.00% 7.79 97.72% 0.6

Industry5 587 11185 14 77 100% 15.00 99.32% 17.12 90.27% > 3600 98.64% 17.23 89.85% 149.5

Industry6 409 7278 9 256 100% 11.25 99.27% 11.40 91.84% > 3600 99.27% 11.40 90.98% 143.1

Industry7 171 4087 7 147 100% 12.40 100.00% 12.47 95.82% 54.7 100.00% 12.47 95.02% 1.2

average - - - - 100% 11.16 99.43% 11.62 95.78% 99.34% 11.64 95.25%

ratio - - - - 1.00 1.00 0.9943 1.041 – – 0.9934 1.043 – –

19–21). Based on the updated connection, the previous one can be removed

and re-connected to construct a new topology (lines 24–26). Since we build the

new Steiner tree by traversing each violating pin, it should be noticed that the

final topology should be a connected tree structure without any loops. After

traversing all the violating pins in the certain bits and groups, the refinement

stage stops and returns the improved routes. With the slight degradation of

wire-lengths, the source-to-sink distance deviation can be controlled efficiently.

4.5 Experimental Results

We implemented the proposed Streak framework in C++, and tested

it on a Linux machine with eight 3.3GHz CPUs. Meanwhile, we selected

GUROBI [26] as our ILP solver. To evaluate its performance, we adopt seven

industrial benchmarks with 10nm technology node: Industry1–Industry7.

Each benchmark provides a set of signal groups which require further identi-

fication and synergistic operations as individual objects. The details of each

benchmark suite are listed in the left part of TABLE 4.1. Here column “#SG”

142

provides the number of signal groups, and column “#Net” corresponds to the

total number of nets. With the existing multi-pin benchmarks, the maximum

pin number of all the nets is listed in column “Npmax”, and the maximum bit

number in each benchmark is also listed in column “Wmax”.

4.5.1 ILP + Primal-Dual Performance Comparison.

Considering that few works handle signal routing of bundled bits with

a varying number of pins in different directions, we obtain the manual designs

by experienced designers from industry as shown in TABLE 4.1. Column

“Route” provides the routability of all the groups, and column “WL” pro-

vides the wire-length measured manually. Since Streak also targets at syner-

gistic routing for bits bundled in groups, an evaluation metric, “Avg(Reg)”,

is listed to show the average routing regularity for all the routed groups so

that the routing synergy can be reflected without relying on the routability.

Equation (4.9) explains how to calculate Reg for each group,

Reg =
2 ·∑ti,tp∈g Ratio(ti, tp)

No · (No − 1)
, (4.9)

where ti, tp represent the solutions from any two objects i, p in group g, and

No is the number of objects in this group which should be larger than 1.

Explicitly, for two topologies with more mapped RCs, the ratio will be higher

but still smaller than 100%. In real design, the majority of signal groups are

routed for regularity and wire-length improvement. In this manner, the signal

bits in one group are encouraged to share the parallel routes, as the example

143

shown in Fig. 4.1, and the parallel connections are assigned on the same layer.

For the residual signal groups with complicated routing styles, the commercial

tool, ICC [4], is called to accomplish the whole design, so the regularity ratio

may not be guaranteed with the integration of this commercial tool. Finally,

column “CPU” provides the runtime in seconds.

From the experimental results, it is shown that compared to manual

design, around 4% wire-length overheads exist in average for seven benchmarks

from ILP, where Primal-Dual provides a slightly higher value. To make a fair

comparison, we calculate the total wire-length including both the routed and

non-routed signal groups. For the non-routed groups, we estimate the wire-

length based on Rectilinear Steiner Minimum Tree (RSMT) algorithm. Thus

the reported wire-length represents the routing condition of a whole design.

And both the average routability for ILP and Primal-Dual are more than 99%.

Meanwhile, for the regularity rate, ILP and Primal-Dual can reach over 95%

for two-pin signal groups, and keep more than 88% for test cases with multi-

pin signal bits. Considering that a bit may have sinks in different directions

to the driver, the regularity rate has already been constrained and this value

is reasonable. Due to the capacity constraint in our flow, there is no capacity

violation for all the benchmarks.

Additionally, the problem becomes complicated with both congestions

and multi-pin connections. For a multi-pin design with low congestion, e.g.Industry7,

ILP provides a good performance in short runtime. Nevertheless, for those with

serious congestions, the ILP runtime is prohibitively long, so we terminate the

144

(a) (b)

Figure 4.11: Routing congestion map for Industry7: (a) Manual design result;
(b) Streak result.

Table 4.2: Performance comparisons of post optimization on 10nm industrial
benchmarks

ILP ILP + Post Opt PD PD + Post Opt

Bench Vio(dst) Vio(dst) Route WL Avg(Reg) CPU Vio(dst) Vio(dst) Route WL Avg(Reg) CPU

(105) (s) (105) (s)

Industry1 12 0 100.00% 7.32 98.97% 10.1 12 0 100.00% 7.32 97.95% 4.7

Industry2 11 10 99.59% 17.98 98.54% 121.0 11 10 99.59% 17.98 97.93% 4.5

Industry3 10 0 99.15% 7.36 95.97% > 3600 10 0 99.15% 7.37 96.00% 2.6

Industry4 6 2 100.00% 7.95 97.72% 4.7 6 2 100.00% 7.95 97.72% 0.8

Industry5 2 1 99.66% 17.16 90.25% > 3600 2 1 99.15% 17.27 89.60% 198.2

Industry6 3 2 99.51% 11.40 91.30% > 3600 3 2 99.76% 11.40 90.59% 145.7

Industry7 8 2 100.00% 12.66 95.82% 61.6 8 2 100.00% 12.66 95.02% 1.6

Average 7.4 2.4 99.70% 11.69 95.51% 7.4 2.4 99.66% 11.71 94.97%

Ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.002 0.994

flow by setting a timing limit to 3600s. Comparatively, Primal-Dual is able to

achieve comparable wire-length, routability and regularity rate much faster.

To provide a detailed comparison, we show the congestion densities for

Industry7 in Fig. 4.11 and Industry6 in Fig. 4.12. Fig. 4.11(a) gives the con-

gestion map from manual design, where the red regions indicate hotspots with

overflows and lighter regions indicate more congested routing conditions. Both

145

(a) (b)

Figure 4.12: Routing congestion map for Industry6: (a) Manual design result;
(b) Streak result.

with 100% as the routability, Streak in Fig. 4.11(b) allocates the routes in a

balanced manner without any overflows. Meanwhile, regular routes can be ob-

served with concurrent bending points. For a congested benchmark Industry6

in Fig. 4.12, it is seen that the routes become complex for both manual and

Streak result. Still, scattered overflow hotspots can be avoided by Streak ef-

ficiently. It is seen that with the slight sacrifice of routability, no overflow

exhibits in Streak. Therefore, this comparison with manual designs proves the

effectiveness of our tool to handle signal groups with synergistic routing styles.

To evaluate the algorithm scalability, we generate another large multi-

pin benchmark based on Industry2, which offers the largest size among all

two-pin testcases. During the generation, besides the existing two-pin connec-

tions, we insert some pseudo pins for the randomly selected groups so that

the complicated routing styles can be obtained. Furthermore, the pseudo bits

bundled in groups are also introduced to increase the potential conflicts. By

146

 0.1

 1

 10

 100

 1000

 5000 10000 15000 20000 25000

>3600
R

u
n

ti
m

e
 (

s
)

of Pins

(a)

 0.1

 1

 10

 100

 1000

 10000 20000 30000 40000 50000

>3600

R
u

n
ti
m

e
 (

s
)

of Pins

ILP
PD

(b)

Figure 4.13: Performance comparison on algorithm scalability: (a) Two-pin
benchmarks; (b) Multi-pin benchmarks.

conforming to the nature of signal routing, the pins of those generated bits

are located in proximity. Then the scalability comparison in terms of total

pins is provided in Fig. 4.13, where Fig. 4.13(a) shows the results of two-pin

benchmarks, i.e.,Industry1–Industry4, and Fig. 4.13(b) shows the results of

multi-pin benchmarks. The number of pins in the largest benchmark is given

as the rightmost point in Fig. 4.13(b). For two-pin benchmarks, we observe

that Primal-Dual provides a better scalability in comparison to ILP, especially

with a larger scale. Meanwhile, the runtime of Primal-Dual increases in a small

amplitude. Comparatively, a worse scalability is seen for both ILP and Primal-

Dual in Fig. 4.13(b). It is understandable because multi-pin connections lead

to more complicated routing styles compared to two-pin connections, and the

conflicts from various signal groups are also aggravated. Still, Primal-Dual

exhibits a better scalability than ILP, as expected, which verifies the effective-

ness of Primal-Dual for both two-pin and multi-pin benchmarks. To improve

the scalability of ILP, we may adopt varying sizes of G-Cells iteratively to

147

 96

 98

 100

I1 I2 I3 I4 I5 I6 I7

R
o

u
te

 (
%

)

wo Bottom-up w Bottom-up

(a)

 86
 88
 90
 92
 94
 96
 98

 100

I1 I2 I3 I4 I5 I6 I7

A
v
g

 R
e

g
 (

%
)

(b)

Figure 4.14: Performance comparison of bottom-up clustering: (a) Impact on
routability; (b) Impact on average regularity.

solve the problem in a divide-and-conquer manner.

4.5.2 Effectiveness of Post Optimization

To prove the effectiveness of the post optimization, the results with

and without this integration are listed in TABLE 4.2. Besides the columns

illustrated above, we compare another metric, i.e. “Vio(dst)”, to evaluate

the number of signal groups with the source-to-sink distance violation. To

find an appropriate threshold value for each benchmark, here we set it to 50%

of the maximum initial source-to-sink distance. The source-to-sink distance is

the path length from the driver to the corresponding sink. In this setting, a

few groups are marked as violated ones which exceed this given threshold and

required to be adjusted through the refinement.

To demonstrate the effectiveness explicitly, we apply this post opti-

mization to the solutions obtained from ILP and Primal-Dual, respectively.

The numbers of violations before the post-optimization are listed in column

2 for ILP and column 8 for Primal-Dual. Both methods are with the same

148

 0

 3

 6

 9

 12

I1 I2 I3 I4 I5 I6 I7

V
io

(d
s
t)

wo Refine w Refine

(a)

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

I1 I2 I3 I4 I5 I6 I7

W
L

(b)

Figure 4.15: Performance comparison of post refinement: (a) Impact on vio-
lations; (b) Impact on wire-length.

violation number, which indicates that Primal-Dual is able to achieve the

similar results as ILP. Meanwhile, the other columns provide the results of

violations, routability, wire-length, average regularity ratio and runtime for

both methods after the post optimization. As shown in TABLE 4.2, around

67% of violating groups can be fixed by introducing the extra detours, which

verifies that the refinement stage has an efficient control of matching source-

to-sink distances. Meanwhile, we observe that the routability values increase

for both ILP and Primal-Dual, because the combination of layer prediction

and clustering promotes more opportunities for signal bits to accomplish their

routing. And the previous gap between ILP and Primal-Dual is also shrunk,

which further validates its efficiency. Additionally, this post stage contributes

to a slight degradation of wire-lengths compared with the initial results. Since

the detours are induced to alleviate the violations during the post refinement

phase, this increase of wire-length is expected and acceptable. Besides, the

very similar wire-lengths are seen from ILP and Primal-Dual, and the regular-

ity ratio becomes slightly lower for both methods. In essence, handling every

bit as an object will lead to a worse regularity ratio; however, the bottom-up

149

clustering methodology still takes topology variance into careful consideration

and our post optimization targets at complementary routing for the residual

groups without distorting the global planning, so the regularity ratio is in

well control. Therefore, according to the results, a higher routability and a

slightly lower regularity ratio can be achieved due to the combination of layer

prediction and bottom-up clustering, and the distance violations can be re-

duced greatly through the post refinement. After the post optimization, we

still reach the similar performance of ILP and Primal-Dual, which implies the

routing consequence from the global view is respected sufficiently.

Besides, we perform two experiments by excluding the bottom-up clus-

tering and the refinement stage to prove the validity in Fig. 4.14 and Fig. 4.15.

Fig. 4.14(a) shows that the routability can be improved by around 0.3%, con-

sistent with the objective of the clustering strategy. Meanwhile, although we

search for the solution with the consideration of regularity in Algorithm 7, it

still pays a slight penalty of regularity ratio, as shown in Fig. 4.14(b). Con-

sidering that more routing styles are enabled to enhance the routability, as

illustrated in Fig. 4.7, a relatively lower regularity ratio is accepted. In ad-

dition, since the refinement stage targets to reduce the wire-length deviation,

we list the number of existing violations and wire-length in Fig. 4.15. From

Fig. 4.15(a), the number of violations can be controlled efficiently through the

proposed refinement, but it suffers from the wire-length penalty in Fig. 4.15(b),

which results from the twisting overheads for distance matching. Because we

only allow the necessary detours, the total overhead is negligible.

150

4.6 Summary

In this chapter, we have proposed a set of algorithms to generate syner-

gistic topology for on-chip signal groups. First signal bits with distinctive con-

nections are identified and then combined as routing objects with equivalent

topologies. A mathematical formulation targets at wire-length and routabil-

ity optimization while controlling the topology differences, while a fast flow

matches a close quality with manual design and ILP results. To improve the

routability of signal groups with more flexibilities, a post-optimization stage

allocates appropriate routes for each bit with the control of regularity. A

post-routing refinement strategy follows to decrease the source-to-sink distance

deviation of signal bits. The results show that our synthesis tool is able to

provide efficient routing solutions with full legality and reasonable congestion

map.

151

Chapter 5

Optical-electrical Power-efficient Route

Synthesis

5.1 Introduction

The previous chapter has provided an introduction of signal routing

in the electrical field. As interconnect delay becomes a bottleneck towards

timing closure, research efforts have shifted to explore efficient interconnect

to replace electrical wires. Due to the inherent dominance of bandwidth-

distance-power properties, optical communication based on chip-scale optical-

electrical systems emerges as a promising alternative [78]. Thus this chapter

presents the power-efficient route synthesis flow by incorporating optical and

electrical interconnects smoothly. Since recent fabrication techniques enable

the on-chip integration of nano-scale devices with a high density, nanophotonic

interconnects show great potential in unleashing the bandwidth limitation for

memory access and processor communication.

With the increasing trend of on-chip communication density, Wave-

length Division Multiplexing (WDM) exhibits the potential of offering high

bandwidth with controllable overheads. During the transmission, signal qual-

ity can be affected by various losses at the receiving side. And EO/OE con-

152

version power overheads should also be considered carefully [77]. Thus, it is

desirable to propose an efficient optical-electrical co-design engine by offering

optical and electrical connections for local and global communication, respec-

tively. As shown in Figure 5.1, it consists of two layers: the bottom one for

copper wires and the upper one for optical interconnects. The yellow arrows

denote the electrical wires, and the blue arrows denote the optical interconnects

for remote connections. Based on this infrastructure, an intelligent framework

is essential to direct the distribution of electrical and optical wires for on-chip

communication.

There are a few works dealing with the integration of optical inter-

connects onto on-chip designs. Some works provide physical design of on-

chip optical interconnect: Ding et al. [23] proposed the first optical router for

low power consumption, and employed WDM architecture to reach high den-

sity/capacity during global routing while ignoring the splitting loss [22]. As

the first placement-and-routing tool for optical Network-on-Chip(NoC)s, Boos

et al. [9] balanced the trade-off between propagation and crossing losses but

limited to two-pin connections. Besides, optical NoCs were also designed to en-

hance its resilience to physical variations, such as environmental temperature

and manufacturing instability [22, 63]. To increase the potential bandwidth,

communication parallelism was emphasized in [68] through a formal method-

ology. Very recently, with the proposal of LED-driven wires, an automatic

place-and-route flow enabled the replacement of electrical wires with on-chip

laser sources [41].

153

Optical Layer

 Electrical Layer

EO
Conversion

OE
Conversion

Logic Cells Logic CellsELogic Cells

O

Driver Amplifier

Laser
Source

Logic Cells E

Figure 5.1: Block Diagram of Optical-Electrical On-Chip Design.

With the high-bandwidth demands of on-chip communication, it is de-

sired that optical interconnects collaborate with electrical counterparts smoothly

[8]. Very few of previous works provide a comprehensive routing flow for

optical-electrical co-design of on-chip multi-pin signals. Without loss of gener-

ality, optical configurations are deployed for the distant connections. Neverthe-

less, signal transmission may suffer from non-negligible optical loss, resulting

in the potential malfunction. And the splitting loss also aggravates the re-

sulting loss, which plays an important role but is neglected in the previous

optical physical design works. By introducing the reasonable optical-electrical

configurations, we can make a better trade-off between the optical loss and

power consumptions. Therefore, it is worthwhile to devise an efficient routing

flow where optical connections can collaborate with electrical wires seamlessly.

In this chapter, we propose a power-efficient routing synthesis flow for

optical interconnects to be integrated with electrical wires. The results have

been presented in [52], and the contributions are summarized as follows:

• With splitting loss into consideration, optical-electrical co-design routes

154

are derived for power and loss optimization;

• Mathematical formulation targets power minimization while satisfying

the detection constraints, and a Lagrangian-Relaxation-based algorithm

is presented for speed-up;

• Network-based algorithm assigns the optical connections for sharing WDMs

with the control of distance.

The remainder of this chapter is organized as follows. Section 5.2

presents the overview of our framework and adopted models. Section 5.3

describes our routing procedure, presents a mathematical formulation to op-

timize power consumption while satisfying the detection constraints, and a

Lagrangian-Relaxation method benefits the runtime. Section 5.4 presents the

WDM assignment. Section 5.5 reports the experimental results and followed

by the summary in Section 5.6.

5.2 Preliminaries

In this section, we provide the overview of our proposed framework,

and illustrate the adopted model and methodology, based on which a problem

formulation is given.

5.2.1 Overall Flow

To provide a clear view of our framework, an outline is shown in Fig-

ure 5.2. Firstly, a processing step partitions signal groups into a set of hyper

155

Signal Processing

Optical-electrical Co-design

Signal Pin
Info

Output

 Signal Route Determination

Optical Lib

Interconnect Assignment

Figure 5.2: OPERON Flow.

nets in a top-down manner while clustering the neighboring electrical pins from

a bottom-up view. Secondly, we devise the optical-electrical co-design routes

for each hyper net. With the acquired solution candidates, a mathematical

formulation is given for solution determination; to avoid the potential runtime

overheads, we adopt a fast algorithm for speed-up. Then the WDM placement

is performed and an assignment procedure follows to allocate optical connec-

tions onto nearby WDMs. We finally acquire the electrical-optical co-design

solutions.

5.2.2 Optical Device Model

With the advanced fabrication technologies, emerging optical devices

have been promoting efficient on-chip communication. The WDM infrastruc-

ture offers multi-channel routing among physical locations, which is a promis-

ing alternative for high-speed data communication. Therefore, it provides

156

great potential for routing on-chip parallel connections, without crosstalk is-

sues between different channels.

In comparison to electrical wires, WDMs contribute to high bandwidth

and low power consumption for data propagation. Nevertheless, the EO/OE

conversion leads to non-negligible power consumption due to the extra driver

and amplifier configuration, which are usually neglected during routing opti-

mization. Hence we provide the optical power, po, by using WDMs,

po = pmod · nmod + pdet · ndet, (5.1)

where nmod, ndet represent the number of employed modulators and detectors,

and pmod, pdet represent the unit power cost of modulators and detectors [77].

Besides the power cost, the optical loss along the WDM should also be

taken into careful consideration. As shown in Figure 5.3(a), the loss mainly

consists of propagation loss, crossing loss, and splitting loss. The first two kinds

of loss are respectively in proportion to the total WDM length and the number

of crossing occurrences. Notably, the splitting loss has usually been neglected

in the previous work, which, however, turns out to be one of the major sources

of loss for on-chip optical routing [95]. The splitting loss happens whenever

an input light source splits into multiple light sinks. The expected splitting

loss in dB for each splitting is calculated to be 10 ·∑ log(ns), where ns is

the number of splitting arms. As seen in Figure 5.3(b) that shows the power

distribution of two cascaded 50-50 Y-branch splitters based on the simulation,

each reduces the input light power into one half on the output sides. Thus,

157

Propagation
Loss

Crossing
Loss

Splitting
Loss

(a) (b)

Figure 5.3: Optical model illustration. (a) Loss model for on-chip optical
routing; (b) Simulation of the normalized power loss in Y-branch splitters.

the loss is calculated as follows,

loss = α ·WL+ β · nx + 10 ·
∑

log(ns), (5.2)

where WL is the WDM length, nx is the number of crossings, and ns is the

number of splitting arms. α and β are the physical parameters for the propa-

gation and crossing loss.

5.2.3 Proposed Signal Model

The on-chip integration of optical interconnect provides the opportu-

nity for signals to be routed in parallel routes. In current industrial designs,

the performance-critical signal bits are bound together for data communica-

tion between logic cells and memory interfaces, etc. Figure 5.4(a) gives an

example of signal routing on a 2D optical layer, where each signal group is

identified with one single color. For the grey signals, they are clustered into

two hyper nets because the number of total bits exceeds the WDM capacity.

Different from Manhattan routing based on electric wires, the optical scheme

158

(a) (b)

Figure 5.4: On-chip signal model. (a) Signal routing on 2D optical layer; (b)
Signal routing on 3D optical-electrical architecture.

allows routing in any direction, which can benefit the overall wire-length. With

the EO/OE conversion deployment, the optical interconnects are coupled to

the bottom electrical layer, as shown in Figure 5.4(b). This architecture offers

us the flexibility of optical-electrical co-design for on-chip signals.

5.2.4 Problem Formulation

Based on the proposed flow and optical model discussed in the preced-

ing section, we define the proposed optical-electrical route synthesis (OPERON)

problem as follows:

Problem 4 (OPERON) Given signals bundled in groups with the pin loca-

tions, our framework determines the routing topologies and optical-electrical

configurations for each signal group so that the total power consumption can

be optimized while the detection constraints are satisfied.

159

5.3 Algorithms

In this section, we will elaborate the procedure of signal routing through

optical-electrical cooperation for power efficiency. With the constructed hyper

nets, route candidates are generated with co-design optimization. A math-

ematical formulation guides the routing concurrently, which follows with a

speed-up algorithm.

5.3.1 Signal Processing

Before deriving the route solutions, a processing procedure is required

for creating the pseudo pins and hyper nets of the signal bits. Considering

that the pin distances may vary significantly for one bit, it brings the necessity

of constructing the pseudo pins to represent the neighboring electrical pins.

Besides, signal bits can be bundled together as a hyper net whose pins are

located in adjacent locations. Therefore, we employ the following clustering

methodologies for hyper net construction.

5.3.1.1 K-Means-based Clustering

Since the capacity, i.e., the number of allowable channels, of one WDM

is limited according to the current fabrication technologies, we should deter-

mine how to cluster the bits to satisfy the capacity constraint. Thus, for a

given signal group, we first check if the number of bits is above the capacity.

If so, then we partition this group based on the K-Means strategy, which is

widely used in clustering for its effectiveness [56].

160

Due to its top-down nature, the signal bits are divided into K clusters

and K is the quotient of the total bit and the capacity value. Since K-Means

itself cannot guarantee the cluster size during the solving process, we extend

the K-Means strategy by checking the size in every iteration: if a cluster vio-

lates the capacity constraint, the additional bits will be assigned to the second

closest one, and so on. As K clusters are adequate for accommodating all the

bits, the neighboring bits can be located in one cluster with the decreasing

distance variance. When the variance becomes lower than a given threshold,

this iterative flow will stop. There may be a few empty clusters without any

assigned bits, which will be removed afterward.

5.3.1.2 Hyper Net Construction

Based on the K-Means solution, we construct the hyper net to represent

all the bits in a cluster. By replacing the set of individual nets with a single

hyper net, the whole problem size can be reduced. We build up the pseudo

pins for the hyper net and determine their corresponding electrical pins.

For one cluster containing a set of neighboring bits, each electrical pin

itself is initialized as a hyper pin. Then we adopt a bottom-up clustering

strategy for shrinking the hyper pins. During each iteration, a pair of hyper

pins is selected with the minimum Euclidean distance. And we check if their

physical distance is below the pre-specified threshold: if so, then these two

hyper pins will be combined with the updated gravity center; otherwise, the

clustering will return with the finalized set of hyper pins. As each hyper pin

161

contains a set of electrical pins eventually, we should ensure the number of

connections between the hyper pins. Based on the constructed hyper nets and

pins, we perform routing design and synthesis in the following sections.

5.3.2 Optical-electrical Route Co-design

With the assistance of processing, we acquire a set of hyper nets with

the corresponding pins for connection. Here we discuss how to combine op-

tical and electrical design in a coordinated way. Besides supporting optical

interconnects for distant connections as the previous works [22], our co-design

methodology provides a more systematic analysis of power consumption and

optical loss.

Before the optical-electrical development, the sets of optical route can-

didates are generated as the baselines for co-design processing. Here we choose

to extend the Batched Iterated 1-Steiner (BI1S) algorithm which provides the

flexibility of Steiner point selection. By sorting the Steiner points with the

induced propagation and bending cost, we can acquire various baselines by

visiting different points. Additionally, compared to Manhattan routing of elec-

trical wires, optical interconnects are able to route in any direction, as shown

in Figure 5.5. Thus, the rectilinear connections are not mandatory for optical

interconnects, which offers more feasible baseline topologies. After obtaining

the baselines, we present the optical-electrical co-design scheme for power and

loss optimization.

As the baseline is a tree topology, in essence, we take this advantage

162

to develop a list of co-designs, each recorded with competitive optical loss and

power cost. Taking Figure 5.5(a) as a baseline instance, we visit each connec-

tion between the hyper pins and Steiner points and decide which to employ

optical interconnections. Inspired by the classic buffer insertion algorithm, we

derive the promising co-designs in a bottom-up manner so that the trade-off

between loss and power can be balanced.

The algorithm flow is illustrated in Figure 5.5(b). By traversing node3

and node4 in the bottom level, each interconnect can choose to route through

optical WDMs or electrical wires, and the internal node records each solution

with the specific power and optical loss. The optical power is calculated as

in Eq. (5.1), while the electrical power is in proportional to the wire-length.

For the optical loss, we are able to calculate the exact propagation and split-

ting loss and approximate the crossing loss based on the optical baselines. If

the optical interconnect between node2 and node4 causes both higher loss and

power costs compared to that between node2 and node3, then the former can-

didate turns to be an inferior solution to be pruned beforehand, and we come

to the upper level for further judgments. The internal node between node1

and node2 accumulates all the possible solutions, and the resulting power cost

and optical loss are re-calculated. As a redundant solution is removed, there

remain four solutions with different configurations. Figure 5.5(c) lists all the

finalized solutions. It can be seen that the third candidate can save the OE

conversion overheads by implementing the bottom branches through electrical

wires. After traversing all the nodes, we acquire the optical-electrical solutions

163

4

1

2

3

(a)

1

4

(2-4) = O
(2-4) = E

(2-3)(2-4)(1-2) = OOO
(2-3)(2-4)(1-2) = OEO
(2-3)(2-4)(1-2) = EEO
(2-3)(2-4)(1-2) = EEE

2

3

(b)

3

1

2

3 4

1

3

2

4 4

WDMWire Coupler Hyper Pin

1

2

3 4

1

2

(c)

Figure 5.5: Optical-electrical co-design example. (a) Hyper net topology; (b)
Dynamic programming based co-design scheme; (c) Corresponding optical-
electrical solution candidates.

while eliminating the non-competitive alternatives. The runtime complexity

of this procedure is within O(|Nc||d|), where |Nc| is the number of connections

between the hyper pins and Steiner points, and |d| is the depth of the tree in

Figure 5.5(b).

5.3.3 Mathematical Formulation

To obtain the optimal solution for each object, the mathematical formu-

lation is given in Formula (5.3). The objective is to minimize the total power

overheads for all the hyper nets H. The set of optical-electrical solution candi-

dates is denoted as Hsol, which consists of both optical-electrical co-design and

pure electrical routes for the hyper nets. The first item, aij, represents the j-th

164

solution candidate for hyper net i, and poe(i, j) gives the corresponding power

costs with OE/EO conversions, as described in Section 5.2.2. Additionally,

aie represents the electrical route alternative of hyper net i through electrical

wires, as the fourth candidate in Figure 5.5(c), and pe(i) represents the power

consumption cost of aie.

min
∑

(i,j)∈Hsol

poe(i, j) · aij +
∑
i∈H

pe(i) · aie (5.3a)

s.t.
∑

(i,j)∈Hsol

aij + aie = 1, ∀i ∈ H, (5.3b)

∑
(m,n)∈Hsol

lx(i, j,m, n, p) · aij · amn + ls(i, j, p) · aij

+ lspl(i, j, p) · aij ≤ lm, ∀p ∈ P (aij), i ∈ H, (5.3c)

aij, aie is binary, ∀i ∈ H, ∀j. (5.3d)

Meanwhile, constraint (5.3b) denotes that one and only one solution

candidate can be selected for each hyper net: if no appropriate optical-electrical

co-design route is found, then this hyper net will be handled with electrical

wires. Also, based on the optical inherent constraints, the light intensity should

be strong enough to be detected at the receiver side. Hence, constraint (5.3c)

guarantees that the total source-to-sink loss on path p should be lower than the

maximum loss, lm, and p corresponds to one source-to-sink path in a co-design

candidate aij. lx(i, j,m, n, p) refers to the crossing loss on path p resulting

from the intersections between candidates aij and amn, while ls(i, j, p) and

lspl(i, j, p) are the propagation loss and splitting loss of path p, respectively.

Finally, with the constraints of both aij and aie as binary variables, it is seen

165

that this quadratic programming problem can be solved through Integer Lin-

ear Programming (ILP). Due to the existing terms of aies, a feasible solution

can be guaranteed for all the hyper nets.

Nevertheless, solving an ILP would lead to prohibitive runtime over-

heads. Thus the speed-up technique is adopted to condense the solution space

without sacrificing the performance. To reduce the number of variables, we

can remove those crossing variables belonging to the pair of hyper nets with

non-overlapped bounding boxes. By this setting, we can control the search

space without performance degradation.

5.3.4 Lagrangian Relaxation-based Algorithm

Since solving the ILP even with the reduced variables would still be

time-consuming, we re-formulate this problem in a more efficient way. There-

fore, we propose a Lagrangian Relaxation-based (LR) approach, which relaxes

the constraint (5.3c) into the objective function. The relaxed formula is shown

in Formula (5.4) with the Lagrangian Multiplier (LM) λp for each path p. Since

lm is a constant value, we remove it in Formula (5.4a).

min
∑

(i,j)∈Hsol

poe(i, j) · aij +
∑
i∈H

pe(i) · aie

+
∑

p∈P (Hsol)

∑
(m,n)∈Hsol

λp · lx(i, j,m, n, p) · aij · amn

+
∑

p∈P (Hsol)

λp · (ls(i, j, p) + lspl(i, j, p)) · aij (5.4a)

s.t. (5.3b), (5.3d).

166

To resolve an LR-based algorithm, we update the LMs iteratively to

explore the solution. Meanwhile, the quadratic terms can be linearized based

on the last iteration, which empirically works well [50, 91]. Thus we employ

this approximation method to capture the quadratic terms:

amn · aij ≈ a′mn · aij + amn · a′ij. (5.5)

By substituting the linearization terms, it is seen that the routing optimiza-

tion becomes a weighted sum of aijs and aies. With the fixed set of LMs and

constraint (5.3b), we search for the solution in each iteration. The pseudocode

of the LR-based algorithm is shown in Algorithm 9. Initially, the LMs are set

to a value proportional to the pe (line 1) while the power cost is calculated

for the candidate solutions (line 2). And the propagation and splitting loss,

ls(i, j, p), lspl(i, j, p), are also calculated for each optical-electrical route can-

didate (line 3). During the Lagrangian optimization, we traverse the hyper

nets in each iteration and select the candidate with the best sum of weights,

including both its inherent power and LM penalty costs (line 5). Based on the

acquired solutions, we check the detection violations for each source-to-sink

path (line 6). Then the LMs are updated at the end of each iteration according

to the violations (line 7). To ensure the algorithm convergence, we update the

LMs through a sub-gradient methodology. This procedure continues until a

convergence is reached. The converging criteria are set as follows: the decrease

in both power costs and violations reach a pre-defined ratio, or the iteration

number is over 10.

167

Algorithm 9 LR-based Algorithm

Input: A set of hyper nets with candidates aij, aie.
1: Initialize LMs λps;
2: Calculate the power costs for aij, aies;
3: Calculate the loss ls(i, j, p), lspl(i, j, p) for aijs;
4: while no converge do
5: Select the candidate with the best weight;
6: Calculate violation values for paths;
7: Update λps based on violations;
8: end while

5.4 WDM Assignment

After the last procedure, each hyper net has obtained its topology con-

sisting of point-to-point connections. Similar to electrical wires, the distri-

bution of optical connections should also be controlled. The WDM offers

multi-channels for parallel routing, but its capacity is constrained. Thus, the

assignment is able to utilize WDMs efficiently without disturbing the previous

result. In this section, we describe the WDM placement and the assignment

procedure through a network model.

5.4.1 WDM Placement

Before the assignment of connections, we perform the WDM placement

to initialize their locations. An intuitive way is to place one WDM for each

connection. However, this would lead to an unnecessarily high volume of

WDMs for which can be shared by the hyper nets propagating in parallel;

Also, we control the distance to be above disl between two nearby WDMs to

avoid crosstalk. Thus, the placement procedure not only controls the number

168

of WDMs, but also conforms to the distance bound.

Since the placement of vertical and horizontal WDMs follow the same

way, for brevity we only discuss the horizontal WDMs. Initially, the hor-

izontal connections are collected and sorted in an ascending order of their

y-coordinates. Then we traverse each connection sequentially to determine

the WDMs’ locations. The first WDM is placed in the same location as the

first connection, and recognized as the current WDM. For the next connection,

we check whether the current WDM has enough capacity. Also, their distance

should be below the distance disu to avoid causing the disturbances. If both of

conditions are met, the connection will be assigned to the current WDM; oth-

erwise, we place an additional WDM and turn to the next connection. After

visiting all the connections, an adequate number of WDMs will be obtained

for assignment. As the placement enables the combination of multiple con-

nections in cases, the number of WDMs is already well controlled. It shall be

noted that after the placement there may exist some congested regions where

two nearby WDMs are within disl distance. To avoid these cases, we check

those violating regions and adjust the WDMs’ locations in a one-by-one way

for legalization.

5.4.2 Network-flow Based Assignment

After initializing the WDM placement, we will assign the optical con-

nections while removing the idle WDMs. Previously, a number of WDMs are

utilized to accommodate the signal bits in a sequential manner, which does

169

(a) (b)

C2WDM C1 C3

Figure 5.6: Example of WDM Placement. (a) Initial WDM placement for
three connections; (b) WDM placement after the assignment.

not exploit the WDMs in a global view. This brings out the necessity of re-

assigning the connections concurrently. As we observe in Figure 5.6(a), for

three connections marked in different colors, we adopt three WDMs if each

connection contains 20 bits and the capacity is 32 as set in [22]. Nevertheless,

by re-assigning the connections, we can save one WDM while satisfying the ca-

pacities as shown in Figure 5.6(b). To reach this objective, we further present

a min-cost max-flow network to re-allocate the connections. Due to its uni-

modular property, the assignment solution can be acquired directly without

any approximation or rounding methodologies.

Figure 5.7 illustrates how the network flow model resolves the assign-

ment problem. Since the horizontal and vertical connections are re-assigned

independently with the same method, we just list the horizontal connections.

Given the sets of connections and WDMs, a directed graph G is constructed as

follows. There are four types of vertices contained in G: Vs and Vt represent the

170

pseudo starting and ending nodes, respectively; VC and VW represent the con-

nections of hyper nets and the WDMs which have already been placed. Also,

there are three types of edges in G: {Vs → VC}, {VC → VW}, and {VW → Vt}.

The edges of the first type ensure that all the connections should be assigned

to the WDMs; the edges of the second type determine which WDM will be

chosen for assignment; and the edges of the third type guarantee that the

WDM capacity constraint should be satisfied. Notably, in order not to disturb

the routing results obtained in Section 5.3, we only allow each connection to

connect with its neighboring WDMs, and the distance should be within disu,

as shown in Figure 5.7. Meanwhile, the costs of edges are defined as follows:

the cost from Vs to VC is set to 0; the cost from VC to VW is the perpendicular

distance between the WDM and the connection’s current location; and the

cost from VW to Vt is the WDM usage cost. The capacities of edges are also

defined: the capacities from VW to Vt are the maximum allowable capacity,

and the capacities of other edges are the number of passing nets through the

connection for flow accommodation. Since our target is to reduce the costs of

WDMs, we prefer to apply higher costs to the edges from VW to Vt. Thus,

we normalize the costs of edges from VC to VW so that the WDMs’ usages are

emphasized. After solving the example in Figure 5.6, the edges with flows are

shown as solid lines in Figure 5.7. With the network model, three connections

share two WDMs. It is seen that both the number of flow edges and vertices

are proportional to the number of connections |C|, and the runtime complexity

is within O(|C|2).

171

C3

C2

W3

s

C1

tW2

W1

Figure 5.7: Example of min-cost max-flow assignment.

Table 5.1: Performance comparisons among different designs.

Electrical [47] Optical [22] OPERON (ILP) OPERON (LR)

Bench #Net #HNet #HPin Power Power Power CPU(s) Power CPU(s)

I1 2660 356 1306 20.50 4.92 4.79 > 3000 4.88 2.1

I2 1782 837 1701 50.79 14.48 12.39 > 3000 12.77 5.0

I3 5072 168 336 17.96 2.70 2.49 4.4 2.57 0.9

I4 3224 403 1474 21.51 5.70 5.45 341.3 5.62 2.4

I5 1994 933 1897 54.21 18.40 14.61 > 3000 15.22 8.8

average - - - 32.99 9.24 7.95 > 1869.1 8.21 3.8

ratio - - - 3.565 1.000 0.860 – 0.889 –

5.5 Experimental Results

We implemented the OPERON framework in C++, and tested it on a

Linux machine with eight 3.3GHz CPUs. Meanwhile, we selected GUROBI [26]

as our ILP solver, and open source graph library LEMON [2] as our min-cost

max-flow network solver. For the optical parameters, we set the values of

α, β to 1.5 dB/cm, 0.52 dB, with the same optical settings in [9]; and the

power consumptions of modulators and detectors are set to 0.511 pJ/bit and

0.374 pJ/bit [77]. With these parameters, we derive the test cases from the

172

industrial benchmarks, by up-scaling the dimension into centimeter scale, and

employ the signal processing for the hyper net generation. The details of each

test case are listed in the left part of Table 5.1. The column “#Net” gives

the overall number of signal bits, while the column “#HNet” and “#HPin”

correspond to the number of hyper nets and hyper pins, respectively. Since our

work targets at optical-electrical co-design, we focus on the power consumption

caused by both optical and electrical routes, as listed in column “Power”. The

optical power is calculated in Eq. (5.1), and the electrical power is estimated

based on its dynamic power:

pe = γ · f · V 2 · Cap, (5.6)

where γ, f, V, Cap denote the switching factor, system frequency, voltage level,

and wire capacitance in proportional to the wire-length. Due to the signals’

performance-critical nature, the wire-lengths of electrical wires are estimated

based on the Rectilinear Steiner Minimum Tree (RSMT) with the parameters

in [22,77].

To show the effectiveness, we implemented the similar GLOW frame-

work for optical designs [22], and the electrical design based on Streak [47] for

comparison. From the experimental results, it is shown that the utilization of

optical interconnects consumes the power costs about one-third of the coun-

terpart caused by electrical wires. This proves the high efficiency of optical

propagation for distant communications, consistent with the optical inherent

characteristics. Nevertheless, in order to satisfy the loss constraint, a few hy-

173

 0

 50

 100

 150

 200

I1 I2 I3 I4 I5

#
 o

f
W

D
M

s
 (

%
)

of Connections
of Initial WDMs
of Final WDMs

Figure 5.8: Comparison of WDMs for optical connections before the place-
ment, before the assignment and after the assignment.

per nets cannot be routed on the optical layer and the residual nets have to

be completed through electrical wires, resulting in additional power consump-

tions. To deal with this condition, we observe that after the employment of

the optical-electrical paradigm, the overall power overheads are reduced by

14.0%. This is mainly because of the decreasing number of electrical routes,

and the adjustment of EO/OE conversion also helps. However, due to the com-

plexity of dealing with ILP formulation, the runtime overhead is significant,

especially for the large benchmarks. Thus, the effectiveness of the proposed

speed-up algorithm is shown, with the slightly worse performance but much

shorter runtime.

To demonstrate the effectiveness of the WDM assignment, we compare

the number of connections before the placement, and the WDMs before and

after the assignment through the normalization in Figure 5.8. It is shown

that the placement is able to reduce the usage of WDMs greatly for all the

174

(a) (b)

(c) (d)

Figure 5.9: Power consumption distribution of I2. (a) Optical power in GLOW;
(b) Electrical power in GLOW; (c) Optical power in OPERON; (d) Electrical
power in OPERON.

cases, but still, suffers from the sub-optimality due to its heuristic style. With

the integration of the network flow algorithm, we observe that the number of

WDMs can be further reduced by 8.9% on average.

Finally, we perform the experiments to measure the normalized power

hotspots on both optical and electrical layers for GLOW and OPERON, as

shown in Figure 5.9. Figure 5.9(a) and Figure 5.9(b) provide the power dis-

tributions of GLOW, while Figure 5.9(c) and Figure 5.9(d) provide the distri-

butions of OPERON. We observe that the hotspots in Figure 5.9(a) and Fig-

ure 5.9(c) are distributed in a very similar manner. It is reasonable because

they employ the similar amounts of EO/OE conversion overheads. By compar-

ison, from the electrical layers shown in Figure 5.9(b) and Figure 5.9(d), the

hotspots are alleviated greatly in OPERON. Considering that a higher flex-

175

ibility is allowed through optical-electrical co-design procedure, much fewer

electrical wires are allocated on the electrical layer in Figure 5.9(d), consis-

tent with our motivation. Therefore, the hotspot comparison demonstrates

the power efficiency of the proposed OPERON framework.

5.6 Summary

In this chapter, a set of algorithms have been proposed for optical-

electrical co-design of on-chip signals to optimize power consumptions. First,

the clustering strategy generates the sets of hyper nets and hyper pins, for

which the baseline topologies are constructed. Based on the baseline, the co-

design solution set is developed for the minimization of total loss and power

costs. Then a mathematical formulation targets at power optimization while

satisfying the detection constraints, and follows a fast flow to reach a close

performance with the ILP solution. Finally, a network flow model is adopted to

utilize WDMs sufficiently. The results show that the route synthesis engine is

able to provide the optical-electrical solution with legality and power efficiency.

With the development of technologies, this work can open up opportunities

for optical-electrical co-design research.

176

Chapter 6

Conclusion and Future Work

This dissertation proposes a set of novel algorithms for layer assign-

ment and routing optimization. A timing-driven incremental layer assignment

with slew optimization framework is proposed to handle delay optimization

for all nets simultaneously while mitigating slew violations for saving buffer-

ing resources. The effectiveness has been demonstrated through both academia

and industrial benchmarks. Furthermore, with critical path timing into con-

sideration, another incremental layer assignment engine is presented with a

more accurate timing formulation. The results show that our framework can

achieve better results compared to the previously promoted layer assignment

tool. Currently, for on-chip performance-critical signal groups, a synergistic

topology generation and routing flow is devised with the efficient control of

design regularity, besides the optimization of routability and wire-length. The

industrial benchmarks demonstrate the effectiveness of the presented routing

synthesis engine, where much fewer hotspots are shown on the congestion map

compared to the manual designs from experienced designers. Considering the

unique properties brought by optical interconnections, this dissertation also

designs a novel optical-electrical co-design routing engine for on-chip signals

to optimize the power consumption. The results show that it is able to provide

177

more feasibilities for the optical-electrical solutions with legality, resulting in

better power efficiency than the previous optical design.

After the discussion about the above methodologies for layering and

routing optimization, it is explicitly shown that efficient routing can benefit

the overall timing with legality. Meanwhile, since interconnect delay is be-

coming a bottleneck compared to cell delays with more advanced technology

nodes, more efforts are required and should be dedicated to exploring the ef-

ficient interconnect paradigms. With these into consideration, there are some

potentially interesting research topics to delve in:

• Concurrent delay and slew optimization for timing paths. Delay and slew

are both important metrics for achieving timing closure, and also eas-

ily affected by layering and buffering optimization. For existing timing

paths consisting of multiple nets and cells, appropriate routing and layer-

ing optimization is essential to satisfy the stringent timing requirement.

Additionally, due to the important role of buffering, an advanced layer

assignment should be integrated with buffering for timing optimization.

Therefore, a coherent layer assignment and buffering tool is required to

handle both delay and slew optimization simultaneously.

• Detailed exploration of signal routing. Since signal groups are required

to share common topologies with parallel tracks, this may block available

routing regions for pin accessibilities and lead to design rule violations

in detailed routing. Hence a complete automatic flow from global to

178

detailed routing is essential to utilize the resources intelligently and ef-

ficiently. Besides, more flexibilities can be introduced to construct the

routing topologies for those signal bits, to make the balance between

wire-length and path length. This can help to broaden the solution

space and provide more competitive options for topology selection.

• Reliable optical-electrical co-design. To incorporate electrical wires with

optical connections seamlessly, device-level reliability should be handled

with great attention due to the sensitivity to environmental issues, such

as thermal variation and so on. Thus appropriate mechanisms are neces-

sitated to guarantee the functional correctness. Additionally, a more de-

tailed optical model is required to incorporate more loss sources, such as

coupling loss, modulation loss, etc. Similarly, the electrical power over-

heads should be calculated in a more accurate manner. By taking all of

these factors into consideration, a comprehensive study should be given

to optimize the resulting power while satisfying detection constraints.

179

Bibliography

[1] International roadmap for semiconductors. ITRS press conference, 2004.

[2] LEMON: library for efficient modeling and optimization in networks.

http://lemon.cs.elte.hu/trac/lemon.

[3] OpenMP: An Industry-Standard API for Shared-Memory Programming.

http://www.openmp.org/.

[4] Synopsys IC Compiler. http://www.synopsys.com.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall/Pearson, 2005.

[6] Christoph Albrecht. Efficient incremental clock latency scheduling for

large circuits. In Proc. DATE, pages 1–6, 2006.

[7] Jianchang Ao, Sheqin Dong, Song Chen, and Satoshi Goto. Delay-driven

layer assignment in global routing under multi-tier interconnect structure.

In Proc. ISPD, pages 101–107, 2013.

[8] Wim Bogaerts, Roel Baets, Pieter Dumon, Vincent Wiaux, Stephan Beckx,

Dirk Taillaert, Bert Luyssaert, Joris Van Campenhout, Peter Bienst-

man, and Dries Van Thourhout. Nanophotonic waveguides in silicon-

180

http://lemon.cs.elte.hu/trac/lemon
http://www.openmp.org/
http://www.synopsys.com

on-insulator fabricated with CMOS technology. Journal of Lightwave

Technology, 2005.

[9] Anja Boos, Luca Ramini, Ulf Schlichtmann, and Davide Bertozzi. Pro-

ton: An automatic place-and-route tool for optical networks-on-chip. In

Proc. ICCAD, pages 138–145, 2013.

[10] Brian Borchers. CSDP, a C library for semidefinite programming. Opti-

mization Methods and Software, 11:613–623, 1999.

[11] Rohit Chandra. Parallel Programming in OpenMP. Morgan Kaufmann,

2001.

[12] Hua-Yu Chang, IH-R Jiang, and Yao-Wen Chang. Timing ECO opti-

mization via Bézier curve smoothing and fixability identification. IEEE

TCAD, 31(12):1857–1866, 2012.

[13] Yen-Jung Chang, Yu-Ting Lee, Jhih-Rong Gao, Pei-Ci Wu, and Ting-

Chi Wang. NTHU-Route 2.0: a robust global router for modern designs.

IEEE TCAD, 29(12):1931–1944, 2010.

[14] James Hsueh-Chung Chen, Theodorus E Standaert, Emre Alptekin, Terry A

Spooner, and Vamsi Paruchuri. Interconnect performance and scaling

strategy at 7 nm node. In Proc. IITC, pages 93–96, 2014.

[15] Minsik Cho and David Z Pan. BoxRouter: a new global router based

on box expansion and progressive ILP. IEEE TCAD, 26(12):2130–2143,

2007.

181

[16] Chris Chu and Yiu-Chung Wong. FLUTE: Fast lookup table based

rectilinear steiner minimal tree algorithm for VLSI design. IEEE TCAD,

27(1):70–83, 2008.

[17] Jason Cong. An interconnect-centric design flow for nanometer technolo-

gies. Proceedings of the IEEE, 89(4):505–528, 2001.

[18] Jason Cong and Bin Liu. A metric for layout-friendly microarchitecture

optimization in high-level synthesis. In Proc. DAC, pages 1239–1244,

2012.

[19] Olivier Coudert, Jason Cong, Sharad Malik, and Majid Sarrafzadeh. In-

cremental CAD. In Proc. ICCAD, pages 236–244, 2000.

[20] Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li. Efficient simulated evo-

lution based rerouting and congestion-relaxed layer assignment on 3-D

global routing. In Proc. ASPDAC, pages 570–575, 2009.

[21] Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li. NCTU-GR: efficient simu-

lated evolution-based rerouting and congestion-relaxed layer assignment

on 3-D global routing. IEEE VLSI, 20(3):459–472, 2012.

[22] Duo Ding, Bei Yu, and David Z Pan. GLOW: A global router for low-

power thermal-reliable interconnect synthesis using photonic wavelength

multiplexing. In Proc. ASPDAC, pages 621–626, 2012.

182

[23] Duo Ding, Yilin Zhang, Haiyu Huang, Ray T Chen, and David Z Pan. O-

router: an optical routing framework for low power on-chip silicon nano-

photonic integration. In Proc. DAC, pages 264–269, 2009.

[24] Peng Du, Shih-Hung Weng, Xiang Hu, and Chung-Kuan Cheng. Power

grid sizing via convex programming. In Proc. ASICON, pages 337–340,

2011.

[25] Ananda D Gunawardena, SK Jain, and Larry Snyder. Modified iterative

methods for consistent linear systems. Linear Algebra and its Applica-

tions, 154:123–143, 1991.

[26] Gurobi Optimization Inc. Gurobi optimizer reference manual. http:

//www.gurobi.com, 2016.

[27] Ou He, Sheqin Dong, Jinian Bian, Sotoshi Goto, and Chung-Kuan Cheng.

Bus via reduction based on floorplan revising. In Proc. GLSVLSI, pages

9–14, 2010.

[28] Chin-Hsiung Hsu, Huang-Yu Chen, and Yao-Wen Chang. Multi-layer

global routing considering via and wire capacities. In Proc. ICCAD,

pages 350–355, 2008.

[29] Chin-Hsiung Hsu, Huang-Yu Chen, and Yao-Wen Chang. Multilayer

global routing with via and wire capacity considerations. IEEE TCAD,

29(5):685–696, 2010.

183

http://www.gurobi.com
http://www.gurobi.com

[30] Meng-Kai Hsu, Nitesh Katta, Homer Yen-Hung Lin, Keny Tzu-Hen Lin,

King Ho Tam, and Ken Chung-Hsing Wang. Design and manufacturing

process co-optimization in nano-technology. In Proc. ICCAD, pages 574–

581, 2014.

[31] Shiyan Hu, Charles J Alpert, Jiang Hu, Shrirang K Karandikar, Zhuo Li,

Weiping Shi, and Chin Ngai Sze. Fast algorithms for slew-constrained

minimum cost buffering. IEEE TCAD, 26(11):2009–2022, 2007.

[32] Shiyan Hu, Zhuo Li, and Charles J Alpert. A polynomial time approx-

imation scheme for timing constrained minimum cost layer assignment.

In Proc. ICCAD, pages 112–115, 2008.

[33] Shiyan Hu, Zhuo Li, and Charles J Alpert. A faster approximation

scheme for timing driven minimum cost layer assignment. In Proc. ISPD,

pages 167–174, 2009.

[34] Andrew B. Kahng, Bao Liu, and Sheldon X-D. Tan. Efficient decoupling

capacitor planning via convex programming methods. In Proc. ISPD,

pages 102–107, 2006.

[35] Andrew B. Kahng and Gabriel Robins. A new class of iterative steiner

tree heuristics with good performance. IEEE TCAD, 11(7):893–902,

1992.

[36] Shrirang K Karandikar, Charles J Alpert, Mehmet Can Yildiz, Paul Vil-

larrubia, Steve Quay, and Tuhin Mahmud. Fast electrical correction

184

using resizing and buffering. In Proc. ASPDAC, pages 553–558, 2007.

[37] Chandramouli V Kashyap, Charles J Alpert, Frank Liu, and Anirudh De-

vgan. Closed form expressions for extending step delay and slew metrics

to ramp inputs. In Proc. ISPD, pages 24–31, 2003.

[38] Dae Hyun Kim and Sung Kyu Lim. Bus-aware microarchitectural floor-

planning. In Proc. ASPDAC, pages 204–208, 2008.

[39] Dae Hyun Kim and Sung Kyu Lim. Global bus route optimization with

application to microarchitectural design exploration. In Proc. ICCD,

pages 658–663, 2008.

[40] Yukihide Kohira, Tomomi Matsui, Yoko Yokoyama, Chikaaki Kodama,

Atsushi Takahashi, Shigeki Nojima, and Satoshi Tanaka. Fast mask as-

signment using positive semidefinite relaxation in LELECUT triple pat-

terning lithography. In Proc. ASPDAC, pages 665–670, 2015.

[41] Tushar Krishna, Arya Balachandran, Siau Ben Chiah, Li Zhang, Bing

Wang, Cong Wang, Kenneth Lee Eng Kian, Jurgen Michel, and Li-Shiuan

Peh. Automatic place-and-route of emerging LED-driven wires within

a monolithically-integrated cmos-III-V process. In Proc. DATE, pages

344–349, 2017.

[42] Jill H. Y. Law and Evangeline F. Y. Young. Multi-bend bus driven

floorplanning. In Proc. ISPD, pages 113–120, 2005.

185

[43] Tsung-Hsien Lee, Yen-Jung Chang, and Ting-Chi Wang. An enhanced

global router with consideration of general layer directives. In Proc. ISPD,

pages 53–60, 2011.

[44] Tsung-Hsien Lee and Ting-Chi Wang. Congestion-constrained layer as-

signment for via minimization in global routing. IEEE TCAD, 27(9):1643–

1656, 2008.

[45] Tsung-Hsien Lee and Ting-Chi Wang. Simultaneous antenna avoidance

and via optimization in layer assignment of multi-layer global routing. In

Proc. ICCAD, pages 312–318, 2010.

[46] Zhuo Li, Charles J Alpert, Shiyan Hu, Tuhin Muhmud, Stephen T Quay,

and Paul G Villarrubia. Fast interconnect synthesis with layer assign-

ment. In Proc. ISPD, pages 71–77, 2008.

[47] Derong Liu, Vinicius Livramento, Salim Chowdhury, Duo Ding, Huy Vo,

Akshay Sharma, and David Z Pan. Streak: synergistic topology gener-

ation and route synthesis for on-chip performance-critical signal groups.

In Proc. DAC, pages 1–6, 2017.

[48] Derong Liu, Bei Yu, Salim Chowdhury, and David Z Pan. Incremental

layer assignment for critical path timing. In Proc. DAC, 2016.

[49] Derong Liu, Bei Yu, Salim Chowdhury, and David Z Pan. Incremental

layer assignment for timing optimization. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 22(4):75, 2017.

186

[50] Derong Liu, Bei Yu, Salim Chowdhury, and David Z. Pan. TILA-

S: Timing-driven incremental layer assignment avoiding slew violations.

IEEE TCAD, 37(1):231–244, 2018.

[51] Derong Liu, Bei Yu, Vinicius Livramento, Salim Chowdhury, Duo Ding,

Huy Vo, Akshay Sharma, and David Z Pan. Synergistic topology gener-

ation and route synthesis for on-chip performance-critical signal groups.

IEEE TCAD, 2018.

[52] Derong Liu, Zheng Zhao, Zheng Wang, Zhoufeng Ying, Ray T Chen, and

David Z Pan. OPERON: optical-electrical power-efficient route synthesis

for on-chip signals. In Proc. DAC, page 75, 2018.

[53] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. NCTU-

GR 2.0: multithreaded collision-aware global routing with bounded-length

maze routing. IEEE TCAD, 32(5):709–722, 2013.

[54] Wen-Hao Liu and Yih-Lang Li. Negotiation-based layer assignment for

via count and via overflow minimization. In Proc. ASPDAC, pages 539–

544, 2011.

[55] Vinicius Livramento, Derong Liu, Salim Chowdhury, Bei Yu, Xiaoqing

Xu, David Z Pan, Jose Luis Guntzel, and Luiz CV dos Santos. In-

cremental layer assignment driven by an external signoff timing engine.

IEEE TCAD, 36(7):1126–1139, 2017.

187

[56] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on

Information Theory (TIT), 1982.

[57] Tao Luo, David A. Papa, Zhuo Li, C. N. Sze, Charles J. Alpert, and

David Z. Pan. Pyramids: an efficient computational geometry-based

approach for timing-driven placement. In Proc. ICCAD, pages 204–211,

2008.

[58] Tilen Ma and Evangeline F. Y. Young. TCG-based multi-bend bus driven

floorplanning. In Proc. ASPDAC, pages 192–197, 2008.

[59] R Garey Michael and S Johnson David. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[60] Fan Mo and Robert K Brayton. Semi-detailed bus routing with variation

reduction. In Proc. ISPD, pages 143–150, 2007.

[61] Fan Mo and Robert K. Brayton. A simultaneous bus orientation and

buses pin flipping algorithm. In Proc. ICCAD, pages 386–389, 2007.

[62] Michael D Moffitt. MaizeRouter: Engineering an effective global router.

IEEE TCAD, 27(11):2017–2026, 2008.

[63] Moustafa Mohamed, Zheng Li, Xi Chen, Li Shang, Alan Mickelson, Man-

ish Vachharajani, and Yihe Sun. Power-efficient variation-aware photonic

on-chip network management. In Proc. ISLPED, 2010.

188

[64] Nicholas J. Naclerio, Sumio Masuda, and Kazuo Nakajima. The via min-

imization problem is NP-complete. IEEE Transactions on Computers,

38(11):1604–1608, 1989.

[65] Gi-Joon Nam, Cliff Sze, and Mehmet Yildiz. The ISPD global routing

benchmark suite. In Proc. ISPD, pages 156–159, 2008.

[66] Sudeep Pasricha, Nikil Dutt, Elaheh Bozorgzadeh, and Mohamed Ben-

Romdhane. Floorplan-aware automated synthesis of bus-based commu-

nication architectures. In Proc. DAC, pages 565–570, 2005.

[67] Sudeep Pasricha, Nikil D Dutt, Elaheh Bozorgzadeh, and Mohamed Ben-

Romdhane. Fabsyn: Floorplan-aware bus architecture synthesis. IEEE

VLSI, 14(3):241–253, 2006.

[68] Andrea Peano, Luca Ramini, Marco Gavanelli, Maddalena Nonato, and

Davide Bertozzi. Design technology for fault-free and maximally-parallel

wavelength-routed optical networks-on-chip. In Proc. ICCAD, page 3,

2016.

[69] Yuantao Peng and Xun Liu. Low-power repeater insertion with both

delay and slew rate constraints. In Proc. DAC, pages 302–307, 2006.

[70] G. Persky and L. V. Tran. Topological routing of multi-bit data buses.

In Proc. DAC, pages 679–682, 1984.

189

[71] Maurice Queyranne. Performance ratio of polynomial heuristics for tri-

angle inequality quadratic assignment problems. Operations Research

Letters, 4(5):231–234, 1986.

[72] JA Roy and IL Markov. High-performance routing at the nanometer

scale. IEEE TCAD, 27(6):1066–1077, 2008.

[73] Jarrod A Roy and Igor L Markov. ECO-system: Embracing the change

in placement. IEEE TCAD, 26(12):2173–2185, 2007.

[74] Subhendu Roy, Pavlos M Mattheakis, Laurent Masse-Navette, and David Z

Pan. Clock tree resynthesis for multi-corner multi-mode timing closure.

In Proc. ISPD, pages 69–76, 2014.

[75] Andrzej P Ruszczyński. Nonlinear Optimization, volume 13. Princeton

university press, 2006.

[76] Daohang Shi, Edward Tashjian, and Azadeh Davoodi. Dynamic plan-

ning of local congestion from varying-size vias for global routing layer

assignment. In Proc. ASPDAC, pages 372–377, 2016.

[77] Chen Sun, Mark Wade, Michael Georgas, Sen Lin, Luca Alloatti, Ben-

jamin Moss, Rajesh Kumar, Amir Atabaki, Fabio Pavanello, Rajeev Ram,

et al. A 45nm SOI monolithic photonics chip-to-chip link with bit-

statistics-based resonant microring thermal tuning. In Proc. VLSIC,

pages C122–C123, 2015.

190

[78] Chen Sun, Mart T Wade, Yunsup Lee, Jason S Orcutt, Luca Alloatti,

Michael S Georgas, Andrew S Waterman, Jeffrey M Shainline, Rimas R

Avizienis, Sen Lin, et al. Single-chip microprocessor that communicates

directly using light. Nature, 528(7583):534, 2015.

[79] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.

SIAM Review (SIREV), 38(1):49–95, 1996.

[80] Lieven Vandenberghe, Stephen Boyd, and Abbas El Gamal. Optimal wire

and transistor sizing for circuits with non-tree topology. In Proc. ICCAD,

pages 252–259, 1997.

[81] Pei-Ci Wu, Qiang Ma, and Martin D. F. Wong. An ILP-based automatic

bus planner for dense PCBs. In Proc. ASPDAC, pages 181–186, 2013.

[82] Po-Hsun Wu and Tsung-Yi Ho. Bus-driven floorplanning with bus pin

assignment and deviation minimization. Integration, the VLSI Journal,

45(4):405–426, 2012.

[83] Rui Wu, Chin-Hui Chen, Cheng Li, Tsung-Ching Huang, Fan Lan, Chong

Zhang, Yun Pan, John E Bowers, Raymond G Beausoleil, and Kwang-

Ting Cheng. Variation-aware adaptive tuning for nanophotonic intercon-

nects. In Proc. ICCAD, pages 487–493, 2015.

[84] Tai-Hsuan Wu, Azadeh Davoodi, and Jeffrey T Linderoth. GRIP: Global

routing via integer programming. IEEE TCAD, 30(1):72–84, 2011.

191

[85] Hua Xiang, Liang Deng, Li-Da Huang, and Martin DF Wong. Opc-

friendly bus driven floorplanning. In Proc. ISQED, pages 847–852, 2007.

[86] Hua Xiang, Xiaoping Tang, and Martin D. F. Wong. Bus-driven floor-

planning. IEEE TCAD, 23(11):1522–1530, november 2004.

[87] Jin-Tai Yan. Efficient layer assignment of bus-oriented nets in high-speed

PCB designs. IEEE TCAD, 35(8):1332–1344, 2016.

[88] Tan Yan and Martin D. F. Wong. Untangling twisted nets for bus routing.

In Proc. ICCAD, pages 396–400, 2007.

[89] Tan Yan and Martin DF Wong. BSG-Route: A length-matching router

for general topology. In Proc. ICCAD, pages 499–505, 2008.

[90] Yunfeng Yang, Wai-Shing Luk, David Z. Pan, Hai Zhou, Changhao Yan,

Dian Zhou, and Xuan Zeng. Layout decomposition co-optimization

for hybrid e-beam and multiple patterning lithography. IEEE TCAD,

35(9):1532–1545, 2016.

[91] Bei Yu, Derong Liu, Salim Chowdhury, and David Z. Pan. TILA: Timing-

driven incremental layer assignment. In Proc. ICCAD, pages 110–117,

2015.

[92] Bei Yu, Kun Yuan, Duo Ding, and David Z. Pan. Layout decomposition

for triple patterning lithography. IEEE TCAD, 34(3):433–446, March

2015.

192

[93] Yanheng Zhang and Chris Chu. GDRouter: Interleaved global routing

and detailed routing for ultimate routability. In Proc. DAC, pages 597–

602, 2012.

[94] Yilin Zhang, Ashutosh Chakraborty, Salim Chowdhury, and David Z Pan.

Reclaiming over-the-IP-block routing resources with buffering-aware rec-

tilinear steiner minimum tree construction. In Proc. ICCAD, pages 137–

143, 2012.

[95] Zheng Zhao, Zheng Wang, Zhoufeng Ying, Shounak Dhar, Ray T. Chen,

and David Z. Pan. Logic synthesis for energy-efficient photonic integrated

circuits. In Proc. ASPDAC, pages 355–360, 2018.

193

Vita

Derong Liu received the B.S. degree in microelectronics from Fudan

University, Shanghai, China, in 2011, and the M.S. degree in engineering from

the University of Texas at Austin, Texas, US, in 2016. She started her Ph.D.

program at the University of Texas at Austin in 2014, with the supervision of

Prof. David Z. Pan. She has interned at Oracle, Santa Clara in 2016 summer,

and Cadence, Austin in 2015 summer, 2017 spring and summer. Derong Liu’s

research interests include physical design and logic synthesis for digital and

optical technologies.

Permanent address: derongliuliu@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

194

	List of Tables
	List of Figures
	Chapter 1. Introduction
	Challenges and Proposed Techniques in Layer Assignment and Routing for Advanced Technologies

	Chapter 2. Timing-Driven Incremental Layer Assignment Avoiding Slew Violations
	Introduction
	Preliminaries and Problem Formulation
	Graph Model
	Delay Model
	Slew Model
	Problem Formulation

	TILA-S Algorithms
	Mathematical Formulation
	Lagrangian Relaxation based Optimization
	Solving Lagrangian Subproblem (LRS)
	Critical & Non-Critical Net Selection
	Parallel Scheme
	Iterative Slew Optimization
	Post Slew Optimization

	Experimental Results
	Evaluation on ISPD 2008 Benchmarks
	Evaluation on 20nm Industry Benchmarks
	Slew Comparisons on ISPD & 20nm Industry Benchmarks

	Summary

	Chapter 3. Incremental Layer Assignment for Timing Optimization
	Introduction
	Preliminaries
	Graph Model
	Timing Model
	Problem Formulation

	CPLA Algorithms
	ILP Formulation
	Self-Adaptive Partition Algorithm
	Semidefinite Programming Relaxation
	Sequential Mapping Algorithm
	Concurrent Matching Algorithm
	Post Delay Optimization

	Experimental Results
	Timing Results
	Timing Violation Results

	Summary

	Chapter 4. Synergistic Topology Generation and Route Synthesis for Signal Groups
	Introduction
	Preliminaries
	Streak Flow
	Proposed Signal Model
	Proposed Bit Model
	Proposed Similarity Vector Model
	Problem Formulation

	Algorithms
	Identification of Signal Isomorphism
	Topology Generation and Evaluation
	Mathematical Formulation
	Primal-Dual Algorithm

	Post Optimization
	Possible Layer Prediction
	Bottom-up Clustering & Routing
	Post-Routing Refinement

	Experimental Results
	ILP + Primal-Dual Performance Comparison.
	Effectiveness of Post Optimization

	Summary

	Chapter 5. Optical-electrical Power-efficient Route Synthesis
	Introduction
	Preliminaries
	Overall Flow
	Optical Device Model
	Proposed Signal Model
	Problem Formulation

	Algorithms
	Signal Processing
	Optical-electrical Route Co-design
	Mathematical Formulation
	Lagrangian Relaxation-based Algorithm

	WDM Assignment
	WDM Placement
	Network-flow Based Assignment

	Experimental Results
	Summary

	Chapter 6. Conclusion and Future Work
	Bibliography
	Vita

