2,007 research outputs found

    Law of Log Determinant of Sample Covariance Matrix and Optimal Estimation of Differential Entropy for High-Dimensional Gaussian Distributions

    Full text link
    Differential entropy and log determinant of the covariance matrix of a multivariate Gaussian distribution have many applications in coding, communications, signal processing and statistical inference. In this paper we consider in the high dimensional setting optimal estimation of the differential entropy and the log-determinant of the covariance matrix. We first establish a central limit theorem for the log determinant of the sample covariance matrix in the high dimensional setting where the dimension p(n)p(n) can grow with the sample size nn. An estimator of the differential entropy and the log determinant is then considered. Optimal rate of convergence is obtained. It is shown that in the case p(n)/n→0p(n)/n \rightarrow 0 the estimator is asymptotically sharp minimax. The ultra-high dimensional setting where p(n)>np(n) > n is also discussed.Comment: 19 page

    Law of Log Determinant of Sample Covariance Matrix and Optimal Estimation of Differential Entropy for High-Dimensional Gaussian Distributions

    Get PDF
    Differential entropy and log determinant of the covariance matrix of a multivariate Gaussian distribution have many applications in coding, communications, signal processing and statistical inference. In this paper we consider in the high-dimensional setting optimal estimation of the differential entropy and the log-determinant of the covariance matrix. We first establish a central limit theorem for the log determinant of the sample covariance matrix in the high-dimensional setting where the dimension p(n) can grow with the sample size n. An estimator of the differential entropy and the log determinant is then considered. Optimal rate of convergence is obtained. It is shown that in the case p(n) / n → 0 the estimator is asymptotically sharp minimax. The ultra-high-dimensional setting where p(n) \u3e n is also discussed

    Oversampling Increases the Pre-Log of Noncoherent Rayleigh Fading Channels

    Get PDF
    We analyze the capacity of a continuous-time, time-selective, Rayleigh block-fading channel in the high signal-to-noise ratio (SNR) regime. The fading process is assumed stationary within each block and to change independently from block to block; furthermore, its realizations are not known a priori to the transmitter and the receiver (noncoherent setting). A common approach to analyzing the capacity of this channel is to assume that the receiver performs matched filtering followed by sampling at symbol rate (symbol matched filtering). This yields a discrete-time channel in which each transmitted symbol corresponds to one output sample. Liang & Veeravalli (2004) showed that the capacity of this discrete-time channel grows logarithmically with the SNR, with a capacity pre-log equal to 1−Q/N1-{Q}/{N}. Here, NN is the number of symbols transmitted within one fading block, and QQ is the rank of the covariance matrix of the discrete-time channel gains within each fading block. In this paper, we show that symbol matched filtering is not a capacity-achieving strategy for the underlying continuous-time channel. Specifically, we analyze the capacity pre-log of the discrete-time channel obtained by oversampling the continuous-time channel output, i.e., by sampling it faster than at symbol rate. We prove that by oversampling by a factor two one gets a capacity pre-log that is at least as large as 1−1/N1-1/N. Since the capacity pre-log corresponding to symbol-rate sampling is 1−Q/N1-Q/N, our result implies indeed that symbol matched filtering is not capacity achieving at high SNR.Comment: To appear in the IEEE Transactions on Information Theor

    High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

    Full text link
    We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical conditional covariances. Under a set of transparent conditions, we establish structural consistency (or sparsistency) for the proposed algorithm, when the number of samples n=omega(J_{min}^{-2} log p), where p is the number of variables and J_{min} is the minimum (absolute) edge potential of the graphical model. The sufficient conditions for sparsistency are based on the notion of walk-summability of the model and the presence of sparse local vertex separators in the underlying graph. We also derive novel non-asymptotic necessary conditions on the number of samples required for sparsistency

    Approximate inference in astronomy

    Get PDF
    This thesis utilizes the rules of probability theory and Bayesian reasoning to perform inference about astrophysical quantities from observational data, with a main focus on the inference of dynamical systems extended in space and time. The necessary assumptions to successfully solve such inference problems in practice are discussed and the resulting methods are applied to real world data. These assumptions range from the simplifying prior assumptions that enter the inference process up to the development of a novel approximation method for resulting posterior distributions. The prior models developed in this work follow a maximum entropy principle by solely constraining those physical properties of a system that appear most relevant to inference, while remaining uninformative regarding all other properties. To this end, prior models that only constrain the statistically homogeneous space-time correlation structure of a physical observable are developed. The constraints placed on these correlations are based on generic physical principles, which makes the resulting models quite flexible and allows for a wide range of applications. This flexibility is verified and explored using multiple numerical examples, as well as an application to data provided by the Event Horizon Telescope about the center of the galaxy M87. Furthermore, as an advanced and extended form of application, a variant of these priors is utilized within the context of simulating partial differential equations. Here, the prior is used in order to quantify the physical plausibility of an associated numerical solution, which in turn improves the accuracy of the simulation. The applicability and implications of this probabilistic approach to simulation are discussed and studied using numerical examples. Finally, utilizing such prior models paired with the vast amount of observational data provided by modern telescopes, results in Bayesian inference problems that are typically too complex to be fully solvable analytically. Specifically, most resulting posterior probability distributions become too complex, and therefore require a numerical approximation via a simplified distribution. To improve upon existing methods, this work proposes a novel approximation method for posterior probability distributions: the geometric Variational Inference (geoVI) method. The approximation capacities of geoVI are theoretically established and demonstrated using numerous numerical examples. These results suggest a broad range of applicability as the method provides a decrease in approximation errors compared to state of the art methods at a moderate level of computational costs.Diese Dissertation verwendet die Regeln der Wahrscheinlichkeitstheorie und Bayes’scher Logik, um astrophysikalische GrĂ¶ĂŸen aus Beobachtungsdaten zu rekonstruieren, mit einem Schwerpunkt auf der Rekonstruktion von dynamischen Systemen, die in Raum und Zeit definiert sind. Es werden die Annahmen, die notwendig sind um solche Inferenz-Probleme in der Praxis erfolgreich zu lösen, diskutiert, und die resultierenden Methoden auf reale Daten angewendet. Diese Annahmen reichen von vereinfachenden Prior-Annahmen, die in den Inferenzprozess eingehen, bis hin zur Entwicklung eines neuartigen Approximationsverfahrens fĂŒr resultierende Posterior-Verteilungen. Die in dieser Arbeit entwickelten Prior-Modelle folgen einem Prinzip der maximalen Entropie, indem sie nur die physikalischen Eigenschaften eines Systems einschrĂ€nken, die fĂŒr die Inferenz am relevantesten erscheinen, wĂ€hrend sie bezĂŒglich aller anderen Eigenschaften agnostisch bleiben. Zu diesem Zweck werden Prior-Modelle entwickelt, die nur die statistisch homogene Raum-Zeit-Korrelationsstruktur einer physikalischen Observablen einschrĂ€nken. Die gewĂ€hlten Bedingungen an diese Korrelationen basieren auf generischen physikalischen Prinzipien, was die resultierenden Modelle sehr flexibel macht und ein breites Anwendungsspektrum ermöglicht. Dies wird anhand mehrerer numerischer Beispiele sowie einer Anwendung auf Daten des Event Horizon Telescope ĂŒber das Zentrum der Galaxie M87 verifiziert und erforscht. DarĂŒber hinaus wird als erweiterte Anwendungsform eine Variante dieser Modelle zur Simulation partieller Differentialgleichungen verwendet. Hier wird der Prior als Vorwissen benutzt, um die physikalische PlausibilitĂ€t einer zugehörigen numerischen Lösung zu quantifizieren, was wiederum die Genauigkeit der Simulation verbessert. Die Anwendbarkeit und Implikationen dieses probabilistischen Simulationsansatzes werden diskutiert und anhand von numerischen Beispielen untersucht. Die Verwendung solcher Prior-Modelle, gepaart mit der riesigen Menge an Beobachtungsdaten moderner Teleskope, fĂŒhrt typischerweise zu Inferenzproblemen die zu komplex sind um vollstĂ€ndig analytisch lösbar zu sein. Insbesondere ist fĂŒr die meisten resultierenden Posterior-Wahrscheinlichkeitsverteilungen eine numerische NĂ€herung durch eine vereinfachte Verteilung notwendig. Um bestehende Methoden zu verbessern, schlĂ€gt diese Arbeit eine neuartige NĂ€herungsmethode fĂŒr Wahrscheinlichkeitsverteilungen vor: Geometric Variational Inference (geoVI). Die ApproximationsfĂ€higkeiten von geoVI werden theoretisch ermittelt und anhand numerischer Beispiele demonstriert. Diese Ergebnisse legen einen breiten Anwendungsbereich nahe, da das Verfahren bei moderaten Rechenkosten eine Verringerung des NĂ€herungsfehlers im Vergleich zum Stand der Technik liefert

    Probabilistic Framework for Sensor Management

    Get PDF
    A probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions
    • 

    corecore