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Zusammenfassung

Die Sensoreinsatzplanung (Sensor Management) stellt eine Erweiterung der stocha-
stischen Zustandsschätzung dar, bei der durch gezielte Beeinflussung der Messpa-
rameter der verwendeten Sensoren eine signifikante Verbesserung der Schätzung in-
terner Systemzustände erzielt werden kann. Für diese Maximierung des Nutzwerts
von Messungen wird das zukünftige Verhalten des beobachteten Systems durch eine
vorausschauende Planung, d. h. durch eine Prädiktion des Systemverhaltens über
einen endlich langen Zeithorizont, miteinbezogen. Auf diese Weise lassen sich auch
weitergehende Aufgaben, etwa die Reduzierung des Verbrauchs begrenzter Energie-
und Rechenressourcen, behandeln.

Im Gegensatz zu vielen verfügbaren Verfahren zur Sensoreinsatzplanung, welche auf
spezielle Problemklassen zugeschnitten sind, gestattet das in dieser Arbeit vorgestellte
Framework eine möglichst allgemeine Anwendbarkeit. Hierzu wird von einer nicht-
linearen Modellierung der Systeme und Sensoren sowie von einem kontinuierlichen
Zustandsraum ausgegangen. Während schon die alleinige stochastische Zustands-
schätzung unter diesen Vorgaben im Allgemeinen nicht geschlossen lösbar ist, ver-
schärft sich diese Problematik durch die Hinzunahme der Einsatzplanungskompo-
nente. Aus diesem Grund werden in dieser Arbeit für die beiden zentralen Bausteine
des Frameworks, also Zustandsschätzer und Einsatzplaner, approximative Verfahren
vorgestellt.

Eine zentrale Herausforderung bei der Einsatzplanung stellt das Antizipieren von
Messungen innerhalb des Zeithorizonts dar. Die beiden in dieser Arbeit vorgestellten
Einsatzplaner verfolgen hierfür unterschiedliche Strategien. Beim quasi-linearen Pla-
nungsverfahren werden keine zukünftigen Messwerte antizipiert. Dies entspricht einer
Open-Loop-Regelung bei der keine Zustandsrückführung erfolgt. Stattdessen wird
das nichtlineare Einsatzplanungsproblem durch prädiktive statistische Linearisierung
über den betrachteten Horizont auf ein lineares Sensoreinsatzplanungsproblem abge-
bildet. Dadurch lässt sich die optimale Sequenz von Messparametern unabhängig
von zukünftigen Messwerten mittels einer Baumsuche bestimmen, wobei allerdings
der erforderliche Aufwand exponentiell mit der Länge des Horizontes wächst. Zur
Aufwandsreduktion wird ein Baumbeschneidungsverfahren vorgestellt, welches auf
der Grundlage einer Abschätzung des Informationsbeitrags bzw. des Nutzens von
Messparametern das frühe Entfernen kompletter Teilbäume erlaubt.

Im Falle starker Nichtlinearitäten und multimodaler Wahrscheinlichkeitsdichten ist
die Abbildung auf das lineare Einsatzplanungsproblem nur eingeschränkt zulässig.
Beim informationstheoretischen Einsatzplanungsverfahren erfolgt stattdessen das An-
tizipieren zukünftiger Messwerte und somit eine Closed-Loop-Regelung. Zu diesem
Zwecke werden repräsentative zukünftige Messwerte auf Grundlage der aktuellen Zu-
standsschätzung erzeugt. Durch die Verwendung informationstheoretischer Maße zur



Bewertung des Nutzwertes der Messparameter kann sämtliche in den Wahrschein-
lichkeitsdichten kodierte Information quantifiziert und miteinbezogen werden. Aller-
dings ist die geschlossene Auswertung informationstheoretischer Maße, welche auf
Shannons Entropie basieren, für die verwendeten Gaußmischdichten zur Repräsen-
tierung der auftretenden Wahrscheinlichkeitsdichten nicht möglich. Um den Einsatz
aufwändiger numerischer Näherungslösungen zu vermeiden, werden enge, leicht zu
berechnende Schranken für die tatsächliche Entropie hergeleitet und eingesetzt.

Den zweiten zentralen Baustein des Frameworks stellt die effiziente Zustandsschät-
zung dar. Neben der Inferenz des Zustands nach vorliegendem Messwert, erfol-
gen auch im Einsatzplaner selbst, aufgrund der vorausschauenden Planung, wieder-
holt Zustandsschätzungen. Das entwickelte Gaußfilter kommt unmittelbar in der
quasi-linearen Sensoreinsatzplanung zwecks statistischer Linearisierung zum Einsatz.
Hierbei wird neben der gängigen Berücksichtigung der ersten beiden Momente einer
Schätzung auch die Form der Verteilungsfunktion zur Linearisierung miteinbezo-
gen. Für die hochqualitative Zustandsschätzung, insbesondere zur Inferenz des Zus-
tands aber auch als Schätzerkomponente für die informationstheoretische Planung,
dient das sogenannte Hybrid Density Filter. Dieser Bayes’sche Schätzer verfolgt
den Ansatz einer Approximation der Transitionsdichten, welche eine probabilistis-
che Repräsentation der nichtlinearen System- und Sensormodelle darstellen. Durch
die Verwendung der namensgebenden hybriden Dichte zur Approximation, welche aus
Gaußdichten und Delta-Distributionen besteht, kann das Schätzproblem geschlossen
gelöst werden, wobei sich eine Gaußmischdichte als Repräsentation des Schätzergeb-
nisses ergibt.

Die rekursive Verarbeitung der auftretenden Gaußmischdichten hat ein unbegrenz-
tes Wachstum der Anzahl an Gaußkomponenten zur Folge. Dieser Zuwachs lässt
sich durch ein neuartiges progressives Reduktionsverfahren begrenzen. Im Gegen-
satz zu gängigen Reduktionsverfahren erfolgt die Verkleinerung der Komponentenan-
zahl nicht durch schrittweises Entfernen von Komponenten. Stattdessen wird mit
einer einzelne Gaußdichte begonnen und diese an die über eine Homotopie sukzes-
sive eingeführte komplexe Mischdichte angepasst. Wann immer das Einhalten einer
vordefinierten Approximationsgüte nicht länger möglich ist, werden zusätzliche Kom-
ponenten hinzugefügt. Aufgrund der besseren Ausnutzung von Redundanzen resul-
tiert dieses konstruktive Vorgehen in einer deutlich stärkeren Reduktion bei zugleich
sehr hoher Approximationsgüte.

Das Zusammenwirken der entwickelten Verfahren zur Sensoreinsatzplanung und nicht-
linearen Zustandsschätzung wird anhand diverser Objektverfolgungsaufgaben evalu-
iert. Unter anderem werden dabei die Sensorauswahl in Sensornetzwerken sowie die
Bewegungsplanung mobiler Sensoren betrachtet.



Abstract

Sensor management extends classical state estimation in such a way that signifi-
cantly more accurate estimates are provided by reason of systematically exploiting
the modalities of the employed sensors. To achieve this utility maximization of mea-
surements, the future behavior of the observed system is incorporated via predictive
planning, i.e., by predicting the system behavior over a finite time horizon. In doing
so, dealing with advanced requirements and applications, e.g., reducing the consump-
tion of limited energy, computation, and communication resources as it is the case in
sensor networks, is possible.

In contrast to the variety of existing sensor management approaches that are fitted
to specific classes of problems, the framework proposed in this thesis is versatilely
applicable. Besides nonlinear models for the observed system and the sensors, a
continuous state space and continuous-valued measurements are assumed. With this
setting, even solving the state estimation problem in closed form is not possible. By
adding the sensor management aspect, this issue gets even worse. On this account, for
both central components of the framework, i.e., state estimator and sensor manager,
approximative approaches are proposed for a feasible sensor management.

The anticipation of future measurements within the time horizon possesses a major
challenge of sensor management. For coping with this challenge, both sensor managers
proposed in this thesis pursue different strategies. The quasi-linear sensor manage-
ment approach employs an open-loop control strategy where no state feedback is
employed, i.e., no future measurements are anticipated. Instead, predictive statistical
linearization over the considered time horizon is used for converting the nonlinear non-
Gaussian sensor management problem into a linear Gaussian one. To significantly
reduce the complexity of determining the optimal configuration sequence, which de-
pends exponentially on the length of the time horizon, a novel optimal pruning method
is introduced.

The information theoretic sensor management approach is aimed at scenarios, where
the conversion into a linear Gaussian sensor management problem is of limited fi-
delity. It employs a closed-loop control scheme, where meaningful future measure-
ment values are explicitly incorporated into the sensor management decisions. The
utility of the sensor configurations is quantified by means of mutual information as
objective function, while state estimation and density representation rely on Gaus-
sian mixture densities for accurately encoding the effect of the measurement value
anticipation.

Efficient state estimation represents the second central component of the framework.
Besides inferring the system state given an actual measurement value, state estima-
tion is also applied multiple times within the sensor managers. Here, the Gaussian
estimator is employed directly within the quasi-linear sensor manager for statistical



linearization. In contrast to existing linearization approaches, not only the first two
moments of the state estimate are considered but also the shape of the distribution
function and thus, information on higher-order moments is incorporated. For high
quality estimation, especially for state inference given an actual measurement as well
as for state estimation within the information theoretic sensor manager, the hybrid
density filter is proposed. This Bayesian estimator employs the approach of approxi-
mating transition densities, which form a probabilistic representation of the nonlinear
system and sensor models. Due to the eponymous hybrid density functions consist-
ing of Gaussians and Dirac delta distributions, the estimation problem can be solved
analytically resulting in a Gaussian mixture presentation of the state estimate.

The recursive processing of the occurring Gaussian mixtures often results in an un-
bounded growth of the Gaussian mixture components. For bounding this growth, a
novel progressive Gaussian mixture reduction algorithm is proposed for feasible state
estimation and sensor management, respectively. Compared to existing reduction
methods, reducing the number of components does not commence from the given
complex mixture. Instead, a new Gaussian mixture is constructed in a bottom-up
fashion. By employing homotopy continuation, the new mixture can be constantly
adapted and its complexity needs only to be increased whenever the approximation
capability of the mixture is not longer sufficient. This approach leads to an improved
exploitation of redundancies and thus, to a more significant reduction with a high
approximation quality at the same time.

The effectiveness and the interdependency of the proposed methods for state estima-
tion and sensor management is evaluated by means of different target localization and
tracking tasks. Here, sensor scheduling in sensor networks as well as motion control
of a mobile sensor are considered in particular.





CHAPTER 1

Introduction

The recent advances in miniaturization, wireless communication, and sensor technology make
it possible to build up and deploy sensor systems with a large variety of sensing modalities
for a smart and persistent surveillance. For instance, sensor networks consisting of numerous
inexpensive, possibly mobile sensors are a popular subject in research and practice. The main
objective of sensor management in such sensor systems is to collect information about the
observed phenomenon or object by utilizing the sensors and their sensing modalities in a most
informative way, which requires making decisions involving multiple time steps. Each decision
generates observations or measurements providing additional information about the internal
state of the observed system. However, the internal state, e.g., position and velocity of a
vehicle or temperature distributions in buildings, can typically only be observed indirectly and
uncertainly, whereby the state information inferred from the observations and the outcome of
any decision is not known for certain. Each subsequent decision is then made based on this
uncertain knowledge.

Even if the sensor management problem is discussed in this thesis from a technical and
scientific point of view, it is also present in everyday life. For instance, the card-game Texas
hold’em poker (see e.g. [62] for game rules and complexity), which has become very popular
due to the large media coverage, can convey an impression of the sensor management problem:

Example 1.1: Texas Hold’em Poker and Sensor Management
A person is playing Texas hold’em poker against two other players. In the current game, the person’s
two private cards are two aces, while the three face-up cards at the board (the so-called flop) are a
four, a five, and a six, all of a different suit. The cards in the person’s hand and the three cards of
the flop are the only cards the person can see. All cards in the game form the internal state. The
person could be beaten, if one of the opponents could complete the cards of the flop to a “three of a
kind”, “four of a kind” or a “straight”. Each of these hands has a specific probability of occurrence.
To obtain information about the unseen cards, the person can observe the reaction of the opponents
when a bet is placed, called (matched) or even raised (increased) by himself or another player.

The person can evaluate different strategies considering the unseen cards and the potential win
or loss of money. In this round, the person decides to approach carefully by placing the minimum
amount of money possible. While one of the opponents drops out, the second one, who is holding
a pair of kings, even raises the initial bet by doubling the amount of money. Now, the player knows
that the opponent left is either bluffing or has a good hand. He decides to call the bet and wait
for the dialer’s next card, which is a ten. Hence, the person will win the game (but still without
knowing it for certain), unless he will not be made insecure by the reactions of his opponent. ■

In summary, sensor management more or less considers the problem of making decisions
sequentially over time in a diverse system of sensors and sensing modalities based on inferring
the internal state and potential observations from uncertain information.
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Figure 1.1: (a) Classical state estimation. (b) State estimation with sensor management.

1.1 State Estimation and Sensor Management

State estimation theory, which considers the problem of inferring the internal state of the ob-
served system from uncertain, noisy observations, forms the foundation of sensor management.
In classical state estimation as depicted in Figure 1.1 (a), the information provided by the
sensors is merely used to estimate the temporal evolution of the system state. However, in
many applications significantly better state estimation results, i.e., information on the system
state can be obtained by exploiting and adapting the sensing modalities of the sensors. Ex-
emplary applications include environmental monitoring by means of a sensor network [47, 53],
localization of landmines [87] or the identification of contamination sources by means of mobile
sensors [38, 130]. To maximize the utility of sensor measurements, sensor management extends
classical state estimation by an additional component, which is referred to as sensor manager
as depicted in Figure 1.1 (b).

In case of the considered probabilistic and continuous modeling of the occurring uncertain-
ties, even solving the state estimation problem generally requires the computation and storage
of continuous-valued functions with no finite parameterization. By additionally considering the
sensor management aspect, a stochastic control problem on the basis of the state estimates
for configuring the sensors has to be solved. Determining the solution of this control problem
involves optimization over multiple time steps, where future, not yet known measurements of
the sensors are anticipated and the sensors are treated jointly for improved estimation results
[152]. Despite of few exceptions including the well-studied linear Gaussian systems (see e.g.
[6, 96, 126]), no analytical and closed-form solution of the state estimation and consequently of
the sensor management problem can be found. In order to avoid computationally demanding
numerical solutions, especially with regard to resource-constrained applications, it is inevitable
to apply efficient approximation techniques for feasible sensor management.

In recent years, many approximate solution approaches to the sensor management prob-
lem have been proposed, where the optimization is often performed only over the next time
step, which is commonly referred to as greedy or myopic sensor management. On the other
side, extensions to multiple time steps are often restricted to specific problem classes (see Sec-
tion 2.6 for a detailed overview). Less attention is paid in sensor management literature to the
underlying estimation problem, whose accurate and efficient treatment builds the foundation
for feasible sensor management. On this account and in contrast to existing approaches, the
framework proposed in this thesis provides techniques for solving the overall sensor manage-
ment problem in itself and for performing efficient state estimation, whereas less assumptions
on the underlying estimation problem are made in order to facilitate versatile applicability.
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Figure 1.2: Considered canonical problems: (a) sensor scheduling in a sensor network and (b) control of a mobile
sensor for localizing and tracking an unknown movable object (red vehicle).

1.2 Canonical Problems and Applications

In order to demonstrate the utility of the proposed sensor management and state estimation
techniques, this section is devoted to a detailed description of two canonical sensor management
problems examined in this thesis. In Figure 1.2, the sensor scheduling problem in a sensor
network and the mobile sensor control problem are depicted. It is important to note that the
proposed framework is not restricted to these problems. In fact, many other sensor management
problems share the same structure and thus, the provided insight can be transferred.

For both canonical sensor management problems, localizing and tracking of a single movable
object is considered as example application throughout this thesis. The aim of this application,
which is typically referred to as (single) target localization and tracking and which is a well-
studied estimation task (see for example [14, 117] and the references therein), can be generally
described as estimating the target kinematics such as position, orientation or velocity from noisy
measurements obtained from sensors. In consideration of both canonical sensor management
problems, target tracking is performed by either scheduling sensors in a sensor network or by
controlling the motion of a mobile sensor, as depicted in Figure 1.2 (a) and (b), respectively.
For both problems, the objective is to influence the sensors in such a way that informative
measurements are performed in order to reduce the uncertainty of the target kinematics to a
low level. Hereby, the main focus is on exposing the effect of the proposed management and
estimation techniques of the framework. Further aspects associated to target tracking such as
target detection, measurement gating or target classification are omitted for clarity reasons.

In the following, both canonical problems, i.e., sensor scheduling and mobile sensor control
are introduced in detail.

1.2.1 Problem: Scheduling in Sensor Networks

For monitoring physical systems as it is the case in, e.g., environmental monitoring, structural
monitoring of buildings, object tracking, or surveillance tasks [2, 46], large-scale sensor networks
have attracted great interest in research and practice. For a meaningful and detailed view on
the physical system, an intelligent processing of the data provided by the distributed sensor
nodes is essential.

Obviously, the best state estimate of the observed system is obtained if each sensor node of
the network performs measurements at each time instant. However, the obtained measurement
values have to be transmitted to some kind of fusion center or leader node, which requires costly
wireless communication and may lead to communication errors or breakdowns due to interfer-
ences if many sensor nodes transmit their measurement values simultaneously. Furthermore,
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often only those measurements are informative that are provided by sensors in close vicinity
of the observed system [189]. To increase the operational lifetime of the sensor network, the
measurement rate should be as low as possible, which on the other hand leads to a decrease
in information gain and consequently in estimation accuracy. Sensor scheduling, which is also
referred to as sensor selection, constitutes a specific sensor management problem and a promis-
ing solution to this trade-off. A sensor schedule specifies a time sequence of sensor nodes to be
allocated for performing future measurements. It can be also considered as some kind of time
multiplex for measurement transmission.

Problems of selecting one out of many sensing modalities of a sensor are closely related
to sensor scheduling. An example is the selection of the beam position in case of a phased-
array radar for detecting unknown objects and for updating the location of known objects
(see e.g. [99]). At each time step, the sensor manager has to decide which object needs to be
observed next.

1.2.2 Problem: Mobile Sensor Control

A different type of sensor management problems arises, if the sensor manager has to control
the motion of a mobile sensor in order to perform informative measurements, e.g., to detect
a contamination source [143] or to estimate unknown parameters of spatially distributed sys-
tems [149]. Here, the sensor possesses an internal state, which evolves over time in dependence
of the sensor management decisions and which affects the outcome of the sensor measurements
in the long term. Due to the internal state, optimization over multiple time steps is here even
more important compared to the previously discussed scheduling problem. Consider for exam-
ple the detection of a movable source of contamination. If the maneuverability of the mobile
sensor is constrained, the future behavior of the source has to be anticipated at an early stage
for obtaining good sensor positionings before all traces of the source are vanished and thus, the
source will be untraceable.

The structure of this management problem also occurs in sensor network tasks like the
dynamical routing of sensor measurements through the network or the time varying assign-
ment of the role of a fusion center/leader node to sensor nodes for minimizing communication
costs [189].

1.3 Outline and Contributions

As stated before, this thesis consists of two main parts, not accounting for this introduction,
problem statement, and conclusions. In the first part of the thesis (Chapter 3 and Chapter 4),
two different sensor management approaches are introduced, whose application domain depends
on the complexity of the underlying estimation problem, i.e., whether the estimation problem
is close to the well-known linear Gaussian problem or not. Both management approaches are
tightly knit with the proposed estimation techniques that form the second part of the framework
(Chapter 5, Chapter 6, and Chapter 7). The structure of the thesis and the relationship between
the chapters is illustrated in Figure 1.3. In the following, a brief overview of the chapters and
their contributions is given.

Chapter 2 In this chapter, the sensor management problem is described formally and a de-
tailed view on the sensor manager component as well as its degrees of freedom is provided.
Here, the introduction to Bayesian estimation and stochastic control, which build the theoreti-
cal foundation of sensor management, is of special interest. Due to the probabilistic modeling of
the uncertainties affecting the sensor measurements and the temporal evolution of the observed
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Figure 1.3: Interdependency between the chapters of this thesis.

system and due to the assumption of a continuous state space and measurement space, it is
pointed out that these theories merely provide a conceptual solution to the sensor management
problem. The chapter closes with a survey of typical objective functions for quantifying the
utility of measurements as well as a survey of existing work on sensor management.

Chapter 3 For an effective sensor management, the long-term effects of decisions on sen-
sor configurations have to be considered, which requires optimization over long time horizons.
With regard to computationally constrained sensor systems, the proposed quasi-linear sensor
management approach facilitates efficient and meaningful decision making on the basis of two
key features: (1) statistical linearization for converting the nonlinear non-Gaussian sensor man-
agement problem into a linear Gaussian one and (2) optimal pruning for quickly solving the
linear Gaussian problem. The conversion coincides with an open-loop control approximation,
which explicitly captures the uncertainty of the system state over the time horizon. Due to
the conversion, the evolution of the uncertainty is exclusively described by the evolution of the
system covariance and thus, it is independent of actual measurement values. By this means,
optimizing the sensor configurations can be performed in a deterministic fashion, where the
information contribution of the sensor configurations for reducing the state covariance can be
easily exploited. This in turn facilitates optimal pruning for an early exclusion of insufficient
configurations from the optimization.

Chapter 4 In case of strong nonlinearities and multimodal probability density functions, the
conversion into a linear Gaussian sensor management problem is of limited fidelity. For this
reason, the information theoretic sensor management approach pursues a closed-loop model
predictive control strategy, where the arrival of future measurements is anticipated and the mea-
surement values are incorporated in the state estimates. This anticipation and incorporation is
based on a deterministic sampling of future measurement values from predicted measurement
density functions that in turn result from the current state density function. In order to achieve
high accuracy, the occurring probability density functions are represented and propagated in
form of Gaussian mixtures. By employing mutual information for quantifying the utility of the
sensor configurations, an accurate capturing and incorporation of the information encoded in
the density functions is provided. Unfortunately, the Gaussian mixture representation of the
density functions refuses a closed-form evaluation of the mutual information. In order to avoid
the application of demanding numerical approximation techniques, tight and computationally
cheap bounds on the entropy terms that form mutual information are derived instead.

Chapter 5 Statistical linearization is a key technique the quasi-linear sensor manager (Chap-
ter 3) relies on. For an effective determination of regression points, a novel deterministic
approximation scheme is developed. Here, a parametric density function representation of the
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regression points is employed, which allows approximating the cumulative distribution function
of the Gaussian density that represents the state estimate. On the basis of this regression
point selection scheme, a Gaussian estimator is introduced, for which the computationally de-
manding parts for regression point determination are carried out off-line in order to obtain an
efficient estimator. Additionally, an extension for non-Gaussian scenarios is presented, where
the state estimates are represented by means of Gaussian mixture densities. In contrast to
existing estimators employing statistical linearization like the well-known unscented Kalman
filter [91, 183], estimation quality of the novel Gaussian estimator can be adapted by adjusting
the number of regression points used.

Chapter 6 In nonlinear state estimation, it is generally inevitable to incorporate approxi-
mations of the exact estimation algorithm. There are two possible ways for approximation:
Approximating the nonlinear system and sensor models or approximating the probability den-
sity function of the state. The key idea of the introduced novel estimator called hybrid density
filter (HDF) relies on approximating the probabilistic representation of the nonlinear system
and sensor models, namely the transition density and the likelihood, respectively. These con-
ditional densities relate the current system state to the future system state for the prediction
step or to potential measurements for the measurement update step. A hybrid density consist-
ing of both Dirac delta distributions and Gaussian densities is used for approximation. This
chapter addresses the optimization problem for treating the conditional density approximation.
Furthermore, efficient estimation algorithms are derived based upon the special structure of the
hybrid density, which yields a Gaussian mixture representation of the state density.

Chapter 7 For an efficient state estimation regarding the mixture version of the Gaussian
estimator (Chapter 5), the hybrid density filter (Chapter 6), and many other existing state
estimators, it is inevitable to approximate the occurring Gaussian mixtures by mixtures with
fewer components to keep the computational and memory complexity bounded. Appropriate
approximations can be typically generated by exploiting the redundancy in the shape descrip-
tion of the original mixture. In contrast to the common approach of successively merging pairs
of components to maintain a desired complexity, the novel progressive Gaussian mixture re-
duction (PGMR) algorithm introduced in this chapter avoids to directly reduce the original
Gaussian mixture. Instead, an approximate mixture is generated in a bottom-up fashion by
employing homotopy continuation. This allows starting the approximation with a single Gaus-
sian, which is constantly adapted to the progressively incorporated true Gaussian mixture.
Whenever a user-defined bound on the deviation of the approximation cannot be maintained
during the continuation, further components are added to the approximation. This constructive
procedure facilitates a significant reduction of the number of components even for complicated
Gaussian mixtures.

Chapter 8 The thesis closes with conclusions and an outlook on future extensions to the
proposed sensor management framework.



CHAPTER 2

Considered Problem

The sensor management problem has strong relations to stochastic control problems for dynamic
systems. However, compared to these problems, there is one essential difference. Instead of
controlling the evolution of the dynamic system by selecting appropriate control inputs, sensor
management focuses on controlling the evolution of the information gathering on the system
state. Once new information becomes available, it is forwarded to an estimator for inferring the
state of the dynamic system. Thus, sensor management requires the understanding of several
topics from the fields of stochastic optimal control and Bayesian state estimation. This chapter
is concerned with establishing the background knowledge on methods from these fields, which
are relevant for the proposed probabilistic sensor management framework. Furthermore, the
basic assumptions as well as the general structure of the proposed framework are pointed out.

The employed probabilistic models of the observed physical system and of the sensors are
introduced in Section 2.1. Based on this information, the general structure of the sensor man-
agement framework is described, which fundamentally employs a model predictive and moving
horizon control scheme, respectively. The several degrees of freedom arising from this control
scheme and the specification of these degrees of freedom in the proposed quasi-linear sensor
management approach and the information theoretic sensor management approach are out-
lined in Section 2.2. Another essential part of the framework are the employed estimators for
planning and for on-line state inference. A brief introduction to Bayesian state estimation, the
arising computational problems and an overview on the relevant and utilized (approximate)
state-of-the-art estimators is given in Section 2.3. In Section 2.4, those parts of the stochastic
control theory relevant for this thesis are briefly described. Moreover, a motivation for employ-
ing model predictive control is given. For specifying certain control objectives, the stochastic
controller relies on objective functions. In this thesis, both covariance-based and information
theoretic objectives are considered. A description of important properties of these objective
functions is part of Section 2.5. Finally in Section 2.6, existing work on sensor management
related to this thesis is surveyed.

2.1 Probabilistic Models

Throughout this thesis, probabilistic models for characterizing the dynamic behavior of the
physical system and for mathematically relating the state of the system to the sensor mea-
surements are employed. The probabilistic models of the system and the sensors are given in
state space form, where all uncertainties of the models are described by means of discrete-time
stochastic processes. Here, the state vector xk ∈ Rnx of the system comprises the smallest set
of variables necessary for completely determining the dynamic behavior at time steps k ≥ 0.
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2.1.1 System Model

The propagation of xk from time step k to time step k + 1 is described by a so-called sytem
model

xk+1 = ak(xk,wk) , (2.1)

where ak( ⋅ , ⋅ ) : Rnx×Rnw → Rnx is the known nonlinear system function andwk ∈ Rnw is zero-
mean white noise. For simplicity and brevity, no system input is assumed, as the system input
is not a subject of control throughout this thesis. The effect of a system input is implicitly given
by the time-variance of the system function. The random vectors xk and wk are characterized
by the probability density functions fxk (xk) and fwk (wk), respectively. Furthermore, the Markov
property that xk+1 only depends on xk is assumed.

Example 2.1: System Model for Target Tracking
The dynamic behavior of the mobile target in tracking scenarios (see Section 1.2) is often described
by the so-called constant velocity system model [123], which is given by the linear Gaussian system

xk+1 = A ⋅xk +wk .

The system state xk = [xk, ẋk,yk, ẏk]
T of the target comprises the two-dimensional position

[xk,yk]
T and the velocities [ẋk, ẏk]

T in x and y direction. The system matrix and the covariance
matrix of the zero-mean Gaussian white noise wk are

A =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦ , Cw
k = q ⋅

⎡⎢⎢⎣
T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T

⎤⎥⎥⎦ ,

respectively, where T is the sampling interval and q is the scalar diffusion strength. ■

2.1.2 Sensor Model

Observations made by sensors provide information on the current system state. For a single
sensor i ∈ {1, 2, . . . , S}, the probabilistic sensor model

zik = ℎik(xk, u
i
k,v

i
k) (2.2)

relates measurements zik ∈ Rni
y to the state xk, where the actual measurement value ẑik is

a realization of zik. The sensor model further consists of the known nonlinear measurement

function ℎik( ⋅ , ⋅ ) : Rnx×U i×Rni
v → Rni

y and the zero-mean white measurement noise vuk ∈ Rnu
v

with density function f v,ik (vik). Here, it is assumed that for i ∕= j, vik and vjk are stochastically
independent.

For the senor management problems considered here, it is assumed that the sensors offer
several sensing modalities. At time step k, a modality for sensor i can be selected by means of
a so-called configuration variable uik ∈ U i, which takes values from a finite set. For the case of
managing many sensors simultaneously, the configuration vector uk = [(u1

k)
T, (u2

k)
T, . . . , (uSk )T]T

comprises the single sensor configuration variables and also takes values from a finite set denoted
by

uk ∈ U = U1 × U2 × ⋅ ⋅ ⋅ × US = {u(1), u(2), . . . , u(∣U∣)} .
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Accordingly, the probabilistic sensor model comprising all sensors is defined as

zk =

⎡⎢⎢⎣
z1
k

z2
k
...
zSk

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
ℎ1
k(xk, u

1
k,v

1
k)

ℎ2
k(xk, u

2
k,v

2
k)

...
ℎSk (xk, u

S
k ,v

S
k )

⎤⎥⎥⎥⎦ =: ℎk(xk, uk,vk) . (2.3)

Thus, the vectors zk, ℎk( ⋅ , ⋅ , ⋅ ), and vk are obtained by concatenating the corresponding single
sensor components.

By means of the configuration vector uk, it is for example possible to select among several
positions or orientations of a sensor, to select the focal distance in case of a camera sensor, or
to select a sensor from a sensor network for performing the next measurement. As the set of
configuration vectors U is finite, selecting from various configurations is equivalent to selecting
from various sensor models.

Example 2.2: Mobile Sensors
For the target tracking application considered in Example 2.1, distance measurements or bearing
measurements from mobile sensors can be utilized in order to track the state of the target (see the
mobile sensor control problem introduced in Section 1.2.2). Here, the nonlinear sensor model is
given by

zk =
√

(xk − xsk)2 + (yk − ysk)2 + vk , (2.4)

in case of a mobile distance sensor and

zk = arctan

(
yk − ysk
xk − xsk

)
+ vk , (2.5)

in case of a mobile bearing sensor. The (deterministic) position of the sensor uk = [xsk, y
s
k]

T can be
varied by means of the configuration variable. Since uk is from a finite set, only a finite number of
sensor positions can be chosen at time step k. ■

Example 2.3: Sensor Scheduling
For the sensor scheduling problem introduced in Section 1.2.1, the configuration vector is a scalar
variable uk and the set U = {1, 2, . . . , S} contains the indices of the sensor models (2.2). Thus,
for the index uk of the selected sensor for time step k, the sensor model (2.3) can be reformulated to

zk = zukk = ℎukk (xk,v
uk
k ) . ■

According to the notation for the sensor scheduling problem, in this thesis the shorthand
notation x

uk
k := xk(uk) is sometimes used for a quantity xk( ⋅ ) that depends on the configuration

vector uk.

2.1.3 Sensor State

For many sensor management problems, the selection of a configuration uk not only affects
the sensor model for the current time step k, but also for all future time steps. Here, the
sensor model possesses some kind of internal memory or sensor state and sensor management
problems for those sensor models are called state-dependent. In contrast to the system state,
the sensor state is assumed to be a deterministic quantity.



10 Chapter 2. Considered Problem

Example 2.4: Mobile Sensors (continued)
Consider again the mobile sensors for target tracking described in Example 2.2. Contrary to the
previous example, the set of configurations U does not contain potential sensor positions [xsk, y

s
k]

T.
Instead, U comprises possible steering angles for the sensor. The position [xsk, y

s
k]

T and the orien-
tation �sk of the mobile sensor is changed by applying the steering angle u ∈ U according to the
kinematic model ⎡⎣xskysk

�sk

⎤⎦ =

⎡⎣xsk−1

ysk−1

�sk−1

⎤⎦+

⎡⎣v ⋅ cos(�sk−1 + u)
v ⋅ sin(�sk−1 + u)

u

⎤⎦ , (2.6)

where v is the known velocity of the sensor. Here, [xsk, y
s
k, �

s
k]

T represents the sensor state that is
permanently affected by the configuration u. As described in Section 1.2.2, selecting an appropriate
steering angle u for such a mobile sensor corresponds to a state-dependent sensor management
problem. ■

If not stated elsewhere, the thesis is concerned with state-dependent problems. The opposite
case, where a configuration uk affects the sensor model merely for time step k, the management
problem and the sensor model are referred to as stateless. The sensor scheduling problem
considered in Example 2.3 is a typical example for a stateless sensor management problem.

2.2 Sensor Management

Formally, sensor management is aimed at determining a time sequence of configurations for a
set of sensors in order to achieve a specific objective, e.g., to gain maximum information about
the observed system. In this thesis, the sensor manager calculates the optimal configuration u∗k
for the current time step k considering the following N time steps. The optimal configuration is
applied to the sensors, i.e., the sensors perform the measurement given the new configuration,
and the resulting measurement value ẑk is used for updating the state estimate by means of the
Bayesian estimator. Afterwards, a new sensor management process is initiated. This procedure
is depicted in Figure 2.1.

2.2.1 Model Predictive Control

From a control perspective, the sensor manager repeatedly determines the optimal configuration
sequence u∗k,0:N−1 by solving an optimal control problem over a finite N -step time horizon. As
sensor management controls the information gathering process about the observed system, the
optimal sequence u∗k,0:N−1 corresponds to an optimal sequence of state estimates x∗k,0:N , which
comprises the lowest amount of uncertainty about the true system state.

For clarifying the notation, the first time index k denotes the current time step, while
the second time index n ∈ {0, 1, . . . , N} indicates time steps within the optimization horizon.
The first element u∗k = u∗k,0 of the optimal configuration sequence u∗k,0:N−1 is applied to the
sensors. As the optimization or updating of the configuration sequence is repeated at the next
time step k+ 1 based on the new information obtained from the system given in form of a new
measurement value ẑk, this management procedure corresponds to the so-called model predictive
control paradigm1. A detailed description of different control schemes and the relation to the
considered model predictive control paradigm are given in Section 2.4.2.

1 Alternatively: moving, receding, or rolling horizon control



2.2. Sensor Management 11

Sensor S
. . .

Sensor 2

Sensor 1

Sensor
Manager

Delay Bayesian
Estimator

State xk+1State xk

Configuration u∗k Measurement ẑk

Figure 2.1: General sensor management framework.

2.2.2 Degrees of Freedom

According to Figure 2.1, the proposed probabilistic sensor management framework consists of
two main components: 1. the sensor manager, and 2. the Bayesian estimator for state infer-
ence. While the set of sensors is typically predetermined by the application, sensor manager and
estimator for inference can be adjusted in order to meet given constraints on computational,
energy, and memory resources of the sensor nodes, required estimation accuracy, or implemen-
tation complexity. The sensor manager offers four basic parameters or degrees of freedom for
adjustment:

Length of Time Horizon The management process for determining the optimal configuration
u∗k may be myopic (one-step time horizon) or non-myopic (long-term planning). In many
situations, long-term planning will provide better configurations than myopic management,
especially, where the dynamics of the observed system or the gain of sensors change predictably
[42, 107]. The better estimation performance of a non-myopic manager is at the expense of an
increased computational burden and memory requirements, which grow exponentially with the
length of the time horizon.

Type of Optimization If the manager anticipates and utilizes future information about the
system state within the time horizon, closed-loop control is applied. In contrast to this, open-
loop control only constructs a plan based on the current system state without anticipating future
state information (see Section 2.4). Due to this difference in utilizing state information, closed-
loop control typically outperforms open-loop control. However, a sensor manager employing
closed-loop control is of higher complexity.

Estimator for Planning The sensor manager itself employs a state estimator in order to
determine the next configuration. Especially for long-term sensor management, this estimator
has to be executed multiple times. Thus, the more accurate and thus complex the employed
estimator, the larger the required resources and the better the estimation performance.

Here, it is important to note that the estimator employed for sensor management not
necessarily has to be of the same type or the same complexity as the one used for state inference
given the actual measurement value ẑk. A practical way to trade off estimation accuracy against
resource consumption is to employ an accurate estimator like a particle filter [9, 54] or the hybrid
density filter (HDF, see Chapter 6) for state inference, while a less complex estimator like a
Gaussian estimator (see Chapter 5) or a HDF with fewer components is utilized for management
purposes.

Objective Function By means of the objective function, the sensor manager quantifies the
utility of a particular configuration (myopic) or sequence of configurations (non-myopic). Two
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different function classes are considered throughout this thesis: covariance-based objective func-
tions employ scalar functions of the state covariance matrix, while information theoretic ob-
jective functions are based on the differential entropy (see Section 2.5). Information theoretic
objectives generally consider sufficient statistics of the system state, which are given by the
probability density function of the state. This leads to a more demanding design of the sensor
manager.

2.2.3 Proposed Realizations

Altogether, the proposed sensor management framework offers various combinations for ad-
justment to a given application. However, these parameters are not fully orthogonal and for
some scenarios, parameters are not arbitrary. Employing a Gaussian estimator for planning
for example requires the use of covariance-based objective functions, while for linear Gaussian
systems, closed-loop control and open-loop control result in exactly the same planning results.

In this thesis, efficient algorithms for two specific parameter settings are proposed (see Ta-
ble 2.1). The first realization quasi-linear sensor management presented in Chapter 3 is devoted
to very resource-efficient open-loop model predictive control based computation of configura-
tions, where a Gaussian estimator is employed during planning. Due to neglecting higher-order
information about the system state, the complexity of the resulting sensor manager can be
drastically reduced. Thus, this realization is ideally suited for computationally constrained
sensor nodes.

On the other hand, the realization information theoretic sensor management presented in
Chapter 4 anticipates future measurement values and utilizes full information on the system
state, as a closed-loop model predictive control scheme together with an information theoretic
objective function and Gaussian mixtures for characterizing the density function of the system
state are employed. The resulting manager is indeed more complex as the one presented in
Chapter 3, but in exchange it is more appropriate for highly nonlinear and non-Gaussian
scenarios and thus, the achievable estimation performance in such scenarios is superior.

These realizations mark the two extremes of the sensor management framework. For de-
signing sensor managers with regard to the remaining parameter combinations, the algorithms
and techniques developed for both proposed realizations can be utilized.

Table 2.1: Proposed realizations of the sensor management framework.

Chapter 3 Chapter 4

Length of time horizon arbitrary arbitrary
Type of optimization open-loop closed-loop

Estimator for planning Gaussian Gaussian mixture
Objective function covariance-based information theoretic

Estimator for inference arbitrary arbitrary

2.3 State Estimation

In all models described in Section 2.1, the state as well as the noise are described by means of
random vectors. Thus, for propagating the state vector over time and for incorporating mea-
surements, the Bayesian estimator framework is used. Since calculating the Bayesian estimate
of the state in closed form is impossible in general, an approximate solution is required. In
the following, the general Bayesian estimator framework and the approximate state-of-the-art
estimators, which are relevant for this thesis, are briefly introduced.
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Figure 2.2: Interaction between the system and sensor model and the Bayesian estimator.

2.3.1 Bayesian Estimator

For determining a state estimate of xk at time step k in terms of a probability density func-
tion fxk (xk∣ẑ0:k, u0:k) given the measurement sequence ẑ0:k = (ẑ0, . . . , ẑk) and the configuration
sequence u0:k = (u0, . . . , uk), two steps have to be performed alternately in a Bayesian setting,
namely the prediction step and the measurement update (see Figure 2.2). Here, it is assumed
that an initial probability density function fx0 (x0) at time step k = 0 is available.

Prediction step

The prediction step of the Bayesian estimator employs (2.1) and the prior densityfxk(xk∣ẑ0:k, u0:k)
at time step k for recursively propagating the state estimate in time. It is described according
to the Chapman-Kolmogorov equation (see for example [165]) and results in a predicted density

fpk+1(xk+1) := fxk+1(xk+1∣ẑ0:k, u0:k) =

∫
Rnx

fTk (xk+1∣xk) ⋅ fxk (xk∣ẑ0:k, u0:k) dxk (2.7)

characterizing the predicted state xpk+1, i.e., xpk+1 is the state estimate of xk+1 for time k + 1
incorporating the configuration sequence u0:k and the measurement sequence ẑ0:k. In (2.7),
fTk (xk+1∣xk) is the transition density

fTk (xk+1∣xk) =

∫
Rnw

�(xk+1 − ak(xk, wk)) ⋅ fwk (wk) dwk (2.8)

depending on the system model in (2.1) and the density fwk (wk) of the noise wk. Typically, the
posterior density is used in (2.7), i.e., fxk (xk) = f ek(xk).

Measurement Update

The posterior density f ek(xk) characterizing the posterior state estimate xek is itself updated by
considering (2.3) and applying Bayes’ law [165] according to

f ek(xk) := fxk (xk∣ẑ0:k, u0:k) = ck ⋅ fLk (ẑk∣xk, uk) ⋅ f
p
k (xk) , (2.9)

where ck = 1/
∫
fLk (ẑk∣xk, uk) ⋅ f

p
k (xk) dxk is a normalization constant and fLk (ẑk∣xk, uk) is the

so-called likelihood for a given measurement ẑk. The likelihood is derived from the conditional
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density

fk(zk∣xk, uk) =

∫
Rnv

�(zk − ℎk(xk, uk, vk)) ⋅ f vk (vk) dvk (2.10)

that gives the probability for the occurrence of a measurement zk given the sensor model (2.3),
the density f vk (vk) of the noise vk, the current state estimate xk and the sensor configuration
uk, i.e., fk(zk∣xk, uk) can be interpreted as the aggregation of all possible likelihoods.

Recursive Estimation

The predicted and posterior densities resulting from alternately applying the two steps of the
Bayesian estimator contain all knowledge of the history, i.e., only the density of the current
estimate has to be stored, while all measurement values and previously calculated estimates can
be discarded. This allows recursively performing state estimation on the basis of the current
estimate. However, recursive Bayesian estimation for nonlinear systems is of conceptual value
only, since the complex shapes of the transition density and likelihood prevent a closed-form
and efficient solution.

Exceptions include the case of linear systems with Gaussian random variables for which
the Kalman filter provides exact solutions in an efficient manner [96]. For the case of non-
linear systems with arbitrarily distributed random variables, there exists no analytic density
that can be calculated without changing the type of representation in general. To overcome
this problem, an appropriate approximation is inevitable. The well-known extended Kalman fil-
ter uses linearization to apply the Kalman filter equations to nonlinear systems [169, 172], while
linear regression Kalman filters offer higher-order accuracy by using a deterministic sampling
approach [114, 115].

All these Kalman filter based estimators provide estimates of the system state in terms of
mean vectors and covariance matrices. An equivalent representation of the estimate would be
a Gaussian density function, whereby these estimators can be considered as Gaussian estima-
tors. This consideration is justified by the fact that given just the first two moments mean and
covariance, a Gaussian density is the Kullback-Leibler divergence minimizing or entropy maxi-
mizing density function for approximating the true density function [35]. Since these Gaussian
estimators are used in Section 3 for planning purposes, brief descriptions are provided in the
next sections. Non-Gaussian estimators are treated in Section 6.

2.3.2 Kalman Filter

For the important special case of linear dynamic systems with Gaussian random variables, the
optimal Bayesian estimate can be calculated in closed form. Here, the temporal behavior of
the observed system is described by the linear discrete-time probabilistic model

xk+1 = Ak ⋅xk + Bk ⋅wk , (2.11)

where Ak ∈ Rnx×nx and Bk ∈ Rnx×nw are real-valued matrices, wk is white Gaussian noise
with mean ŵk and covariance matrix Cw

k , and the initial state vector x0 is also Gaussian with
mean x̂0 and covariance matrix Cx

0 .
A sensor is described by the linear discrete-time sensor model

ẑk = H
uk
k ⋅xk + vk , (2.12)

where H
uk
k = Hk(uk) ∈ Rnz×nx is the real-valued time-variant measurement matrix, and vk

is zero-mean white Gaussian noise with positive definite covariance matrix Cv
k affecting the

sensor.
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Thanks to the fact that the transition density (2.8) is Gaussian for a specific value of xk+1,
the solution of the Bayesian prediction step leads directly to the prediction step of the Kalman
filter

x̂pk+1 = Ak ⋅ x̂ek + Bk ⋅ ŵk ,
Cp
k+1 = AkC

e
kA

T
k + BkC

w
kB

T
k , (2.13)

where x̂pk+1 is the mean vector of the state estimate xpk+1 at time step k + 1 conditioned on
the measurement values up to time k, and Cp

k+1 is the corresponding covariance matrix. Since
the likelihood (2.10) is Gaussian due to the additive Gaussian measurement noise vik, the
optimal solution of the Bayesian estimator leads to the measurement update of the Kalman
filter according to [156]

x̂ek = x̂pk + K
uk
k ⋅

(
ẑk −H

uk
k ⋅ x̂

p
k

)
, (2.14)

Ce
k = Cp

k −K
uk
k H

uk
k Cp

k , (2.15)

with Kalman gain

K
uk
k = Cp

k

(
H
uk
k

)T
(
H
uk
k Cp

k

(
H
uk
k

)T
+ Cv

k

)−1

.

Hence, the mean vector x̂ek of the state estimate xek results from x̂pk by incorporating the mea-
surement value ẑk, while Ce

k is the corresponding covariance matrix. In the Gaussian case, the
mean (2.14) and covariance matrix (2.15) completely describe the posterior density function.
Same is true for the prediction step.

Of special importance for the sensor management problem considered in Section 3 is the
combination of the (2.15) with (2.13) resulting in the so-called discrete-time Riccati equation

Cp
k+1 = AkC

p
kA

T
k + BkC

w
kB

T
k −AkKkH

uk
k Cp

kA
T
k . (2.16)

It is worth mentioning that (2.16) is invariant to the actual measurement sequence ẑ0:k =
(ẑ0, . . . , ẑk). Accordingly, the covariance matrix can be computed off-line in advance.

2.3.3 Extended Kalman Filter

The Kalman filter provides optimal estimates only for linear Gaussian models. However, the
Kalman filter equations are often applied to nonlinear models by means of the extended Kalman
filter (EKF). Here, it is assumed that the nonlinear model can be approximated by a linear
model through a first-order Taylor-series expansion around a nominal value [169]. For the
system model (2.1), the linearized version expanded around x̂ek and ŵk is given by

xk+1 ≈ ak(x̂
e
k, ŵk) + Āk ⋅ (xk − x̂ek) + B̄k ⋅ (wk − ŵk) ,

where

Āk =
∂ak(xk, wk)

∂xT
k

∣∣∣
xk=x̂ek,wk=ŵk

, B̄k =
∂ak(xk, wk)

∂wT
k

∣∣∣
xk=x̂ek,wk=ŵk

.

For the sensor model (2.3), linearization around x̂pk and v̂k leads to a matrix H̄k. To obtain
an approximate solution of the Bayesian equations, only the first two moments, i.e., mean
and covariance are calculated. While the mean vector still can be determined by employing
the nonlinear models (2.1) and (2.3), the matrices Āk, B̄k, and H̄k are used in the Kalman
filter equations (2.13) and (2.15) for calculating the covariance. In case of mild nonlinearities
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or large noise covariances, the approximation error of the EKF is acceptable. However, for
linearization the spread of the state vector is not taken into account. Furthermore, only a
first-order Taylor-series expansion of the nonlinear functions is employed, which often leads to
the divergence of the EKF for strong nonlinearities [134].

Compared to the Kalman filter, the covariance matrices calculated by the extended Kalman
filter now depend on the measurement values since the nominal values used for linearization
are variant to the measurement values. Thus, off-line computation is not longer possible.

2.3.4 Linear Regression Kalman Filter

To overcome the flaws of the EKF, linear regression Kalman filters (LRKF) employ determinis-
tic sampling techniques for propagating the mean and variance of the state vector through the
system and measurement function. This allows linearizing the nonlinear functions by weighted
statistical linear regression [114, 115], where additionally the covariance of the linearization
error is determined and considered for estimation purposes. Thus, LRKFs can provide esti-
mation results with superior accuracy compared to the EKF (see e.g. [129, 183]), while the
computational complexity is approximately the same.

More precisely, weighted statistical linear regression calculates a matrix A and a vector b
such that

y = g(x) ≈ A ⋅x+ b , (2.17)

where the nonlinear transformation y = g(x) substitutionally represents the prediction of the
state xk or the measurement zk by means of the nonlinear functions ak( ⋅ ) or ℎk( ⋅ ), respectively.
For this purpose, y = g(x) is evaluated at L regression points {xi, yi} with weights !i, where

y
i

= g(xi) and
∑

i !i = 1. Then A, b are determined by minimizing the sum of squared errors

{A, b} = arg min
A,b

L∑
i=1

!i ⋅ (ei)
T ⋅ ei , (2.18)

with ei = y
i
− (Axi + b). The solution of (2.18) is

A = CT
xyC

−1
x , b = ŷ −A ⋅ x̂ ,

where x̂ =
∑

i !i ⋅xi, ŷ =
∑

i !i ⋅ yi, Cx =
∑

i !i(xi− x̂)(xi− x̂)T, and Cxy =
∑

i !i(xi− x̂)(y
i
−

ŷ)T. The linearization error characterized by the deviations ei has zero-mean and covariance
matrix

Ce = Cy −ACxA
T .

and acts as additional noise source [181].
For a statistical linearization of (2.1) and (2.3), the idea is to use augmented vectors Xk =

[xT
k ,w

T
k ,v

T
k ]T comprising the state and the noise. Several estimators developed in the recent

years are based on this idea and thus can be classified as linear regression Kalman filters. These
estimators differ in the number of used regression points and the way these points are chosen.
The most popular linear regression Kalman filter is the unscented Kalman filter (UKF), which is
based on the so-called unscented transform [91, 92]2. Further LRKFs are the central differences
filter [160], divided differences filter [137], or the Gauss-Hermite filter [7, 85]. The Gaussian
estimator proposed in Section 5 can also be considered as LRKF.

2 A Matlab implementation of the UKF is available at [50].
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2.4 Stochastic Control

The main task of the considered sensor management problem is the sequential selection of
configurations, where planning over a finite time horizon with length N , i.e., planning N time
steps ahead, is involved. Such sequential decision problems under uncertainty are covered by
the theory of Markov decision processes (MDPs). The primary assumption of MDPs is that
the measurements provide enough information for exactly determining the system state. This
assumptions does not hold for the sensor management framework considered here. Due to the
noise-corrupted nonlinear sensor model (2.3), inferring the system state by means of actual
measurement values leaves residual uncertainty concerning the system state. Problems of this
type are covered by partially observable Markov decision processes (POMDPs), which are a
special case of MDPs [56, 10].

2.4.1 POMDP

A partially observable Markov decision process consists of

∙ the time index k ∈ {0, 1, . . . , K − 1} , with K being the length of the observation period,

∙ the state xk of the dynamic system,

∙ a set U of controls uk ∈ U ,

∙ a real-valued single step objective functions gk(xk, uk) to be minimized (or maximized),
and

∙ the transition density fTk (xk+1∣xk) and likelihood fLk (ẑk∣xk, uk) .

This formulation coincides to the closed-loop control scheme, where the controller anticipates
and utilizes future information. It can be reformulated as a fully observed MDP by introducing
the so-called information set ℐk = {u0, ẑ0, . . . , uk−1, ẑk−1} [34]. This set comprises the history
of all applied controls and the resulting measurement values. The solution of a POMDP comes
in the form of a policy

uk = �
k
(xk) , (2.19)

i.e., a control law that specifies which control variable should be applied given the system
state at a particular time step. Here, it is assumed that xk is characterized by a sufficient
statistic that subsumes all available information on xk at time step k, i.e., the sufficient statistic
represents an estimate of the state based on the initial state x0 and the information set ℐk.
Due to the Markov assumption, the probability density function xk ∼ fxk (xk∣ℐk) is a sufficient
statistic for the entire information set [27]. Thus, merely the density function at time step k
needs to be stored.

Based on the system model (2.1), the sensor model (2.3) and the policy (2.19), the cumu-
lative objective results from the backward recursion

Jk(xk) = min
�
k

{
gk(xk, �k(xk)) + Ezk

{
Jk+1(xk+1)∣xk, zk, �k(xk)

}}
(2.20)

commencing from the terminal objective JK−1(xK−1) = min�
K−1

gK−1(xK−1, �K−1
(xK−1)).

This recursion is also known as Bellman’s equation [16, 17] and the summand Ezk
{ ⋅ } is often

referred to as value-to-go. According to this, the optimal policy satisfies

u∗k = �∗
k
(xk) = arg min

�
k

{
gk(xk, �k(xk)) + Ezk

{
Jk+1(xk+1)∣xk, zk, �k(xk)

}}
.
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Under certain assumptions, it is possible to prove that sequential decision processes con-
verge, i.e., the uncertainty of the state decreases over time [51]. However, solving POMDPs
even for discrete states and discrete measurement values is PSPACE-complete3, as the size of
ℐk grows rapidly with the number of measurement values and control values [140]. In case of
continuous-valued states, solving POMDPs is intractable in general. A famous exception is
LQG4, where the separation principle leads to a decomposition into an estimation part and a
control part [18, 21]. For an survey of POMDP solution methods see [77]. Related fields to
stochastic control and POMDPs are reinforcement learning [93, 175] and experimental design
[25, 147].

2.4.2 Closed-loop vs. Open-loop Control

The primary assumption of POMDPs is that state feedback is employed, i.e., the information
about the system state is revealed to the controller and the optimal policy utilizes that new
information as it becomes available. This procedure corresponds to a closed-loop control scheme.
In many practical applications, however, the total time horizon that has to be considered by
the stochastic controller, i.e., the length K of observation period of the system, may be too
long. Employing open-loop control instead, where the primary assumption of POMDPs is not
made, leads to an approximate procedure, where the optimal plan (rather than the policy as
in the closed-loop case) can often be found with a significantly lower computational demand.
Admittedly, no state feedback is employed.

As an compromise between open-loop control and closed-loop control, open-loop feedback
control (OLFC) can be used alternatively. Like in open-loop control, no future information is
anticipated. But when a new measurement value becomes available, it is used for calculating an
updated plan, i.e., the open-loop feedback controller first determines the configuration sequence
for the observation period in an open-loop fashion, executes one or more steps of the sequence,
and then calculates a new sequence that incoporates the newly received measurement value. It
can be shown, that OLFC is no worse than open-loop control, but the deviation from closed-
loop control can be arbitrarily large [21]. The plans, however, are still constructed considering
the total length K of the observation period.

To avoid the computational burden of optimizing over long time horizons, a model predictive
control scheme is employed for the proposed sensor management framework instead. As stated
in Section 2.2, the sensor manager repeatedly determines the optimal configuration sequence
over a moving or rolling horizon. The length N of this moving horizon is considered to be
much smaller than the observation period K of the system, which may be infinite. Depending
on the optimization type, two possible model predictive control schemes arise: at each step
of the management problem, the closed-loop model predictive controller solves a POMDP for
the moving horizon, while the open-loop model predictive controller determines a plan for the
moving horizon that does not anticipate the availability of future information5. Whenever a
new measurement value is received, both control schemes utilize this new information about
the system state by calculating an updated policy and plan, respectively. Obviously, the open-
loop model predictive controller provides an approximate solution to the closed-loop model
predictive control problem. The computations, however, are typically less complicated since no
expectations with respect to uncertain measurements are necessary.

3 PSPACE is a superset of NP and is the set of decision problems that can be solved by a
Turing machine using a polynomial amount of memory and unlimited computation time.

4 LQG: l inear quadratic Gaussian control, i.e., linear system and sensor model with
quadratic objective function and additive Gaussian noise

5 The combination of model predictive control with closed-loop/open-loop control is often
also referred to as limited lookahead closed-loop/open-loop control. Open-loop model
predictive control can be considered as the combination of OLFC with a limited and
moving time horizon.
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2.5 Objective Functions

The primary goal of the proposed sensor management framework is the determination of a
sequence of configurations in order to gain maximum information about the state of the ob-
served system. For achieving this goal, the objective function gk(xk, uk) to be minimized (or
maximized) by the employed control scheme has to be specified appropriately. In the follow-
ing, definitions of the objective function are given, which are employed for sensor manage-
ment throughout this thesis. They can be categorized into two classes of objective functions:
covariance-based and information theoretic.

2.5.1 Covariance-based Objective Functions

Covariance-based objective functions depend on the expected posterior covariance matrix, which
is defined according to

Ce
k(uk) := Cov{xek∣zk, uk} = Exek,zk

{
(xek − x̂ek)(xek − x̂ek)T∣uk

}
,

where x̂ek is the mean vector of posterior state estimate (see Section 2.3.1). The covariance
matrix indicates the amount of uncertainty subsumed by the state estimate xek. By employing
the following scalar functions, a quantification of the subsumed uncertainty is possible:

Determinant The determinant-based objective function is defined as

gk(xk, uk) = ∣Ce
k(uk)∣ . (2.21)

Minimizing the determinant of the posterior state estimate leads to a minimization of the
total variance of the estimate, as the determinant of Ce

k(uk) is proportional to the volume
of the covariance ellipsoid [135].

Trace The trace-based objective function is defined as

gk(xk, uk) = trace(Ce
k(uk)) . (2.22)

Minimizing the trace of the expected covariance matrix leads to a minimization of the
expected squared estimation error, as trace(Ce

k(uk)) = Exek,zk

{
(xek − x̂

e
k)

T(xek − x̂
e
k)∣uk

}
.

This also corresponds to minimizing the perimeter of the rectangular region enclosing the
covariance ellipsoid [135].

Eigenvalue The eigenvalue objective function is defined as

gk(xk, uk) = �max(Ce
k(uk)) .

The maximum eigenvalue �max of Ce
k(uk) corresponds to the length of the largest axis of

the covariance ellipsoid [135]. Thus, minimizing �max leads to a minimization of the largest
variance of xek.

Additionally, the expected covariance matrix can be weighted by means of a weighting matrix
Wk according to Wk ⋅Ce

k(uk) ⋅WT
k . This matrix allows adjusting or underrating different units

of the state vector, e.g., if the state vector comprises information about position and velocity
as in the target tracking Example 2.1. In cases, where the attention is on achieving a minimal
terminal covariance Ce

N−1, while the values of intermediate covariances are of no importance,
one can set Wk = 0 for k ∈ {0, 1, . . . , N − 2}.

It is worth mentioning, that in optimum experimental design theory similar scalar objective
functions are defined based on the Fisher information matrix (or its inverse) instead of the ones
based on the covariance matrix [11, 178]. Minimizing such objective functions corresponds to
minimizing a lower bound of the covariance matrix.
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2.5.2 Information Theoretic Objective Functions

Shannon’s information theory is the foundation for information theoretic objective functions.
Instead of considering the covariance matrix of the state estimate for minimizing the uncer-
tainty, the differential entropy is employed. The differential entropy extends Shannon’s entropy
for discrete random variables (see [167]) to continuous random variables and quantifies the un-
certainty of the random variable based on the density function. In contrast to covariance-based
objective functions, entropy quantifies areas of probabilities and not the average deviation to a
single point. It indicates how much additional information is necessary for inferring the exact
value from an estimate.

Differential Entropy

The differential entropy of a random vector x is defined as

H(x) = Ex{− log f(x)} = −
∫
Rnx

f(x) log f(x) dx . (2.23)

While the entropy for discrete random variables is always non-negative, the differential entropy
may be negative. Of special importance for sensor management is the conditional version of
the entropy

H(x∣z) = −
∫
Rnz

f(z)

∫
Rnx

f(x∣z) log f(x∣z) dx dz . (2.24)

Between the entropy (2.23) and its conditional version (2.24), the ordering

H(x) ≥ H(x∣z) (2.25)

holds, which means that conditioning on a random vector reduces entropy. By means of the
conditional entropy the objective function

gk(xk, uk) = H(xk∣zk, uk) (2.26)

can be defined. For linear Gaussian systems, minimizing (2.26) is equivalent to minimizing the
determinant-based objective function (2.21) since

H(xk∣zk, uk) = −
∫
Rnz

f zk (zk)

∫
Rnx

N (xk; x̂k,Ck(uk)) logN (x; x̂k,Ck(uk)) dxk︸ ︷︷ ︸
=−1

2
log((2�e)nx ∣Ck(uk)∣) (independent of zk)

dzk

= 1
2

log ((2�e)nx ∣Ck(uk)∣) ,

where e is Euler’s number.

Mutual Information

An objective function often employed for sensor management (see e.g. [94, 119, 121, 185]) is
the mutual information between two random vectors x and z

I(x; z) =

∫
Rnz

∫
Rnx

f(x, z) log
f(x, z)

f(x) ⋅ f(z)
dx dz

= H(x)−H(x∣z)

= H(z)−H(z∣x) ,

(2.27)
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I(x; z)
H(x)

H(x|z)

H(z)

H(z|x)

Figure 2.3: Illustration of the flow of entropy (adapted from [205]). The uncertainty H(x) of x consists of the
conditional entropy H(x∣z) and a portion of the uncertainty of the measurement z.

which corresponds to the reduction of the entropy in one random vector due to the incorporation
of another random vector. The last two lines follow directly from the definition of the mutual
information [45] and are illustrated in Figure 2.3. By the chain rule for mutual information

I(x; z1, . . . zn) =
n∑
i=1

I(x; zi∣z1, . . . ,zi−1) , (2.28)

an expansion into a sum of mutual information terms is possible.

According to [57], minimizing the conditional entropy is equivalent to maximizing the mu-
tual information between the system state xk and the measurement zk.

6 Thus, the mutual
information objective function is given by

gk(xk, uk) = I(xk; zk∣uk) = H(xk)−H(xk∣zk, uk) = H(zk∣uk)−H(zk∣xk, uk) , (2.29)

where the conditioning is on a particular value uk and not on a random vector.

Kullback-Leiber Divergence

Strongly related to entropy and mutual information is the relative entropy or Kullback-Leibler
divergence (KLD, [113])

D
(
f̃(x)∣∣f(x)

)
=

∫
Rnx

f̃(x) log
f̃(x)

f(x)
dx ≥ 0 (2.30)

for quantifying the difference between two probability density functions f̃(x) and f(x). Com-
paring (2.27) with (2.30) yields the relation

I(x; z) = D (f(x, z)∣∣f(x) ⋅ f(z)) = Ez {D (f(x∣z)∣∣f(x))}

between mutual information and KLD. Hence, in context of sensor management, the KLD
is employed for calculating the expected difference between the posterior density f(x∣z) and
the prior density f(x). Besides employing KLD for sensor management (see e.g. [42]), it is
also an important measure for comparing density functions in estimation tasks like Gaussian
mixture reduction, Chapter 7, or density estimation [69].

6 For a detailed discussion on minimizing the conditional entropy vs. maximizing the mutual
information see Section 4.1.1.
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2.6 Related Work

The sensor management problem has been intensively investigated within the last years. This
section gives a short overview on the most interesting approaches and strategies. The material
is coarsely categorized, where the first category is concerned with approaches for linear models.
Approaches for nonlinear models can be found in the remaining categories, which distinguish
between the considered time horizon.

2.6.1 Linear System and Sensor Models

One of the first works on sensor management can be found in [126], where control is avail-
able for both, system and sensor. Considering linear Gaussian systems and a quadratic cost
function, it is shown that a separation principle similar to the basic LQG problem holds, i.e.,
the configuration of the sensor can be determined independently of the system control policy
and independently of the measurements. Furthermore, the optimal sensor configuration re-
sults from off-line traversing a search tree. An extension to the continuous-time LQG control
problem with discrete-time measurements can be found in [171]. The findings for the discrete-
time LQG problem are exposed in [6] from a different viewpoint using conditioning arguments
highlighting the independence of the measurement policy from the measurement values. The
separation principle still holds for the additional consideration of running measurement costs,
which are associated with the requested level of information [194].

Works toward pure sensor management strategies neglecting the control of the dynamic
system and employing more adequate objective functions can be found in [37, 88, 119, 138,
148]. In [119], mutual information is chosen as the objective function, which is merely a
function of the state and noise covariance in case of linear Gaussian systems. However, as
shown in this work, open-loop control and closed-loop control lead to the same configuration
sequence. If minimizing the largest eigenvalue of the covariance matrix is the objective, a very
efficient management algorithm can be employed based on the information filter formulation
of the Kalman filter [138]. The information form is also exploited in [148] for identifying the
parameters of a static system observed via a network of correlated sensor nodes. For gaining
maximum information even for strongly correlated sensors, an optimal whitening techniques
is presented. Based on this, the sensor management process is performed in a myopic and
distributed manner. A solution together with some pitfalls of non-myopic sensor management
based on covariance-based objective functions and dynamic programming with state space
discretization is given in [37], which extends the approach presented in [84]. The sensor selection
problem, i.e., choosing the best n-element subset of sensors for observing a static system,
is formulated as convex optimization problem in [88]. Even if a relaxation is exploited for
approximately but efficiently solving the problem, a bound on the best performance possible
can be stated. Various types of covariance-based objectives are discussed and the difference to
experimental design is highlighted as well.

In order to reduce the computational demand of off-line performing a tree search for obtain-
ing the optimal sensor configuration, a stochastic algorithm for the sensor scheduling problem
is introduced in [67]. Here, the sensors are switched randomly according to an optimal prob-
ability distribution for obtaining the best expected steady-state performance. An extension
to the general sensor management problem can be found in [68]. For a practical realization of
management strategies, the authors in [158] suggest model predictive or moving horizon control
and provide conditions for which myopic optimization is optimal.
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2.6.2 Myopic or Greedy Approaches

A collection of different objective functions for myopic sensor management is described in detail
and compared for a target tracking scenario in [43, 199]. In accordance with [57], it is shown
that objective functions based on the expected posterior density function are merely a measure
of the predicted density and thus of limited use. More appropriate are objective functions
that evaluate the expected information gain as for example mutual information or the expected
entropy do. This finding is exploited in [52, 186]. For a reduced computational burden, entropy
differences defined over the measurement space are used in [186] for approximating mutual
information instead of considering the joint state and measurement space, while in [52] Monte
Carlo evaluation of mutual information is employed.

In [12], the estimation performance of mutual information is compared with objective func-
tions based on the expected posterior covariance. While both objective functions provide similar
estimation results, the computation time for mutual information is one order of magnitude less
the time necessary for the covariance-based function. Furthermore, it is shown that employing
linearization of the nonlinear sensor model and the Kalman filter equations leads to an efficient
approximation of mutual information, as it becomes nothing else than a measurement inde-
pendent covariance-based objective function. Only in few scenarios, this approximation leads
to a drastically degenerated estimation performance. Based on this linearization approach, in
[64, 65] a decentralized sensor management and data fusion scheme is proposed.

For determining the measurement rate or frequency in order to minimize the localization
error of a team of mobile robots, [131, 132] also employ linearization based on first-order
Taylor-series expansion. The resulting linear system and sensor model is then converted into
an equivalent continuous-time model, for which the steady-state covariance of the corresponding
continuous-time Riccati equation can be expressed as a function of the measurement frequencies.
Its is shown that the optimal frequencies result from a convex optimization problem. This
unconventional approach is restricted to sensor management problems for which the continuous-
time model is linear and time-invariant.

Myopic sensor management approaches based on the expected Rényi information divergence
are presented for example in [75, 108, 111]. The Rényi information divergence is a generalization
to the differential entropy, whose emphasis of the tails of the density function can be adjusted
by means of a scalar parameter. In [75, 108], algorithms for a discrete set of configurations
are presented. An extension to continuous-valued configurations based on the determination
of a potential field of expected information gain is presented in [111], while [109] deals with a
two-step time horizon using additional simulation.

For objective functions fulfilling the property of submodularity, it is possible to prove that
the performance of greedy selection of configurations for static systems and sensors is merely
by a constant factor worse than the optimal strategy. Mutual information is one of these
specific objective functions. This interesting theoretical result has been applied to the problems
of sensor subset selection [103], sensor scheduling [104], or sensor placement selection [105].
Extensions to sensor management problems for dynamic systems can be found in [191, 192].

2.6.3 Non-myopic Sensor Management

For discrete state spaces, solutions to the closed-loop control sensor management problem based
on dynamic programming can be found for example in [33, 112]. Especially in [112] it is shown
that for piece-wise linear objective functions, the expected objective is also piece-wise linear
and convex, which facilitates off-line calculation of the optimal configuration by applying linear
programming algorithms for POMDPs. Based on these results, suboptimal algorithms for
quadratic objective functions are derived.



24 Chapter 2. Considered Problem

As directly solving the closed-loop control problem for sensor management with continu-
ous states is computationally very demanding or even impossible, suboptimal open-loop ap-
proaches (besides the previously discussed myopic approaches) are used instead. One class of
these suboptimal approaches employ the posterior Cramér-Rao lower bound (PCRLB) for the
covariance matrix, which is defined to be the inverse of the Fisher information matrix. As
the PCRLB depends on the future system state, the PCRLB is calculated approximately in a
predictive manner based on particle filtering [41, 80], a priori and constant estimation of the
state [143, 179], or adaptive discretization [79]. As the PCRLB is merely a lower bound, which
is above all not always tight [20], the resulting performance can divergence arbitrarily from the
closed-loop performance.

For target tracking applications with linear system dynamics and additive measurement
noise, [40, 190] present open-loop control approaches, where the nonlinear sensor models are
linearized multiple time steps ahead, based on the current system estimate. This facilitates
the use of the Kalman filter when determining the next configuration. Optimization criteria
include the trace of the covariance matrix [40] or mutual information with communication
costs between sensor nodes [190]. An extension presented in [42] employs minimization of
the Kullback-Leibler divergence between the predicted and the posterior density as objective,
particle filtering for state prediction over the time horizon, and the unscented transform for
measurement value prediction. To bound the search complexity for the best configuration
sequence, pruning strategies based on breadth-first search, uniform-cost search, and greedy
search are also introduced.

A closed-loop model predictive control approach to target tracking based on the expected
Rényi divergence is introduced in [107]. Three strategies are presented for incorporating the
effect of future measurements. A Monte Carlo rollout strategy for calculating the expected
Rényi divergence potentially provides the best estimation performance at the expense of a
large computational burden. In order to obtain computationally more tractable solutions, the
remaining two strategies provide approximations to the Monte Carlo rollout. The first approx-
imation merely investigates configuration sequences that are most informative by employing an
information-directed search. For the second approximation strategy, the value-to-go term in
Bellman’s equation is replaced by an computationally cheap function that considers the Rényi
divergence between myopic gains at the current and a future time step.

One of a few approaches to non-myopic sensor management with continuous configuration
space can be found in [170]. In order to determine the best configuration sequence, a simulation-
based approximation that use stochastic gradients is presented. This algorithm is applied to
a target tracking scenario with bearings-only sensor model. Therefore, convergence of the
proposed algorithms are demonstrated theoretically and via simulation.

2.7 Summary

Concluding, it can be stated that calculating optimal configuration sequences for long time hori-
zons in case of continuous-valued states and measurements has not attracted great interest in
existing work. The most challenging tasks, however, arise from non-myopic sensor management.
These tasks are the anticipation and incorporation of the effect of future sensor measurements
on sensor management decisions and the repeated state estimation for nonlinear system and
sensor models. Due to the employed model predictive control scheme, potentially long time
horizons and large sets of configurations, sensor management decisions and state estimations
have to be performed very frequently, which requires computationally efficient algorithms for
an overall feasible sensor management. To achieve this, appropriately chosen approximations
have to be applied in order to not degrade the benefits of considering long time horizons.



CHAPTER 3

Quasi-linear Sensor Management

Thanks to the independence from actual measurement values, sensor management for linear
Gaussian models can be solved by deterministic optimization. The resulting configuration
sequence is optimal even in a closed-loop sense. However, the determination of the optimal
configuration sequence is computationally demanding, as a tree of depth N has to be exhaus-
tively searched. To deal with this NP-hard problem, a novel optimal pruning algorithm named
information-based pruning (IBP) is presented in Section 3.2, where complete sub-trees corre-
sponding to inadequate estimation results are pruned as early as possible, while preserving the
optimal configuration sequence is guaranteed. In contrast to existing pruning methods that
are typically based on branch-and-bound techniques, IBP exploits the information contribution
of a specific configuration to the estimation process. This contribution is represented by the
so-called sensor information matrix. Based on this matrix, pruning is performed in two ways by

1. exploiting the partial ordering of the configurations, which is implied by the sensor infor-
mation matrix and is preserved by the monotonicity property of the Riccati equation

2. and calculating a so-called bounding sensor that provides a novel lower bound to the
posterior covariance matrices.

In order to benefit from the nice properties of linear Gaussian sensor management as well as
from the effectiveness of the proposed pruning algorithm, this chapter is further devoted to the
derivation of an efficient open-loop model predictive control scheme for nonlinear non-Gaussian
sensor management problems with covariance-based objective functions. The adaptation to the
linear Gaussian case is achieved in two steps. At first, a trajectory of the system state along the
N -step time horizon is calculated by recursively propagating a set of regression points through
the nonlinear system function. The calculation of this so-called linearization trajectory does not
rely on the anticipation or incorporation of future measurements, which automatically implies
an open-loop control structure. In the second step, statistical linearization about the state
trajectory is employed for obtaining a linearized approximation of the nonlinear sensor models.

After solving the now linear Gaussian sensor management problem and applying the first
element of the determined configuration sequence, the linearization procedure is repeated for
the next time step. Since the linearization procedure is derived independent from a particular
calculation scheme for the set of regression points, various linear regression Kalman filters
like the Gaussian estimator proposed in Section 5 but also the extended Kalman filter can be
employed, depending on the concrete application and required accuracy.

The novel open-loop model predictive sensor management approach named quasi-linear
sensor management proposed in this section is based on [218, 221]. Extensions to these publi-
cations are in particular the linearization procedure as well as the derivation of the bounding
sensor for pruning.
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3.1 Linear Gaussian Sensor Management

Due to the application of statistical linearization over the finite time horizon, the formerly
problem of sensor management for nonlinear system and sensor models is converted into a
management problem for linear models. On this account it makes sense to first give an in-
troduction to the linear Gaussian sensor management problem, where the system is described
by means of the linear discrete-time probabilistic system model (2.11). In anticipation of the
linearized sensor models resulting from statistical linearization presented in Section 3.3.3, the
more general linear Gaussian sensor model

zk = H
uk
k ⋅xk + v

uk
k , (3.1)

is considered here. In contrast to (2.12), not only the sensor matrix H
uk
k = Hk(uk) but also

the Gaussian measurement noise v
uk
k = vk(uk) varies with a particular configuration. More

precisely, the covariance matrix C
v,uk
k and the mean vector v̂

uk
k of v

uk
k change depending on

the configuration uk. It is further assumed that the sensor model (3.1) is stateless, i.e., the
configuration uk only affects the sensor model for the current time step k (see Section 2.1.3).
The relaxation of this assumption is discussed in Section 3.3.4.

It is worth mentioning that linear models have applications in their own right, besides
the usage as a result of statistical linearization within this thesis. For example, the temporal
behavior of distributed physical phenomena can be represented by means of a linear model
after applying spatial and temporal discretization, as described in [13, 159].

3.1.1 Problem Structure

In case of the considered model predictive control problem with covariance-based objective
functions, the cumulative objective function (2.20) can be rewritten for the moving finite N -step
time horizon according to

Jk,0(xpk,0) = min
�
k,0:N−1

Vk

(
xpk,0, �k,0:N−1

)
, (3.2)

with configuration dependent cumulative objective function

Vk

(
xpk,0, �k,0:N−1

)
= Ezk,0:N−1

{
N−1∑
n=0

gn(xpk,n, �k,n(xpk,n))

}
,

where xpk,0 = xpk ∼ N (xpk; x̂
p
k;C

p
k) is the current predicted state estimation at time k. This

function can be further simplified under consideration of the special properties of the Kalman
filter covariance matrix recursion:

1. The covariance calculation of the Kalman filter measurement update step is independent
of the measurement value. Taking the expectation with respect to zk,0:N−1, for evaluating
(3.2) and the objective functions gn(xpk,n, �k,n(xpk,n)) has no effect. Thus, the expected

posterior covariance matrix employed for gn(xpk,n, �k,n(xpk,n)) coincides with the posterior

covariance resulting from the Kalman filter measurement update step.1

2. The Kalman filter recursion for the covariance matrix is independent from the Kalman
filter recursion of the mean vector. Thus, the covariance matrix already contains all
information that is necessary to evaluate the objective functions within the time horizon,
i.e., the covariance matrix is a sufficient statistic of the state in this context.

1 Hence, employing the entropy objective function (2.26) would lead to equivalent results
as the determinant-based objective.
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Figure 3.1: Search tree for N = 2 time steps and ∣U∣ = 2 different configurations with root node Cp
k,0.

Putting all together, the cumulative objective function (3.2) for the closed-loop model predictive
control problem coincides with the open-loop model predictive control problem given by

Jk,0(xpk,0) = min
uk,0:N−1

Vk
(
xpk,0, uk,0:N−1

)
= min

uk,0:N−1

N−1∑
n=0

gn(Cp
k,n, uk,n) , (3.3)

where the step objective functions gn(Cp
k,n, uk,n) can be

∙ the determinant gn(Cp
k,n, uk,n) = ∣Ce

k,n(uk,n)∣ ,

∙ the trace gn(Cp
k,n, uk,n) = trace(Ce

k,n(uk,n)) ,

∙ or the largest eigenvalue gn(Cp
k,n, uk,n) = �max(Ce

k,n(uk,n)) .

3.1.2 Solution Procedure

Even if the control problem (3.3) is independent of actual measurement values, determining the
optimal configuration sequence u∗k,0:N−1 is still a demanding problem, as the covariance matrices
in (3.3) are a function of the configuration sequence. For a given configuration sequence uk,0:n

and under consideration of the extended linear sensor model (3.1), the covariance matrices
evolve according to Riccati equation

Cp
k,n+1(uk,0:n) = Ak,n

(
Cp
k,n(uk,0:n−1)−K

un
k,nH

un
k,nC

p
k,n(uk,0:n−1)︸ ︷︷ ︸

=Ce
k,n(uk,0:n)

)
AT
k,n + Bk,nC

w
k,nB

T
k,n , (3.4)

with corresponding Kalman gain K
un
k,n. The estimated covariance matrix Ce

k,n(uk,0:n) is em-
ployed for evaluating the objective functions gn( ⋅ ) and thus, determining the optimal configu-
ration sequence requires the evaluation of the cumulative objective for every possible sequence
uk,0:N−1. This corresponds to an exhaustive search in a tree with depth N and branching factor
∣U∣. Every possible configuration sequence forms a path in the tree, while the nodes correspond
to the step objective functions gn( ⋅ ). In Figure 3.1, such a tree is depicted for N = 2, where

the nodes of the tree are g
(i0,i1,...,in)
n := gn

(
Cp
k,n(u

(i0)
k,0 , u

(i1)
k,1 , . . . , u

(in−1)
k,n−1 ), u

(in)
k,n

)
. Since the number

of paths in the tree grows exponentially with the length of the time horizon, performing an
exhaustive tree search is only tractable for short time horizons and a small set of configurations.
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3.2 Optimal Pruning

However, since long time horizons and/or large sets of configurations are common in practical
applications, an exhaustive tree-search has to be avoided. This can be achieved by employing
pruning techniques. Existing pruning techniques can be classified into suboptimal methods and
optimal methods. By employing an optimal pruning method, deleting the optimal configuration
sequence is impossible. This leads to the evaluation of potentially many complete configuration
sequences for determining the optimal sequence (see e.g. [42, 119]). Abdicating the guarantee
of conserving the optimal sequence as suboptimal methods do allows for drastic savings in
computational demand (see e.g. [4, 66]).

For significantly reducing the computational demand an early identification of sub-trees
that contain only suboptimal configurations is essential. The novel optimal pruning technique
information-based pruning (IBP) introduced in this section achieves this goal in two ways. By
employing the so-called sensor information matrix and the monotonicity of the Riccati equa-
tion (3.4), suboptimal sub-trees are pruned without explicitly evaluating the Riccati equation.
In a second step, the sensor information matrix is again utilized for calculating a so-called
bounding sensor. For the remaining sub-trees, this bounding sensor provides a tight lower
bound for the cumulative objective function (3.3). Employing branch-and-bound techniques
with this novel lower bound leads to a further improvement in pruning performance and thus,
to significant savings in computation time.

3.2.1 Preliminaries

All derivations and calculations are done for a fixed time index k, while merely the time index
n varies within the time horizon. Hence, the index k is omitted from this point on. The
development of the IBP method requires the monotonicity property of the Riccati equation,
stated in the following theorem. For a proof see [67], Lemma 2.

Theorem 3.1 (Monotonicity of Riccati Equation) Given two covariance matrices Cp
n

and C̃p
n with Cp

n ર C̃p
n, i.e., Cp

n−C̃p
n is positive semi-definite, applying the Riccati equation (3.4)

for an arbitrary configuration u ∈ U results in

Ce
n(u) ર C̃e

n(u) and Cp
n+1(u) ર C̃p

n+1(u) .

Thus, the positive semi-definite ordering between covariance matrices will not change by apply-
ing the Riccati equation. The ordering of covariance matrices automatically implies an ordering
of the covariance-based objective functions.

Lemma 3.1 Suppose that Ce
n ર C̃e

n, then

∙ ∣Ce
n∣ ≥ ∣C̃e

n∣ ,

∙ trace(Ce
n) ≥ trace(C̃e

n) ,

∙ and �max(Ce
n) ≥ �max(C̃e

n) .

For a proof of the lemma see [1].
Pruning nodes on the basis of the values of the step objectives gn( ⋅ ) only by neglecting the

ordering of the covariance matrices automatically leads to suboptimal pruning results, because
Lemma 3.1 merely provides a necessary condition for the positive semi-definite ordering between
Ce
n and C̃e

n. Hence, the ordering of covariance matrices needs to be determined explicitly for
each node of the search tree. On this account, the optimal pruning procedure proposed in
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[119] evaluates the Riccati equation for each configuration, which is computational demanding
for large state-spaces or for high dimensional measurement vectors. The IBP method instead
allows determining the order of the covariance matrices without explicitly evaluating the Riccati
equation multiple times.

3.2.2 Sensor Information Matrix

To commence, the information form of the covariance update equation (2.15) of the Kalman fil-
ter measurement update step is exploited. For an arbitrary configuration u ∈ U , the information
form (see for example [95]) is given by

(Ce
n)−1 = (Cp

n)−1 + (Hu
n)T (Cv,u

n )−1 Hu
n ,

where (Ce
n)−1 is the Fisher information matrix and Cv,u

n is the configuration dependent mea-
surement noise (see (3.1)). This equation can be interpreted as gain of information over xn
when performing a measurement for a given configuration u. In this context the matrix
Mu

n := (Hu
n)T (Cv,u

n )−1 Hu
n ∈ Rnx×nx is denoted as sensor information matrix. It subsumes

the information contribution of the configuration u at time step n and is symmetric as well as
positive semi-definite. Based on this matrix, configurations can be excluded from searching the
optimal configuration sequence without evaluating the Riccati equation.

Theorem 3.2 (Order of Sensor Information Matrices) Given the covariance matrix
Cp
n and the sensor information matrices Mũ

n and Mu
n for two configurations ũ, u ∈ U such that

Mũ
n રMu

n , (3.5)

i.e., Mũ
n −Mu

n is positive semi-definite, then Ce
n(ũ) ⪯ Ce

n(u) and Cp
n+1(ũ) ⪯ Cp

n+1(u).

Proof. Multiplying both sides of (3.5) from left with Cp
n, adding the identity matrix I, and

inverting both sides leads to (
I + Cp

nM
ũ
n

)−1 ⪯ (I + Cp
nM

u
n)−1 .

As the identity matrix is positive definite and the second summand is always positive semi-
definite, the matrix inversion lemma [95]

(A + BC)−1 = A−1 −A−1B
(
I + CA−1B

)−1
CA−1

can be applied. Afterwards, multiplying both sides from right with Cp
n yields Ce

n(ũ) ⪯ Ce
n(u).

Employing the covariance matrix prediction of the Kalman filter for Ce
n(ũ) and Ce

n(u) yields
Cp
n+1(ũ) ⪯ Cp

n+1(u). □
Thus, given the covariance matrix Cp

n at a arbitrary level of the search tree, it is possible
the determine the ordering (3.5) between two configurations ũ and u. Selecting configuration
ũ will then provide a smaller covariance matrix at time step n + 1. Due to the monotonic
character of the Riccati equation, even arbitrary future configuration sequences un:N−1 do not
affect an existing order of covariance matrices.

Corollary 3.1 Given two covariance matrices Cp
n and C̃p

n with Cp
n ર C̃p

n, ∀un:t, where t ∈
{n, n+ 1, . . . , N − 1}, exists a configuration sequence ũn:t such that

Cp
t+1(un:t) ર C̃p

t+1(ũn:t) .

Proof. Due to Theorem 3.1, at least the configuration sequence ũn:t = un:t yields Cp
t+1(un:t) ર

C̃p
t+1(ũn:t). □
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←
n

Figure 3.2: Search tree for Example 3.1 with N = 2 time steps and ∣U∣ = 3 sensors. Sensor two can be excluded
from search as its sensor information matrix is “smaller” than the corresponding matrix of sensor one.

Corollary 3.2 (Pruning based on Sensor Information Matrices) Suppose that the
covariance matrix Cp

n(u0:n−1) for the sensor sequence u0:n−1 is given. If for two configurations
un and ũn

Mun
n ⪯Mũn

n ,

then for the cumulative objective functions holds V
(
Cp

0, u0:N−1

)
≥ V

(
Cp

0, ũ0:N−1

)
for any se-

quence un+1:N−1, where ũ0:N−1 :=
(
u0:n−1, ũn, un+1:N−1

)
.

Proof. Follows directly from Theorem 3.2 and Corollary 3.1. □
Thus, without evaluating the Riccati equation at time step n and only by comparing

the sensor information matrices, it can be decided that only configuration ũn needs to ex-
panded for determining the optimal configuration sequence, while the covariance matrices
Cp
n+1(u0:n), . . . ,Cp

N(u0:N−1) need not be determined for any sequence un:N−1 with un ∕= ũn.
Hence, the complete sub-tree of configuration un can be pruned. In the following example, the
effectiveness of the proposed optimal scheduling method is illustrated.

Example 3.1: Pruning based on Sensor Information Matrices
In this example a sensor scheduling problem for target tracking is considered. The dynamic behavior
of the target is modeled by means of the constant velocity system model from Example 2.1 with
sampling time interval T = 0.2 and diffusion strength q = 0.02. The target is observed by three
linear sensors with time-invariant measurement matrices

H1 =

[
1 0 0 0
0 0 1 0

]
, H2 =

[
0 0 1 0

]
, H3 =

[
0 1 0 0
0 0 0 1

]
and noise covariance matrices Cv,1 = Cv,3 = diag([0.1, 0.1]), Cv,2 = 0.1. This leads to the sensor
information matrices

M1 =

⎡⎢⎢⎣
10 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0

⎤⎥⎥⎦ , M2 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0

⎤⎥⎥⎦ , M3 =

⎡⎢⎢⎣
0 0 0 0
0 10 0 0
0 0 0 0
0 0 0 10

⎤⎥⎥⎦
for all time steps, where a time horizon of N = 2 is assumed. It follows that M1 ર M2, while
all other comparisons between sensor information matrices do not result in positive semi-definite
differences. Due to the time-invariance of the measurement models, sensor 2 never needs to be
considered for determining the optimal schedule. The resulting pruned search tree is depicted in
Figure 3.2. According to this, the complete search tree consisting of 13 nodes is reduced to 7 nodes.

■
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3.2.3 Order of Sensor Information Matrices

When comparing sensor information matrices (or equivalently covariance matrices), the differ-
ence is in some cases indefinite, i.e., it is not determinable, if one information matrix is “larger”
than another (see M2 and M3 in Example 3.1). This is due to the fact that the order relation ⪯
of positive semi-definite matrices leads to partial orders. Thus, in general, not all configurations
can be pruned at a specific time step.

There is one exception in case of scalar systems. Here, the partial order becomes a total
order. Per time step, it is now possible to prune all configurations except of one, which is
equivalent to selecting the configuration that minimizes the covariance at each time step. This
greedy strategy leads automatically to the optimal configuration sequence. Similar findings can
be found in [82] for the case of scheduling multiple scalar systems over time to a single sensor.

3.2.4 Branch-and-Bound

Pruning based on sensor information matrices leads to a significant reduction of possible con-
figuration sequences. However, due to the partial order, the remaining number of nodes in the
search tree may still be large. To further prune the tree, the proposed technique is combined
with branch-and-bound (BB) pruning algorithms. Branch-and-bound pruning is common for
classical problems like traveling-salesman or resource allocation [154]. The basic idea of branch-
and-bound is to assign a lower bound of the achievable cumulative objective function value to
any visited node. Based on these bounds, the tree is further expanded (branched), whereas
nodes with a smaller lower bound are considered more promising to lead to the optimal config-
uration sequence and thus are expanded first. Nodes are pruned if their lower bound is larger
than the cumulative objective value of an already completely evaluated configuration sequence.

For a particular node that was reached during tree-search by employing the configuration
sequence u0:n−1, the cumulative objective function can be written according to

V
(
Cp

0, u0:N−1

)
= V0

(
Cp

0, u0:n−1

)︸ ︷︷ ︸
known

+Vn
(
Cp
n(u0:n−1), un,N−1

)︸ ︷︷ ︸
unknown

, (3.6)

where the value of the first summand V0( ⋅ ) is already known, while the value of the second
summand Vn( ⋅ ) is not calculated yet. A lower bound V̄

(
u0:n−1

)
for the cumulative objective

(3.6) can be obtained by bounding Vn( ⋅ ) from below such that

V̄
(
u0:n−1

)
≤ V

(
Cp

0, u0:N−1

)
, ∀un,N−1 .

Based on this bound, the sub-tree corresponding to the remaining configuration sequences
un,N−1 can be pruned, if the lower bound V̄ ( ⋅ ) is larger than a global bound Vmin, which is the
cumulative objective value of the currently best completely evaluated configuration sequence.
Obviously, the closer the bound V̄ ( ⋅ ) to the true value of (3.6), the earlier complete sub-trees
can be pruned and thus, the better the pruning performance.

3.2.5 Bounding Sensor

Due to the cumulative structure of the objective function (3.6) with non-negative summands,
a simple lower bound can be obtained by setting the second summand Vn( ⋅ ) in (3.6) equal to
zero. In the following, this simple bound is referred to as zero bound (ZB). This bound can be
interpreted as expecting a complete reduction of uncertainty for each time step n, . . . , N − 1.
Such a reduction can merely be achieved by a sensor information matrix with infinite trace or
determinant. Obviously, such a sensor information matrix provides the coarsest lower bound
possible.
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A significantly tighter lower bound can be derived by means of a so-called bounding sensor
with sensor information matrix M̄n for which the covariance matrices evolve according to

C̄p
n+1 = An

(
I + C̄p

n ⋅ M̄n

)−1︸ ︷︷ ︸
=:C̄e

n

AT
n + BnC

w
nB

T
n , (3.7)

commencing from C̄p
0 = Cp

0. For each time step n, this special information matrix fulfills

M̄n રMu
n (3.8)

for all configurations u ∈ U , where M̄n is as close to Mu
n as possible. According to Theorem 3.2,

for the predicted and estimated covariance matrices obtained from (3.7) holds C̄e
n ⪯ Ce

n(u) and
C̄p
n+1 ⪯ Cp

n+1(u) for all time steps. Hence, the cumulative objective function values for all
possible configuration sequences un,N−1, whose calculation requires exponential computation
time, can be bounded from below by merely calculating the cumulative objective function for
the bounding sensor for the time steps n, . . . , N − 1. Because of the utilization of one single
configuration, which is implied by the bounding sensor, the determination of the lower bound
can be done in linear time.

In the following, determining the bounding sensor with information matrix M̄n is described
in detail.

Bounding Sensor for Two Configurations

Since sensor information matrices are symmetric and positive semi-definite, they can be graph-
ically interpreted as ellipsoids similar to the covariance ellipsoids that correspond to covariance
matrices (see Section A.1). In the following, the ellipsoid corresponding to a sensor informa-
tion matrix is referred to as sensor information ellipsoid. Unlike covariance ellipsoids, sensor
information ellipsoids have no distinguished position. Hence, it can be assumed that all sensor
information ellipsoids are centered around the origin.

Based on this interpretation, determining the bounding sensor information matrix M̄n can
be considered as the determination of the covering ellipsoid that contains the ellipsoids of
all sensor information matrices. This problem is similar to the so-called covariance union or
Löwner ellipsoid problem (see e.g. [23, 198]). Thanks to the fact that all sensor information
ellipsoids have the same center, the covariance union problem can be significantly simplified.

At first, it is sufficient to consider the determination of the sensor information matrix of
the bounding sensor for merely two configurations u(1), u(2) ∈ U with information matrices

M
(1)
n ,M

(2)
n . For the two configurations case, a bounding sensor information matrix with mini-

mum determinant, i.e., a minimum volume covering ellipsoid, results from solving a generalized
eigenvalue problem as summarized in the following theorem and as depicted in Figure 3.3.

Theorem 3.3 (Minimum Bounding Sensor Information Matrix) The bounding sen-
sor information matrix M̄n with minimum determinant that fulfills (3.8) for two sensor infor-

mation matrices M
(1)
n and M

(2)
n is given by

M̄n =
(
VT
)−1 ⋅ max

(
VTM(1)

n V,VTM(2)
n V

)
⋅V−1 , (3.9)

where max( ⋅ ) is the element-wise maximum of matrices and V is the matrix of generalized

eigenvectors of M
(1)
n and M

(2)
n .

Proof. At first, the sensor information matrices M
(1)
n and M

(2)
n have to be diagonalized

simultaneously, which requires solving the generalized eigenvalue problem

∣M(1)
n − �M(2)

n ∣ = 0 . (3.10)
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M̄n

Mn
(1)

Mn
(2)

(a) (b) (c)

Figure 3.3: Graphical illustration of the determination the minimum bounding sensor information matrix for the
two configurations case. (a) Sensor information ellipsoids of two sensor information matrices M

(1)
n ,M

(2)
n . (b) Result

of the simultaneous diagonalization of M
(1)
n and M

(2)
n . The covering ellipsoid (red dashed ellipsoid) corresponding

to the bounding sensor information matrix results from taking the maximum eigenvalue (or longest principal axis,
indicated by the arrows) for each dimension. (c) Transforming back yields the desired minimum covering ellipsoid
corresponding to M̄n.

The solution of (3.10) is given by the eigenvalues �i, i ∈ {1, 2, . . . , nx} and the matrix of

eigenvectors V. This allows diagonalizing M
(1)
n and M

(2)
n according to

VTM(1)
n V = diag ([�1, . . . , �nx ]) ,

VTM(2)
n V = I .

(3.11)

Determining the minimum volume covering ellipsoid for diagonal matrices is straightforward
by taking the maximum of each diagonal element of the matrices in (3.11) according to

max
(
VTM(1)

n V,VTM(2)
n V

)
. (3.12)

This corresponds to taking the longest principal axis for each dimension or equivalently to
taking the maximum of (1, �i) for each i ∈ {1, 2, . . . , nx} (see Figure 3.3 (b)). Multiplying(
VT
)−1

from left and V−1 from right to (3.12) reverses the diagonalization and leads to the

desired minimum sensor information matrix M̄n of the bounding sensor (see Figure 3.3 (c)). □

Recursive Calculation for an Arbitrary Number of Configurations

Determining the bounding sensor with minimum sensor information matrix for an arbitrary
number of configurations is computationally expensive in general, as numerical optimization is
required [23]. However, a very tight but not necessarily minimum bounding sensor information
matrix can be efficiently calculated by employing the solution of the two configurations case
recursively in a pairwise fashion. In doing so, the complexity for determining the bounding
sensor information matrix is linear with the number of configurations.

The recursion commences from the initial solution M̄
(2)
n according to (3.9) for the first two

configurations u(1), u(2) ∈ U . For the remaining configurations u(i) ∈ U , with i ∈ {3, 4, . . . , ∣U∣},
the recursion

M̄(i)
n =

(
VT
)−1 ⋅ max

(
VTM̄(i−1)

n V,VTM̄(i)
n V

)
⋅V−1

applies, where V is the matrix of eigenvectors of M̄
(i−1)
n and M̄

(i)
n . The final solution M̄

(i)
n for

i = ∣U∣ is the desired bounding sensor information matrix M̄n that fulfills (3.8).
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Algorithm 1 IBP(Cp
n(u0:n−1)), where initially the global bound is set to Vmin =∞.

1: if n = N − 1 then
2: Vmin ← V (Cp

0, u0:N−1) // Global bound given by currently best sequence u0:N−1

3: else
4: U ← ∅ // List of configurations to expand
5: for u, ũ ∈ U do
6: if Mũ

n રMu
n then

7: U ← U ∪ {ũ}
8: end if
9: end for

10: Calculate lower bound V̄
(
u0:n−1, u

)
, ∀u ∈ U

11: U ← sort(U) // Sort configurations based on V̄
(
u0:n−1, u

)
12: for all configurations u ∈ U do
13: if V̄

(
u0:n−1, u

)
< Vmin then

14: IBP(Cp
n+1(u0:n−1, u))

15: end if
16: end for
17: end if

3.2.6 Information-based Pruning: Algorithm

In order to combine pruning based on the ordering of sensor information matrices and the
bounding sensor, the information-based pruning method employs a depth-first search as sum-
marized in Algorithm 1. Here, in line 5–9, the search space is at first reduced by employing
pruning based on the ordering of sensor information matrices. For each of the remaining config-
urations in U a lower bound employing the bounding sensor is calculated and the configurations
are sorted in ascending order according to their lower bound values (line 10–11). In doing so,
further expanding the search tree is continued with the most promising configuration sequence
first and traversing the search tree is accelerated, since nodes are not further expanded once
the bound of a node is larger than the current global bound Vmin (line 12–16). By completely
evaluating a configuration sequence u0,N−1, the currently best sequence is automatically given
and thus, the global bound is reduced (line 1–3).

3.2.7 Simulation Example

The effectiveness of the proposed information-based pruning method is demonstrated in the
following by means of simulations employing a sensor scheduling problem for target track-
ing similar to Example 3.1. While a constant velocity system model with identical sampling
time and diffusion strength is utilized, the target is now observed via a small sensor network
consisting of six linear sensors with time-invariant measurement matrices

H1 = H3 =
[
1 0 0 0

]
, H2 = H5 =

[
0 0 1 0

]
,

H4 =
[
0 0 0 1

]
, H6 =

[
0 1 0 0

]
and noise covariance matrices Cv,1 = 0.2, Cv,2 = Cv,3 = Cv,4 = 0.1, and Cv,5 = Cv,6 = 0.05.
The mean vector and the covariance matrix of the initial state x0 are x̂0 = [0, 1, 0, 1]T and
Cx

0 = I, respectively. For comparing the pruning performance, four different pruning methods
are employed:

SIM Pruning based on the ordering of sensor information matrices only as described in
Section 3.2.2.
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ZB Branch-and-bound pruning based on the zero bound, i.e., the cumulative objective func-
tion (3.6) is simply bounded from below by setting Vn( ⋅ ) = 0.

SIM∗ Combines the previous two methods.

IBP The proposed information-based pruning method according to Algorithm 1.

As covariance-based objective function the trace is employed. Furthermore, the time horizon
is set to N = 8, which leads to a search tree with

∑8
i=1 6i ≈ 2 ⋅ 106 nodes, where the optimal

sensor sequence is given by u∗0:N−1 = (6, 3, 5, 4, 3, 5, 6, 5).
As shown in Table 3.1, by merely using the sensor information matrices for pruning (SIM),

the number of expanded nodes during the calculation of the optimal configuration sequence
is reduced by a factor of about 20 compared to an exhaustive tree search. The branch-and-
bound method based on the coarse zero bound (ZB) leads to more drastic reductions in number
of expanded nodes. By additionally employing the order of sensor information matrices together
with the zero bound (SIM∗) further reduces the number of expanded nodes by a factor of four
from 4232 to 1203. Here, additionally employing sensor information matrices can be interpreted
as a preselection on candidate sensor sequences, since always sequences containing sensor 1 and
2 are pruned, while branch-and-bound pruning further thins out this candidate set. In doing
so, the savings in computation time are even significantly greater, by a factor of 24, which is
essential for sensor networks consisting of less capable sensor nodes.

The superior pruning performance and thus most savings in computation time provides
the proposed information-based pruning method. While the ordering of sensor information
matrices again preselects candidate sequences, the tight lower bound calculated on the basis of
the bounding sensor allows pruning complete sub-trees much earlier as employing branch-and-
bound with the coarse zero bound.

Table 3.1: Number of expanded nodes and computation time.

SIM ZB SIM∗ IBP

nodes expanded 87380 4232 1203 458
time in s 4643.74 209.49 8.58 1.72

3.3 Open-loop Sensor Management based on Statistical Linearization

In order to exploit the independence of the covariance recursion of the Kalman filter from mea-
surement values and moreover to employ the previously introduced information-based prun-
ing method, this section is devoted to converting the sensor management problem for nonlinear
models and non-Gaussian densities to the linear Gaussian case. This conversion yields a compu-
tationally efficient open-loop model predictive control approximation to the original closed-loop
model predictive control problem (3.2). The key idea behind this approximation lies in employ-
ing statistical linearization in a predictive fashion, which leads to a linearized representation
of the nonlinear models over the considered time horizon. The linearized models are merely
utilized for efficiently determining the next configuration, while the state inference still relies
on the nonlinear models.

In the following section, the basic principle of predictive statistical linearization is intro-
duced. Here, merely the propagation of the system state over the time horizon is considered for
clarity. Further essential aspects, especially the incorporation of system and measurement noise
into linearization and the calculation of the linearized system and sensor models are discussed
afterwards.
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(a) (b) (c) (d) (e)

xpk xpk,0 X0 X1 X2

Linearize Linearize Linearize

Figure 3.4: Calculation of the linearization trajectory for a time horizon of N = 3 steps. (a) Current system state
characterized by means of an arbitrary density. (b) Gaussian density fitted to the first two moments of xp

k. (c) Set
of regression points for the Gaussian xp

k,0. (d) Predicted set of regression points for time step n = 1. (e) Predicted
set of regression points for time step n = 2.

3.3.1 Linearization Trajectory

To obtain the statistical linearization, a so-called linearization trajectory of regression points
is necessary (see Figure 3.4 (c)-(e)). The basic idea is to represent the current predicted state
estimate xpk by means of a set of weighted regression points X0 = {!0,i, x0,i∣i = 1, . . . , L}, at
time step n = 0. Recursively propagating the regression points through the nonlinear system
function ak+n( ⋅ ) at each time step of the time horizon results in the desired trajectory of
regression points Xn+1 = {!n+1,i, xn+1,i} that represent the predicted state xpn+1. Now, the
nonlinear system and sensor model can be linearized about the trajectory of regression points
by applying weighted statistical linear regression (see Section 2.3.4). Because of the predictive
nature that merely utilizes measurement information available up to time step k−1, calculating
the linearized models is performed in an open-loop fashion.

Existing predictive linearization approaches for open-loop sensor management like those
in [42, 190] rely on first-order Taylor-series expansions, where the system and sensor models
are only linearized about a single point, i.e., the mean of the predicted state estimate. How-
ever, the predictive nature typically leads to an unbounded growth of the uncertainty of the
predicted state within the time horizon, which cannot be considered by standard linearization
techniques. In contrast to this, the linearization trajectory of the proposed approach comprises
a set of regression points Xn at each time step n within the time horizon. By this means, the
uncertainty of the predicted state can be incorporated for linearization, which leads to more
appropriate linearized models for approximating the nonlinear models in the uncertainty region
captured by Xn. As demonstrated in the simulations in Section 3.3.5, this positively affects the
determination of appropriate configuration sequences and thus, the estimation accuracy.

3.3.2 Further Aspects

For the general quasi-linear sensor management approach considered in this chapter, some
additional aspects for obtaining the linearization trajectory have to be considered: (1) Non-
Gaussian density representation of the current system state estimate, (2) the incorporation
of system and measurement noise into the calculation of the linearization trajectory, and (3)
bounding the growth of the set of regression points resulting from the noise incorporation.
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Initial Conversion of the State Density The predicted state estimate xpk can be represented
by means of an arbitrary density, depending on the employed state estimator for inference.
A typical representation may be for example a Gaussian mixture density as employed by the
hybrid density filter (see Chapter 6) or a set of particles in case of particle filters. Since
the deterministic sampling techniques for calculating the regression points and the Kalman
filter itself operate on Gaussian densities, the Gaussian xpk,0 ∼ N (xpk,0; x̂pk,0,C

p
k,0) that exactly

captures the first two moments of the state estimate xpk needs to be calculated initially at step
n = 0 (see Figure 3.4 (a)-(b)).

Incorporation of Noise Since the considered probabilistic models are corrupted by noise,
state augmentation has to be employed in order to incorporate the effects of noise into the
statistical linearization. Thus, for the augmented state vector Xn = [(xpn)T,wT

n ,v
T
n ]T with

mean vector and covariance matrix

X̂n =

⎡⎣x̂pn0
0

⎤⎦ , CX
n =

⎡⎣Cp
n 0 0
0 Cw

n 0
0 0 Cv

n

⎤⎦ ,

a set of augmented regression points Xn = {!n,i, Xn,i} needs to be determined. Here, x̂pn =∑
i !n,i ⋅xn,i and Cp

n =
∑

i !n,i ⋅ (xn,i − x̂pn)(xn,i − x̂pn)T. Furthermore, Cw
n and Cv

n are the
covariance matrices of the noise terms wn = wk+n and vn = vk+n, respectively. Since white
noise is assumed, determining the sets of regression points Wn and Vn for the noise can be
carried out independently of the state. There are many ways for combining the sets representing
the noise with the regression points representing the system state in order to determine the
set of augmented regression points Xn. For example, each state regression point xn,i can be
combined with each point in Wn and Vn, respectively. Independent of the considered method
for combination, the number of regression points in Xn increases with the length of the time
horizon.2 One way to bound this growth is discussed in the following.

Gaussian Conversion of Xn Alternatively to recursively propagating the regression points
Xn of the predicted state xpn over the time horizon, the regression points can also be converted
into a Gaussian density at each time step n. Afterwards, a novel set of regression points is
calculated for this Gaussian. This alternative approach is used for all simulations conducted
throughout this thesis. It automatically bounds the growth of the number of regression points
in Xn caused by the necessary consideration of noise and keeps the computational demand on
a constant level. Furthermore, this conversion makes sense in cases where outliers are among
the regressions points of the set Xn. Here, interim conversion of the regression points into
a Gaussian can be seen as regularization similar to resampling for particle filters. However,
as stated in [184, 196], by employing Gaussian conversion, information on odd-moments that
are captured by the original set of regression points is discarded, which in turn decreases the
linearization quality.

3.3.3 Calculation of Linearized System and Sensor Models

The complete algorithm for calculating the linearization trajectory is listed in Algorithm 2. For
the linearization of the sensor model ℎk+n(xn, u,vn) for a given configuration un = u ∈ U in
line 5, the regression points {xn,i, vn,i} with corresponding weights !n,i have to be considered.

2 Simplifications can be made in case of additive noise affecting the system and the sensors.
Here, calculating Wn and Vn is not necessarily required. Drawbacks of not calculating
Wn and Vn are discussed in [196] for the unscented transform. However, these results can
also be transferred on other LRKFs.
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Algorithm 2 Statistical linearization for time step k

1: Calculate Gaussian approximation xpk,0 ∼ N (xpk,0; x̂pk,0,C
p
k,0)

2: for n = 0, . . . , N − 1 do
3: Calculate set of augmented regression points Xn = {!n,i, Xn,i}
4: for each configuration u ∈ U do
5: Linearize sensor model
6: end for
7: Propagate state regression points xn+1,i = ak+n

(
xn,i, wn,i

)
// Calculate trajectory

8: Linearize system model
9: end for

10: Determine optimal configuration u∗k // Solve linear Gaussian problem

By setting A = [Hu
n,D

u
n]3 and x = [xpn,vn]T in (2.17), the linearized sensor model analogous

to (3.1) is given by

zn = Hu
n ⋅xpn + v̄un , (3.13)

affected by the linearized measurement noise v̄un with mean vector and covariance matrix

v̂un = ẑn −Hu
n ⋅ x̂pn ,

Cv,u
n = Cz

n −Hu
n ⋅Cp

n ⋅ (Hu
n)T ,

respectively. The mean vector ẑn and the covariance matrix Cz
n result from the weighted sample

mean and covariance of Zn = {!n,i, zn,i = ℎk+n(xn,i, u, vn,i)}.
Similarly, the nonlinear system model can be linearized by setting A = [An,Bn] and

x = [xpn,wn]T in (2.17). Through this, the linearized system model is given by

xpn+1 = An ⋅xpn + w̄n (3.14)

affect by the linearized system noise w̄n with mean vector and covariance matrix

ŵn = x̂pn+1 −An ⋅ x̂pn ,
Cw̄
n = Cp

n+1 −An ⋅Cp
n ⋅AT

n ,

respectively. The predicted state xpn+1 ∼ N (xpn+1; x̂pn+1,C
p
n+1) results from the predicted

regression points xn+1,i with weights !n+1,i determined at line 7 of Algorithm 2.
After executing line 1-9 of the linearization algorithm, ∣U∣ ⋅N linearized sensor matrices

and measurement noise covariance matrices as well as N linearized system matrices and system
noise covariance matrices are available. Based on these matrices, a linear Gaussian sensor
management problem for the linearized system (3.14) and sensor models (3.13) can be solved
(line 10). Linearizing the nonlinear system and sensor model is performed anew at time step
k + 1, after applying the optimal configuration u∗k to the sensors.

3.3.4 Applicability

Obviously, the proposed open-loop model predictive control scheme is not restricted to a specific
deterministic sampling scheme for determining the set of regression points. Thus, arbitrary
linear regression Kalman filters can be employed within this framework. Even utilizing first-
order Taylor-series expansion of the extended Kalman filter is possible. Here, merely a single-
point linearization trajectory needs to be calculated. However, as discussed in Section 2.3.4,
employing statistical regression instead of Taylor-series expansion typically leads to an improved
linearization accuracy and finally, to an improved estimation performance.

3 Although the matrix D
u
n ∈ Rnx×nv is calculated by the statistical linear regression, it is

not needed further.
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Linearization Accuracy

As the basic idea of the proposed quasi-linear sensor management approach depends on sta-
tistical linearization, the quality of the linearization trajectory and thus, the applicability and
estimation accuracy, does not only depend on the particular scheme for determining the re-
gression points. Generally, an adequate linearization accuracy is given in cases, where the
nonlinearity of the system function ak( ⋅ ), the uncertainty of the current state estimate xpk, and
the strength of the system noise are relatively low. Furthermore, for finding an adequate length
N of the time horizon, trading linearization accuracy against the consideration of long-term
effects is necessary.

Stateless vs. State-dependent Sensor Management

Thanks to the initial assumption that the considered sensor model is stateless, the linearized
system and sensor models can be determined prior to performing linear Gaussian sensor man-
agement (see Algorithm 2). In case of a state-dependent sensor management problem, statistical
linearization can still be employed, where for the worst case, statistical linearization and tree
search have to be performed simultaneously, i.e., for each node of the search tree linearization
of the sensor model has to be performed during tree search. In contrast to a stateless problem,
this procedure increases the number of linearized sensor matrices and thus increases the com-
putational as well as the memory demand. The number of linearized system matrices remains
unchanged, as linearization is still performed in a open-loop fashion.

A state-dependent problem also affects the application of the information-based prun-
ing method introduced in Section 3.2. During tree search, future sensor models may be unknown
due to the long-term dependence on the selected configuration and thus, employing pruning
based on the ordering of sensor information matrices as well as calculating the bounding sensor
is restricted.

Example 3.2: Degrading Applicability due to State-dependency
The unrestricted applicability of the proposed open-loop model predictive control scheme has to be
checked from case to case. This is discussed in the following by means of three application examples,
where the degree of applicability gradually degrades.

Sensor Scheduling As scheduling sensors for measurement merely affects the selected sensor for
a specific time step, the sensor scheduling problem is stateless and the proposed open-loop model
predictive control scheme can be fully applied.

Sensors with Low Sampling Rate Consider a modified sensor scheduling scenario, where some
of the sensors cannot perform repeated measurements, i.e., these sensors are unavailable from time
to time. This may happen e.g. in case of ultra-sonic sensors, which have to wait until all reflections
are faded away. Even if this problem is state-dependent, a priori linearization can still be applied.
The same is true for calculating the bounding sensor. Here, the sensors with low sampling rate have
to be considered for calculating the lower bound even if they are sometimes unavailable, which leads
to a more conservative lower bound.

Mobile Sensor Control Controlling the movement of the mobile distance sensor introduced in
Example 2.4 leads to state-dependent sensor management problem, where statistical linearization has
to be performed simultaneously with the tree search. In contrast to the previous example, selecting
a configuration affects all possible future models. Hence, information-based pruning cannot or only
suboptimally be employed, whereas branch-and-bound pruning based on the zero bound is applicable.

■



40 Chapter 3. Quasi-linear Sensor Management

3.3.5 Simulation Results

To evaluate the performance of the proposed open-loop model predictive control scheme for
sensor management, Monte Carlo simulations for two target tracking scenarios are conducted.
The system model of the target coincides with the constant velocity model introduced in Ex-
ample 2.1. For simulation purposes, the sampling time is set to T = 1 s and the diffusion
strength to q = 0.5. For state inference, a combination of Kalman filters and hybrid density
filter (HDF), which is introduced in Chapter 6, is used. For the measurement update step, the
HDF facilitates an accurate state estimation for the nonlinear sensor models employed in both
simulations. For this purpose, the HDF processes 9 ⋅ 105 hybrid density components. Thanks
to the linearity of the system model, the Gaussian mixture densities resulting from the HDF
are optimally processed in the prediction step by means of a bank of Kalman filters.

For performing statistical linearization, the deterministic sampling scheme proposed for the
Gaussian estimator in Chapter 5 is employed. Here, the density function of the (augmented)
state is represented by five regression points per dimension, which results in a total of 5 ⋅ 9 = 45
regression points.

Sensor Scheduling

For the first simulation, the target is observed over 20 time steps via a small heterogeneous
sensor network consisting of five sensors, where two distance sensors and three bearing sensors
are used. The task is to select one sensor per time step for measurement, i.e., a sensor scheduling
problem is considered here and the set of configurations U = {1, 2, . . . , 5} represents the sensor
indices. For the bearing sensors with indices u ∈ {1, 4, 5}, the sensor model is given by

zuk = arctan

(
yk − yu

xk − xu

)
+ vuk , (3.15)

where the measurement noise vuk is zero-mean white Gaussian with standard deviation �v,uk =
0.02 rad for u ∈ {1, 4, 5}. The sensors two and three are distance sensors with sensor model

zuk =
√

(xk − xu)2 + (yk − yu)2 + vuk , (3.16)

where the zero-mean white Gaussian noise vuk has the standard deviation �v,uk = 0.5 m for
u ∈ {2, 3}. The position [xu, yu]T of each sensor is depicted in Figure 3.5 (a), together with
an example trajectory of the target. The initial state of the target x0 is represented by means
of a Gaussian density with mean vector x̂0 = [0 m, 1 m/s, 0 m, 1 m/s]T and covariance matrix
C0 = diag ([50 m2, 10 m2/s2, 50 m2, 10 m2/s2]).

For this setup, 50 Monte Carlo simulation runs are performed for four different quasi-linear
sensor managers with time horizon N ∈ {1, 2, 3, 4}. Additionally, a random sensor manager
and a nearest neighbor manager (NN) are employed. While the random manager selects the
next sensor randomly, the NN manager selects the sensor which minimizes the Mahalanobis
distance between the sensor position and the current position estimate [199]. As illustrated in
Figure 3.5 (b), the proposed quasi-linear sensor managers significantly outperform the random
and NN manager with respect to the root mean-square error (rmse) of the target position. The
inferior performance of the NN manager compared to the random approach can be explained
by the fact that the same sensor is often selected consecutively. Furthermore, for most of the
simulation runs, only a subset of the sensors is selected by NN.

As expected, the longer the optimization horizon of the quasi-linear manager, the better is
the tracking performance. Especially the long horizons N = 3 and N = 4 lead to diversified
sensor schedules. This in turn results in a fast reduction of the initial uncertainty of the target
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Figure 3.5: (a) Simulation setup. (b) Average rmse over 50 Monte Carlo simulation runs for different sensor
managers.

estimate. Furthermore, an almost constant tracking error can be achieved after a transition
time of about 10 time steps. In contrast to this, the tracking performance of the greedy strategy
(N = 1) degrades after 10 time steps.

The better performance of long time horizons typically comes at the expense of a higher
computational burden. However, as listed in Table 3.2, the complexity of the tree search can
be kept bounded thanks to the employed IBP4. While the search tree grows exponentially with
a base of five, (see third row of Table 3.2), the number of expanded nodes merely doubles
with the length of the time horizon. Thus, the computation time for calculating the optimal
sensor sequence increases from 0.025 s for N = 2 to 0.119 s for N = 4, which is moderate and
facilitates target tracking in real-time even for long time horizons.

Table 3.2: Number of expanded nodes for different time horizons N using IBP in comparison to an exhaustive
tree search.

N = 1 N = 2 N = 3 N = 4

IBP 5 14 26 50
exhaustive search 5 30 155 780

Controlling a Mobile Distance Sensor

In this scenario, the target is now observed by means of a single but mobile distance sensor.
The motion of the sensor is described via the kinematic model (2.6) of Example 2.4. The
sensor can change its orientation by one of five possible steering angles u ∈ { i�

8
∣i = −2, . . . , 2}.

Afterwards, the sensor moves along its new orientation with velocity v = 20 m/s. It is assumed
that the new position is exactly known to the sensor. Additionally, the sensor can stop its
motion for the considered time step. Thus, these six sensor motions define the set U of possible
configurations. This scenario is inspired by the target tracking application described in [42],
where a torpedo performing bearings-only measurements is considered for target tracking.

The initial sensor position is [xsk, y
s
k, �

s
k]

T = [−100 m, 300 m, �/2 rad]T and the measure-
ment noise is assumed to be zero-mean white Gaussian with standard deviation �vk = 0.5 m.
The initial target state x0 is represented by means of a Gaussian density with mean vector
x̂0 = [0 m,−4.5 m/s, 500 m,−4.5 m/s]T and covariance matrix C0 = diag([500 m2, 10 m2/s2,

4 Since sensor scheduling is stateless management problem, IBP is fully applicable.
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Figure 3.6: (a) Average rmse for time horizons N ∈ {1, 2, . . . , 5}. (b) Sensor trajectories for the time horizons
N = 2 and N = 5 together with an example target trajectory.

500 m2, 10 m2/s2]), i.e., the average velocity of the target is 6.36 m/s, which is approximately
by a factor of three smaller than the sensor velocity. The target travels for 40 time steps.

For these parameters, five quasi-linear sensor managers for the time horizons N ∈ {1, . . . , 5}
are investigated in 100 Monte Carlo runs. Similar to the scheduling problem considered before,
increasing the length of the time horizon leads to an improved tracking accuracy. This is
illustrated in Figure 3.6 (a). Interestingly, the results for the long time horizons N ∈ {4, 5}
significantly differ from the results of the horizon lengths N ∈ {1, 2, 3}. This finding can be
explained by investigating the sensor trajectories (see Figure 3.6 (b)). For short horizons, the
resulting trajectory is similar to a circular arc. In this case, sensor management suffers from
the constrained sensor movement. Instead, for long lookaheads, the sensor is able to follow
the trajectory of the target since the sensor manager utilizes the much higher sensor velocity
compared to the target velocity. In doing so, the sensor can catch up, even if the sensor starts
its motion far away from the target.

Besides the length of the lookahead, the employed linearization method for determining
the linearized sensor models plays an important role for the achievable performance. So far,
statistical linearization based on the deterministic sampling scheme of the Gaussian estimator
was employed (see Section 5). By replacing this statistical linearization method with lineariza-
tion by first-order Taylor-series expansion as employed for the well-known extended Kalman
filter (EKF), the tracking performance degrades. This is illustrated in Figure 3.7 for the sensor
managers with time horizon N = 2 and N = 5. Determining configurations sequences on
the basis of statistical linearization benefits from the consideration of the uncertainty during
planning, which is comprised by covariance of the state estimate. Though, the performance
difference for the short horizon of N = 2 is much more significant compared to the long looka-
head, where the rmse is only approximately 1 m lower from time step 25 on. Long horizons
amplify the effect that the superior linearization accuracy of statistical linearization is dimished
by the uncertainty introduced by the prediction step. However, in case of the long horizon, the
manager based on statistical linearization still converges much faster.

3.4 Summary

The determination of optimal configuration sequences for nonlinear system and sensor models as
well as covariance-based objective functions generally requires solving a closed-loop model pre-
dictive control problem. Due to the incorporation of future information about the system state
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Figure 3.7: Comparing the tracking performance of the proposed statistical linearization based quasi-linear sensor
management with sensor management employing linearization by means of first-order Taylor-series expansion.

into the control, calculating the optimal sequence is computationally demanding. An approx-
imation to the optimal sequence can be obtained by considering the corresponding open-loop
model predictive control problem. The novel quasi-linear sensor management scheme proposed
in this chapter provides this approximate solution in a very efficient way. The efficiency of this
scheme results from two techniques: statistical linearization and optimal pruning.

Statistical linearization performed in a predictive manner provides a linearized approxi-
mation of the nonlinear models over the considered time horizon. In doing so, the nonlinear
non-Gaussian sensor management problem is converted into a linear Gaussian problem, for
which the optimal configuration sequence can be determined independent of future measure-
ment values. Thanks to the model predictive control structure, novel information about the
system state can be made available by applying the first element of the optimal sequence to the
sensors. The incorporation of the new measurement values into the state estimate still relies on
the actual nonlinear models and non-Gaussian densities, which allows employing sophisticated
Bayesian estimators for a high quality state inference.

Existing approaches on open-loop sensor management often rely on specific applications.
Thus, dealing with nonlinearities and long optimization horizons is only applicable for restricted
problem types. For example, [190] exploits the problem structure of tracking a single target for
a significant reduction in computational demand of planning over long time horizons. Other
approaches exploit the linearity of the system model considered in typical target tracking prob-
lems. By this means, it is sufficient to employ the extended Kalman filter for linearizing the
sensor model multiple time steps ahead [42] or to calculate configuration sequences on the basis
of minimizing the posterior Cramér-Rao lower bound [41, 80]. In case of nonlinear system mod-
els or strong nonlinearities in the sensor model, EKF and PCRLB-based approaches provide
poor estimation results as the growing uncertainty along the time horizon is not incorporated
during linearization. In case of non-differentiable models, these approaches are even not ap-
plicable. The proposed sensor management approach can be considered as a direct extension
of existing EKF-based approaches to a larger class of nonlinear sensor management problems.
However, for strong nonlinearities in both system and sensor models, and strongly non-Gaussian
density functions even statistical linearization will lead to poorly linearized models. Here, deal-
ing directly with the closed-loop model predictive control sensor management problem as it is
done in the next chapter is more promising.

By converting the nonlinear non-Gaussian sensor management problem into a linear Gaus-
sian one, the optimal sensor sequence results from solving a deterministic optimization problem
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by means of a tree search. Since the tree consists of ∣U∣N possible configuration sequences, an
exhaustive search is only feasible for a small set of configurations and short time horizons.
By means of the proposed optimal pruning technique named information-based pruning, com-
plete subtrees can be pruned very early, while preserving the optimal configuration sequence is
guaranteed. Compared to existing branch-and-bound based optimal pruning methods like those
introduced in [42], the effectiveness of the proposed method relies on exploiting the properties of
the sensor information matrices. This allows pruning without explicitly evaluating the Riccati
equation and by calculating a tight lower bound to the cumulative objective function, which in
turn facilitates a more effective branch-and-bound pruning. For some state-dependent sensor
management problems, information-based pruning is only applicable in a restricted manner.
Further improving the pruning performance in such cases is devoted to future research.



CHAPTER 4

Information Theoretic Sensor Management

The Bellman recursion (2.20) for determining the optimal configuration sequence over a finite
time horizon merely provides a conceptual solution framework. For a continuous state space and
continuous measurement values, calculating the optimal solution in general is computationally
intractable or even impossible. Instead, approximate approaches have to be employed.

The approach proposed in the previous chapter represents one way for approximately solving
the sensor management problem. Being an open-loop control approach, no information about
future measurement values is anticipated for planning the configuration sequence. Moreover,
this approach relies on statistical linearization, where uncertainties over the system state are
captured by means of Gaussian densities, respectively. Consequently, in cases of mild nonlinear-
ities and nearly Gaussian uncertainties, good results are provided. The stronger the considered
scenario or application differs form these conditions, the less advantages can be gained from
planning over long time horizons.

This chapter is devoted to a closed-loop model predictive control approach named in-
formation theoretic sensor management that provides an approximate solution of the sensor
management problem on the basis of sequences of simulated measurement values for each pos-
sible configuration sequence. By means of these so-called virtual measurements, the effect of
future measurement values can be incorporated into sensor management. For an adequate con-
sideration of even strong nonlinearities and non-Gaussian uncertainties, this approach further
employs

∙ a Gaussian mixture representation of the state density function and

∙ mutual information as information theoretic objective function.

In doing so, more sophisticated nonlinear state estimators, e.g., the hybrid density filter in-
troduced in Chapter 6, can be used and the resulting higher-order information of the state
estimate can be quantified and considered in the determination of the optimal configuration
sequence.

With regard to long time horizons and/or a large set of possible configurations, the proposed
information theoretic sensor management approach may become computationally infeasible if
implemented in a straightforward manner. Hence, this chapter is also devoted to various tech-
niques that significantly lower the computational demand. Analog to the previous management
approach, the optimal configuration sequence results from a tree search. But now, the branch-
ing factor of the tree not only depends on the number of configurations but also on the number
of virtual measurements. Hence, it is of paramount importance to create few but representative
measurement values, which is achieved on the basis of an optimal Dirac mixture approxima-
tion method (see Section 4.1.2). Due to the usage of virtual measurements, classical pruning
methods for efficiently traversing the search tree are improper. Instead, a novel probabilistic
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branch-and-bound algorithm is applied in Section 4.1.4, which accounts for the probabilistic
representation of the virtual measurements.

Mutual information, as the employed information theoretic objective function, represents
a central part of the proposed sensor management approach that has to tb evaluated multiple
times during the tree search. Due to the Gaussian mixture representation of the state density,
its closed-form evaluation is not possible. More specifically, the differential entropy terms
that form mutual information cannot be evaluated in closed form due to the logarithm of a
sum of exponential functions. Instead of falling back on computationally expensive entropy
approximations that additionally may deviate from the true entropy values in an arbitrary
fashion, Section 4.2 discusses the cheap calculation of tight lower and upper bounds. Besides the
importance of these bounds for a computationally tractable determination of the configuration
sequence, their application is not restrict to the proposed sensor management approach.

The foundation of this chapter was published in [230] in the context of closed-loop model
predictive control of stochastic nonlinear systems. Especially, the concept of the virtual mea-
surements and pruning via the probabilistic branch-and-bound algorithm can be found here.
The upper and lower bounds on the differential entropy are part of [213]. The combination of
all these techniques to the information theoretic sensor manager and further improvements on
the entropy bounds are the main contributions of this chapter.

4.1 Closed-loop Control

For determining the optimal configuration vector u∗k in a closed-loop model predictive con-
trol fashion, the optimal control problem

u∗k = �∗
k
(xpk) = arg max

�
k,0

max
�
k,1:N−1

Ezk,0:N−1

{
N−1∑
n=0

gn(xpk,n, �k,n(xpk,n))

}
︸ ︷︷ ︸

Vk,0(xp
k,0,�k,0(xp

k,0))

(4.1)

needs to be solved for the moving N -step time horizon at any time step k. The optimal
configuration vector u∗k = u∗k,0 is then applied to the sensors and the whole procedure is repeated
at the next time step k+ 1. In the following, the time index k is omitted, since merely the time
index n within the time horizon varies for all necessary calculations.

4.1.1 Control Setting

According to Section 2.4, the optimal control policy �∗
k
(xpk) in (4.1) anticipates the arrival of

future measurement values under consideration of the nonlinear system model (2.1) and the
nonlinear sensor model (2.3). Determining the optimal policy corresponds to solving a POMDP
with continuous state space and measurement space. In the considered stochastic setting, the
probability density function characterizing the system state forms the sufficient statistic as it
fully describes the system state at a particular time step within the time horizon.

Objective Function

In order to capture all information subsumed in the state densities instead of only considering
second-order moments as in the previous chapter, the sensor management approach proposed
in this chapter focuses on mutual information (2.27) as objective function. Mutual information
belongs to the class of information theoretic objective functions and quantifies the expected
information gain, i.e., the reduction of uncertainty over the state estimate by incorporating
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sensor measurements. With the step objective gn(xn, un) = I(xn; zn∣z0:n−1, �0:n
), where con-

ditioning is on the value of the past measurements z0:n−1, and assuming that u∗k is determined
by applying the policy �

1:N−1
within the time horizon, (4.1) can be written according to

u∗k = arg max
uk,0

max
�
1:N−1

Ez0:N−1

{
N−1∑
n=0

I
(
xn; zn∣z0:n−1, �0:n

)}
. (4.2)

This is equivalent to maximizing the joint mutual information over the whole time horizon

u∗k = arg max
uk,0

max
�
1:N−1

I
(
x0:N−1; z0:N−1∣�0:N−1

)
.

To see this, the expectation Ez0:N−1
has to be incorporated into the mutual information ob-

jective, which leads to a conditioning on random vectors z0:N−1. The chain rule for mutual
information (2.28) is then applied on (4.2), assuming that the measurement zn is independent
of all other measurements and system states when conditioned on xn.

Another common information theoretic objective function utilized for sensor management
is the conditional entropy (2.24) (see e.g. [43, 57, 186]). For the sake of completeness, it is
shown in the following that considering conditional entropy as step objective instead of mutual
information merely leads to an upper bound approximation. Applying (2.29) on (4.2) yields

J0(x0) : = max
�
0:N−1

Ez0:N−1

{
N−1∑
n=0

I
(
xn; zn∣z0:n−1, �0:n

)}

= max
�
0:N−1

Ez0:N−1

{
N−1∑
n=0

H
(
xn∣z0:n−1, �0:n

)
−H

(
xn∣zn, z0:n−1, �0:n

)}
. (4.3)

Employing the order (2.25) on the first summand in (4.3) results in the upper bound

J0(x0) ≤ max
�
0:N−1

Ez0:N−1

{
N−1∑
n=0

H(xn)−H
(
xn∣zn, z0:n−1, �0:n

)}
.

Here, the first entropy term H (xn) does not depend on sensor measurements and thus can be
omitted, which leads to

J0(x0) ≤ min
�
0:N−1

Ez0:N−1

{
N−1∑
n=0

H
(
xn∣zn, z0:n−1, �0:n

)}
. (4.4)

Hence, a better cumulative objective value J0(x0) can be achieved by maximizing per step
mutual information instead of per step conditional entropy. Equality in (4.4) holds for myopic
sensor management, i.e., for N = 1 [57]. Additionally, employing mutual information is in
particular beneficial in cases of additive measurement noise and where the dimension of the
measurements is smaller than the dimension of the state (see Section 4.1.5). Here, the computa-
tional demand of (approximately) calculating the mutual information value can be significantly
reduced compared to calculating the value of conditional entropy.

State Estimation and Density Representation

Besides performing state estimation for inferring the system state within the time horizon, the
proposed information theoretic sensor management approach also relies on the prediction of
measurement values for evaluating the expectation terms in (4.2) (see Section 4.1.2). Both
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estimation tasks cannot be performed in closed form due to the employed nonlinear system
and sensor models (2.1) and (2.3), respectively. Nevertheless, an approximate but accurate
calculation of the occurring density functions is desirable. Especially the representation of
multimodalities is of paramount importance, e.g., in case of measurement prediction, multiple
modes indicate multiple meaningful measurement values that have to be considered for sensor
configuration. Thanks to their universal approximation property, Gaussian mixtures are a
convenient type of density functions and thus are employed here (see Appendix A.2). The
hybrid density filter proposed in Chapter 6 offers the desired Gaussian mixture representations,
where all necessary calculation can be performed in closed form.

According to Section 2.2, employing an accurate estimator for management purposes can
be considered as mimicking the estimator for inference within the optimization time horizon.
Admittedly, the estimator for planning has to be executed multiple times within the time
horizon, which prevents approximations that are as accurate as for inference purposes. Instead,
one has to trade off estimation quality against computation time. In case of the HDF, this can
be achieved by reducing the number of Gaussian mixture components for planning, which leads
to a decrease in the amount of computations for solving (4.1), while the estimation quality can
still be kept at a meaningful level.

Solution of the Control Problem

Solving (4.1) in closed form for determining the optimal control policy is not possible for the
considered setting due to the nonlinearity of the considered probabilistic models as well as
the continuous-valued states and measurement values. More specifically, the mutual informa-
tion step objectives I( ⋅ ; ⋅ ) cannot be expressed as a linear function of the density function
representing the system state, and the value-to-go, i.e., the expectation term in (4.1), is not
piecewise linear convex as in stochastic control problems with finite state space [189]. But even
for finite state spaces and finite measurement spaces, calculating the optimal configuration vec-
tor is still demanding [118, 140], which prevents the attempt of simply applying discretization
of the state space and measurement space. Thus, the following sections are concerned with
an approximate approach that trades computational burden off against incorporating as much
information into the control as possible.

4.1.2 Virtual Measurements

Determining the optimal sensor configuration in (4.1) requires the incorporation of future, not
yet available measurements due to the considered non-myopic optimization. This is achieved
by means of the expectation Ezn

with respect to all possible future measurement values zn at
time step n of the time horizon. Calculating the density function of the future measurements
can be achieved in a way similar to the state prediction (2.7) by propagating the predicted state
estimate xpn ∼ fpn(xn) through the sensor model (2.3), which leads to the so-called predicted
measurement density

f zn(zn∣un) =

∫
Rnx

fn(zn∣xn, un) ⋅ fpn(xn) dxn . (4.5)

Here, the conditional density fn(zn∣xn, un) corresponds to (2.10). The measurement predic-
tion (4.5) can be efficiently calculated by means of the hybrid density filter (see Chapter 6),
which results in Gaussian mixture representation of f zn(zn∣un).
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Calculating an Expected Density

Given the predicted measurement density, evaluating the expectation in (4.1) is still a difficult
task due to the dependence of future state estimates on the measurements zn. More specifically,
at a specific time step n within the time horizon, predicted future states xpm for m > n depend
on the configuration un and thus on the measurement zn.

For the given continuous measurement space, it could be desirable to determine some kind of
an expected predicted state that is independent of the measurements zn but still depends on the
configuration un, e.g., by taking the expectation over xpn+1 ∼ fpn+1(xn+1) = fxn+1(xn+1∣zn, un)
according to

f̂xn+1(xn+1∣un) = Ezn

{
fxn+1(xn+1∣zn, un)

}
. (4.6)

However, as shown in the following theorem, this leads to predicted states that are both in-
dependent of measurements and configurations. The non-myopic sensor management problem
degenerates to a myopic one.

Theorem 4.1 (Expected Predicted Density) Given the system state xn ∼ fpn+1(xn) =
fn+1(xn+1∣zn, un) at time step n+ 1 and the predicted measurement density f zn(zn∣un) according
to (4.5), taking the expectation according to (4.6) yields

f̂xn+1(xn+1∣un) = Ezn

{
fxn+1(xn+1∣zn, un)

}
= fxn+1(xn+1) .

Proof. Applying the Chapman-Kolmogorov equation (2.7) and Bayes’ law (2.9) on the
predicted density fxn+1(xn+1∣zn, un) leads to

f̂xn+1(xn+1∣un) = Ezn

{
fxn+1(xn+1∣zn, un)

}
=

∫
Rnz

f zn(zn∣un)

∫
Rnx

fTn (xn+1∣xn) ⋅ fn(zn∣xn, un) ⋅ fpn(xn)

f zn(zn∣un)
dxn dzn

=

∫
Rnz

∫
Rnx

fTn (xn+1∣xn) ⋅ fn(zn∣xn, un) ⋅ fpn(xn) dxn dzn

= fxn+1(xn+1) .

□

The Finite Case

An alternative would be to discretize the continuous measurement space, e.g., by employing
Monte Carlo sampling of the predicted measurement density or by means of a grid represen-
tation of the continuous measurement space. For the resulting finite measurement space, a
straightforward solution would be to calculate predicted states xpm, m > n, for each possible
configuration and discrete measurement value. Taking the expectation then leads to the de-
sired expected objective function value. However, this procedure is intractable for a large set
of discretized measurement values and long time horizons.

Representative Virtual Measurements via Density Approximation

By employing straightforward discretization techniques, the resulting large set comprises many
discretized measurement values that are less representative or redundant. Instead, the idea is
now to provide an approximate solution to the expectation calculation by employing a finite and
small set of so-called virtual measurements, which should be as representative and informative
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Figure 4.1: Virtual measurements approximating the predicted measurement density. (a) The predicted density at
time step n, characterized by means of a Gaussian mixture. (b) The predicted measurement density fz

n(zn) (black)
that results from the predicted density by applying (4.5) and its approximation by five virtual measurements (red
stems).

as possible. The term virtual measurement is used here, as the true measurement values are
obviously not available within the time horizon. By means of the virtual measurements, it is
possible the calculate the predicted state estimate xpn+1 for each virtual measurement value and
take the expectation with respect to zn.

In order to generate L representative virtual measurements, the predicted measurement
density (4.5) is approximated by means of a Dirac mixture (see also Appendix A.2)

f zn(zn∣u(j)) ≈ f̂ zn(zn∣u(j)) =
L∑
i=1

!
(j)
n,i ⋅ �(zn − ẑ

(j)
n,i) (4.7)

for a given configuration u(j) ∈ U . The positions ẑ
(j)
n,i of the Dirac delta distributions act as

virtual measurement values and the weights !
(j)
n,i approximately represent the probability of the

individual virtual measurement.
The number of employed virtual measurements strongly impacts the computational de-

mand of the entire sensor management approach. Each virtual measurement causes a predicted
state estimate that is conditioned on the measurement value. Based on these state estimates,
further decisions with respect to the next configuration have to be made. Thus, it is highly
desirable to minimize the number of required virtual measurements, while preserving a mean-
ingful representation of the predicted measurement density f zn(zn∣u(j)). Accordingly, sampling
methods like Monte Carlo sampling [9] or unscented transform [91] are inadequate. Monte
Carlo sampling requires many virtual measurements for being representative, while the un-
scented transform and other LRKF techniques are specialized for Gaussian densities. However,
the predicted measurement density is typically non-Gaussian and characterized by means of a
Gaussian mixture in the proposed approach.

To obtained a high quality approximation that requires just a small number of Dirac com-
ponents even in case of non-Gaussian measurement densities, the algorithm proposed in [163] is
employed in the following. For scalar measurements, the components are carefully placed on the
basis of a global optimization that progressively minimizes the Cramér–von Mises distance [24]
between f zn(zn∣u) and f̄ zn(zn∣u). The whole procedure of determining virtual measurements is
exemplified in the following.

Example 4.1: Virtual Measurements
For a particular time step n within the time horizon, the two-dimensional state xn = [xn,yn]T

is represented by the predicted state estimate xpn. The Gaussian mixture density fpn(xn) of xpn is
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depicted in Figure 4.1 (a). This is a typical density function occurring in target tracking applications
with nonlinear system model, e.g. (4.23) on page 62, in which xn represents the two-dimensional
target position.

It is assumed for this example that one distance measurement according to the sensor model
(2.4) is performed, where the considered configuration is un = [0, 0]T, i.e., the sensor is located in the
origin. The measurement noise vn is zero-mean Gaussian with standard deviation �vn = 0.05 m. For
obtaining L = 5 virtual measurements, at first the predicted measurement density f zn(zn∣un) needs
to be calculated by applying the HDF on (4.5). The resulting predicted measurement density is
illustrated in Figure 4.1 (b). Now, the Dirac mixture approximation algorithm [163] is applied,
which leads to the five virtual measurements indicated by the stems in Figure 4.1 (b). It can be
clearly seen that the Dirac delta distributions cover the regions where the strictly non-Gaussian
predicted measurement density comprises most of its probability mass. The components are not
equally weighted. Instead, the weights capture the local probability mass around the corresponding
component. Hence, the second and forth component possess the largest weights. ■

For multidimensional measurement values, an extension of the approximation algorithm is
introduced in [73, 97], where the components are placed in a greedy fashion in order to reduce
the computational demand.

4.1.3 Recursive Objective Function Calculation

The optimal configuration u∗k can be easily calculated employing (4.1) if the cumulative objective
function V0(xp0, u0) is known. Thus, the main task in determining the configuration vector is to
calculate the cumulative objective V0(xp0, u0). Due to the cumulative structure of the objective
function and the consideration of future measurement values, this calculation has to be carried
out recursively backwards in time by employing

u∗k = arg max
u0

V0(xp0, u0) = arg max
u0

{
g0 (xp0, u0) + Ez0

{J1(xp1)∣xp0, z0, u0}
}
. (4.8)

Due to Bellman’s principle of optimality [16], this recursion is equivalent to (4.1) and commences
from

JN−1(xpN−1) = max
uN−1

{
gN−1

(
xpN−1, uN−1

)}
for a given predicted state xpN−1 and configuration uN−1 ∈ U .

Based on the initial density function xp0 ∼ fp0 (x0) of the state estimate at time step k,
the Gaussian mixture densities describing the system state xpn within the time horizon can
be calculated for various configuration sequences u0:n−1 and virtual measurement values ẑ0:n−1

using the HDF. Due to the finite number of configurations and measurement values, solving
(4.8) leads to a tree structure as depicted in Figure 4.2. At each time step n, the tree branches
for each configuration and each virtual measurement. Contrary to the open-loop control tree
(see Figure 3.2), which merely possesses nodes representing state estimates, the closed-loop
control tree additionally possesses levels with nodes for the predicted measurement densitys
(light red nodes in Figure 4.2). Hence, the closed-loop control tree consists of O(∣U∣N ⋅LN−1)
possible pathes. Thanks to the well-directed selection of virtual measurements, the number of
additional branches O(LN−1) can be kept on a low level.

Since two different types of density functions, namely fpn(xn) and f zn(zn), appear in the
search tree, the recursion (4.8) is partitioned into two different types of cumulative objective
functions Jpn(xpn) and Jzn(xpn, un), respectively, for clarity reasons.
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ẑ
(2)
0,1

u
(1)
1 u

(2)
1

ẑ
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Calculation of Jpn(xpn)

The cumulative objective function Jpn(xpn) determines the configuration vector that maximizes
the sum of the step objective function gn(xpn, un) and the cumulative objective Jzn(xpn, un) of its
successors as depicted in Figure 4.3 (a). Hence, Jpn(xpn) is given by

Jpn(xpn) = max
un
{gn(xpn, un) + Jzn(xpn, un)} . (4.9)

By comparing (4.9) with (4.8), it can be seen that the objective function Jpn(xpn) coincides with
the actual cumulative objective functions Jn(xpn) at time step n.

Calculation of Jzn(xpn, un)

The cumulative objective functions Jzn(xpn, un) can be calculated on the basis of Jpn+1(xpn+1)

as illustrated in Figure 4.3 (b), whereas the density function of x
p∣ẑn
n+1 depends on a particular

virtual measurement ẑn or equivalently, on a particular branch of the tree. Hence, gray nodes
of the search tree correspond to a measurement update step for incorporating the particular
virtual measurement followed by a prediction step. As the occurrence of a measurement value
is random to some degree, the cumulative objective Jzn(xpn, un) is the expected value of its

successors Jpn+1

(
x
p∣ẑn
n+1

)
with regard to the virtual measurements ẑn ∼ f̂ zn(zn∣un), i.e.,

Jzn(xpn, un) = Eẑn

{
Jpn+1

(
x
p∣ẑn
n+1

)
∣xpn, un

}
for n < N−1. Due to the Dirac mixture representation (4.1) of the virtual measurements, where
the component weights correspond to the probability of a virtual measurement, Jzn(xpn, un) can
be written according to

Jzn(xpn, un) =
L∑
i=1

!n,i ⋅ Jpn+1

(
x
p∣ẑn,i

n+1

)
.

For the final step N − 1 of the time horizon, which corresponds to the leafs of the search tree,
the terminal objective function is given by

JzN−1(xpN−1, uN−1) = 0 .
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Figure 4.3: Detailed view on the levels of the closed-loop control tree of Figure 4.2 with regard to evaluating the

cumulative objective functions (a) Jp
n(xp
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n, un). The state estimate x
p∣ẑn,i

n+1 and thus, the value of

Jp
n+1

(
x

p∣ẑn,i

n+1

)
in (b) depends on the taken virtual measurement ẑn,i.

This special terminal objective function allows for the structure of the mutual information
objective (4.11), which can be evaluated at the final step N − 1 without determination of a
posterior state estimate xeN−1.

4.1.4 Optimal Pruning

As mentioned before, a straightforward calculation of the configuration vector u∗k, i.e., traversing
the entire search tree, has exponential complexity. By employing more advanced tree search
techniques, this computational demand can be significantly reduced while retaining optimality.
One of these techniques is branch-and-bound (BB) pruning as utilized in Section 3.2.4. However,
basic branch-and-bound pruning algorithms cannot be applied directly. In the considered sensor
management problem, the tree consists not only of edges that represent configurations, which
are deterministic decisions (as in the basic BB). There are also edges representing virtual
measurements for which only a probabilistic representation is available. To consider this, the
so-called probabilistic branch-and-bound (PBAB) algorithm is used, which ensures even in this
particular case that the optimal solutions is always found. In the following, a brief review of
PBAB is given. A detailed description of PBAB can be found in [187] and [230].

Since PBAB operates on negative objective function values for maximization, the step
objectives are converted according to

ḡn(xpn, un) = gn(xpn, un)− c ≤ 0 , (4.10)

where c ∈ R+ is a sufficiently large constant. Based on this modification, PBAB is able to
assign an upper bound of the achievable cumulative objective to any visited node. Initially,
the upper bound is set to 0 which is always a valid upper bound due to (4.10). In contrast to
the open-loop approach employed in Chapter 3, the objective function is evaluated recursively
backwards in time due to the dependence on future measurement values. Hence, whenever a
new node is expanded, the upper bound values of the parent nodes are update recursively, i.e.,
the upper bound values are adapted by traversing backwards to the root of the tree. In doing
so, an upper bound for a fpn-node becomes the exact cumulative objective value, if the largest
sum of step objective value and objective value of a child is known exactly. The objective value
of a f zn-node is exact, if all cumulative objective values of child nodes are known exactly.

For an efficient tree search, i.e., for pruning the tree, not necessarily all children of the
fpn-nodes need to be fully expanded since the upper bound of a child can be smaller than an
exactly known cumulative objective function value. In the best case, the child nodes of one
f zn-node have significantly higher step objective values (mutual information values) than the
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f zn-node’s siblings’ children. In this case, merely one subtree needs to be analyzed and the
computational complexity is not exponential in the number of configurations ∣U∣.

4.1.5 Evaluation of the Step Objective Function

Albeit their approximation capabilities, utilizing Gaussian mixtures for characterizing the sys-
tem states complicates the evaluation of the mutual information step objectives. According to
(2.27), the mutual information term can be decomposed into two differential entropy terms,
for which no analytical expression can be found in case of Gaussian mixture random vectors
[116, 144]. However, the identity

I(xn; zn) = H(zn)−H(zn∣xn) (4.11)

leads to an significant simplification compared to I(xn; zn) = H(xn)−H(xn∣zn) in cases where
the dimension of the measurement space is smaller than the dimension of the state space, which
exemplary is the case in typical target tracking scenarios as the one considered in Example 2.1
and 2.2. Hence, the complexity of evaluating or approximating both entropy terms in (4.11)
decreases compared to the entropy terms H(xn) and H(xn∣zn).

In this thesis, an approximation of the mutual information value (4.11) is provided by
means of calculating an upper bound. This can be achieved by bounding the first entropy term
H(zn) from above and by bounding the conditional entropy term H(zn∣xn) from below. The
calculation of tight and computationally cheap bounds is discussed in the subsequent section.
Calculating an upper bound of (4.11) can be further simplified, if the sensor is corrupted by
additive white Gaussian mixture noise, i.e., the sensor model is given by

zn = ℎn(xn, un) + vn ,

with measurement noise according to

vn ∼ f vn(vn) =
L∑
i=1

!vn,i ⋅ N (vn; v̂n,i,C
v
n,i) .

For this case, the conditional entropy can be reformulated according to

H(zn∣xn) = H(ℎn(xn, un) + vn∣xn) = H(vn∣xn) = H(vn) .

Hence, it is sufficient to bound the differential entropy H(vn) of the noise vector vn. For the
special case of measurement noise represented by a single Gaussian density, the differential
entropy H(vn) can even be evaluated in closed form according to

H(zn∣xn) = H(vn) = 1
2

log ∣2�e ⋅Cv
n∣ .

Hence, merely the entropy term H(zn) in (4.11) remains for approximation by means of a
bound.

To obtain an upper bound on the conditional entropy in case on non-additive Gaussian
mixture noise, one option could be to exploit the relation H(z∣x) = H(x, z)−H(x). The joint
density f(x, z) required for the entropy term H(x, z) can be efficiently determined by means
of the Gaussian mixture estimator proposed in Section 5.5. Alternatively, minimizing the con-
ditional entropy H(x∣z) can be considered instead, as discussed in Section 4.1.1. Here, merely
one single entropy term needs to be approximated to the disadvantage of merely calculating an
upper bound approximation of the cumulative objective function value.
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4.2 Entropy Bounds

The Gaussian mixture representation of the state estimates complicates the evaluation of the
mutual information objective function. Since mutual information needs to be evaluated for
each fpn-node of the search tree, an efficient approximation of the mutual information value is
inevitable. Here, it is sufficient to focus on approximating the differential entropy terms that
form mutual information.

Besides being computationally cheap, an approximation of the entropy values additionally
has to ensure meaningful approximation results. Both requirements are typically not fulfilled
for direct approximation approaches. In some situation, these approximations may deviate from
the true entropy value in an arbitrary fashion and hence, are of limited usefulness. Only a few
of the existent approximations, for example computationally expensive random sampling, can
be demonstrated to converge to the true value. An overview of common direct approximation
approach is given in Section 4.2.1.

On this account, Section 4.2.2 and Section 4.2.3 are concerned with deriving novel tight
lower and upper bounds for the differential entropy

H(x) = −
∫
Rnx

f(x) ⋅ log f(x) dx , (4.12)

with f(x) =
∑

i !i ⋅ N (x; x̂i,Ci) being a Gaussian mixture with L components. By composing
a lower bound of the first entropy term in (4.11) with an upper bound of the second term1, a
meaningful lower bound approximation to mutual information is available. This procedure is
reasonable, if the computational demand of calculating the bounds is significantly lower as the
computational demand for directly approximating the mutual information value. As it is shown,
both bounds can be calculated in closed form, which facilitates an efficient approximation. In
addition, refinement methods for the bounds are proposed in Section 4.2.4 in order to approach
the true entropy and mutual information values, respectively.

The derived bounds are not restricted to efficiently evaluating objective functions for sen-
sor management. In fact, the bounds are universally valid and thus applicable in further
information-theoretic tasks like capacity calculation of communication channels [45], parame-
ter estimation [39], image registration [182], and many others. Furthermore, providing a tight
lower and upper bound of the entropy value allows deciding whether a direct approximation is
meaningful or not, i.e., some kind of confidence interval is given.

4.2.1 Prior Work

The literature provides many methods for an approximate calculation of the entropy for Gaus-
sian mixture random vectors. A brief overview over this methods is given before starting with
the derivation of the entropy bounds.

Exact solutions for the entropy for Gaussian mixtures exists for the special cases of a
mixture consisting of merely one component [81] and consisting of two components with equal
weights and covariances [127]. Especially the solution

H(x) =
1

2
log ∣2�e ⋅C∣ (4.13)

for the single Gaussian f(x) = N (x; x̂,C) is of special importance as it offers one of the most
straightforward ways to approximate (4.12) for arbitrary mixtures. Here, f(x) is replaced by the
Gaussian density that exactly captures the first two moments of f(x). Although this method

1 In case of additive Gaussian measurement noise, merely the lower bound of the first entropy
term is necessary (see Section 4.1.5)
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is very efficient, it merely provides an (albeit very loose) upper bound approximation to the
entropy. A proof of this result can for example be found in [35, 45]. This bound is extensively
exploited for the proposed novel lower and upper entropy bounds.

The only entropy approximation methods so far that generally converge to the true entropy
value are given by Monte Carlo sampling or by local linearization in combination with repeated
splitting of the Gaussian components [213]. In case of Monte Carlo sampling, the first factor in
(4.12) is represented by a set of samples drawn i.i.d. from f(x), which facilitates a point-wise
evaluation of the logarithm. According to the strong law of large numbers, this approximation
converges to the true entropy value as the number of samples goes to infinity. For the lineariza-
tion and splitting approach, the components of the first factor in (4.12) are split analogously
as described in Section 7.2.2 and the logarithm is then linearized around the mean of each
Gaussian. For both approaches, a relatively large number of samples or splits has to be used
in order to obtain a good approximation, which in turn is computationally demanding. In case
of Monte Carlo sampling, randomization is used and thus, no deterministic approximation is
provided, which complicates comparison and precludes classical optimization techniques like
gradient descent for entropy minimization.

Deterministic sampling instead allows the use of far less sample points for a specific approx-
imation quality. This is the idea the entropy approximation proposed in [63] is based on. By
employing the unscented transform (see e.g. [91]) each Gaussian component of f(x) in (4.12)
is replaced by a set of regression points. However, in contrast to Monte Carlo sampling or
component splitting, getting arbitrarily close to the true entropy value is not longer possible as
the number of regression points is constant.

In [59, 60], an approximation is developed by replacing (4.12) with the squared integral
difference between f(x) and a uniform density. This method can be regarded as linearizing
(4.12) with a second-order Taylor-series expansion around the uniform density. This method
turns out to be computationally demanding and often inaccurate. Furthermore, it is only
applicable for the special case of Gaussian mixtures with axis-aligned components.

4.2.2 Lower Bound

A lower bound of (4.12) can be obtained by employing an upper bound of the Kullback-Leibler
divergence (2.30) between two Gaussian mixtures, which is derived in [81]. In doing so, the
logarithm is moved outside the integral since − log x is convex in x and thus, Jensen’s inequality
(see e.g. [45]) holds. Only an integral of a product of two Gaussian densities remains, which
has a well-known closed-form solution.

Theorem 4.2 (Basic Lower Bound) A lower bound Hl(x) of (4.12) is given by

Hl(x) = −
L∑
i=1

!i ⋅ log

(
L∑
j=1

!j ⋅ zi,j

)
, (4.14)

with zi,j = N
(
x̂i; x̂j,Ci + Cj

)
.

Proof. With − log E{f(x)} ≤ E{− log f(x)} according to Jensen’s inequality it follows

H(x) ≥ − log

(∫
Rnx

f(x)2 dx

)
=: Hl2(x) (4.15)

= − log

(
L∑
i

!i ⋅
∫
Rnx

N (x; x̂i,Ci) ⋅ f(x) dx

)
.
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Moving the logarithm inside the sum over i by again applying Jensen’s inequality results in the
desired lower bound

Hl2(x) ≤ −
L∑
i

!i ⋅ log

(∫
Rnx

N (x; x̂i,Ci) ⋅ f(x) dx

)
= Hl(x)

= −
L∑
i

!i ⋅ log

( L∑
j=1

!j ⋅
∫
Rnx

N (x; x̂i,Ci) ⋅ N (x; x̂j,Cj) dx︸ ︷︷ ︸
=zi,j

)
. (4.16)

The constant zi,j =
∫
Rnx N (x; x̂i,Ci) ⋅ N (x; x̂j,Cj) dx = N

(
x̂i; x̂j,Ci + Cj

)
follows from the

multiplication of two Gaussians (see (A.2) in the Appendix A.1).
A further utilization of Jensen’s inequality on (4.16) for moving the logarithm inside the

integral according to

Hl(x) ≤ −
L∑
i=1

!i ⋅
∫
N (x; x̂i,Ci) ⋅ log f(x) dx = H(x)

concludes the proof. □
The result in (4.14) can be interpreted as applying Jensen’s inequality separately to each

Gaussian N (x; x̂i,Ci) of f(x) not being argument of the logarithm. If Jensen’s inequality is
applied on the entire Gaussian mixture f(x) instead, the alternative lower bound Hl2(x) from
(4.15) results, which was proposed in [31]. However, as shown in the proof, this bound is always
smaller than Hl(x). The computational complexity of both bounds is quadratic in the number
of Gaussians L.

4.2.3 Upper Bound

The upper bound derived next is computationally cheap as its complexity is merely linear in
the number of Gaussian components L. It can be interpreted as a weighted sum of discrete
entropies and individual entropies (4.13) of Gaussian components.

Theorem 4.3 (Basic Upper Bound) An upper bound Hu(x) of (4.12) is given by

Hu(x) =
L∑
i=1

!i ⋅
(
− log!i︸ ︷︷ ︸

discrete entropies

+ 1
2

log ∣2�e ⋅Ci∣︸ ︷︷ ︸
Gaussian entropies

)
, (4.17)

where the individual Gaussian entropies coincide with (4.13).

Proof. By separating the i-th component of the mixture f(x) that is argument of the
logarithm, the entropy for x can be written as

H(x) = −
∫
Rnx

L∑
i=1

!i ⋅ N (x; x̂i,Ci) ⋅ log

(
L∑
j=1

!j ⋅ N (x; x̂j,Cj)

)
dx

= −
L∑
i=1

!i

∫
Rnx

N (x; x̂i,Ci) ⋅ log
(
!i ⋅ N (x; x̂i,Ci) ⋅

(
1 + �i(x)

))
dx

= −
L∑
i=1

!i

∫
Rnx

N (x; x̂i,Ci) ⋅
(

log
(
!i ⋅ N (x; x̂i,Ci)

)
+ log

(
1 + �i(x)

))
dx , (4.18)
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where

�i(x) =

∑L
j=1

i ∕=j
!j ⋅ N (x; x̂j,Cj)

!i ⋅ N (x; x̂i,Ci)
. (4.19)

Since log(1 + �i(x)) in (4.18) is always non-negative, neglecting it yields the desired upper
bound. □

Typically, the upper bound (4.17) is significantly closer to the true entropy value than the
well-known bound given by a single Gaussian that matches the first two moments of f(x).
Furthermore, the bound is exact for the single Gaussian case and in cases, where the Gaussian
components of f(x) are well separated, i.e., the shared support of the components in f(x)
becomes negligible2.

4.2.4 Bound Refinements

In this section, refinement methods for the previously introduced bounds are proposed in order
to further approach the true entropy value by spending additional computations.

Upper Bound Refinement

Even if f(x) has a large number of components, the shape of the Gaussian mixture is often not
that complex. For example, a mode of f(x) that is represented by several Gaussian components
might be adequately approximated by a single Gaussian. It is also common to have a Gaussian
mixture composed of several (almost) separated clusters of Gaussian components, where each
cluster can be adequately represented by a single Gaussian. As shown below, merging several
components of f(x) to a single Gaussian allows calculating a further upper bound of the entropy.

Theorem 4.4 (Upper Bound by Merging Gaussians) Given a Gaussian mixture ran-
dom vector x ∼ f(x), where the mixture f(x) is divided into two mixtures according to f(x) =

f1(x) + f2(x). Replacing f1(x) by a weighted Gaussian f̃1(x) := ! ⋅ N (x; x̂1,C1) that matches

the first two moments of f1(x), where ! =
∫
f1(x) dx, yields a new mixture f̃(x) = f̃1(x)+f2(x)

with

H(x) ≤ −
∫
f̃(x) ⋅ log f̃(x) dx =: H̃u(x) (4.20)

and thus, applying Theorem 4.3 on (4.20) provides an easily computable upper bound for the
entropy of x.

Proof.
The inequality in (4.20) is equivalent to H̃u(x)−H(x) ≥ 0. Inserting the components for

f(x) as well as f̃(x) and resorting yields

0 ≤ −
∫
Rnx

f̃(x) ⋅ log f̃(x) dx+

∫
Rnx

f(x) ⋅ log f(x) dx

= −
∫
Rnx

f̃1(x) ⋅ log f̃(x) dx+

∫
Rnx

f1(x) ⋅ log f(x) dx+

∫
Rnx

f2(x) ⋅
(
log f(x)− log f̃(x)︸ ︷︷ ︸

=log
f(x)

f̃(x)

)
dx .

2 This corresponds to the case, where �i in (4.19) approaches zero.
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Algorithm 3 H̃u(x)← RefineUpperBound(f(x))

1: H̃u(x)← UpperBound(f(x)) // According to (4.17)
2: while Number of components of f(x) > 1 do

3: f̃(x)← Merge(f(x))

4: Htmp ← UpperBound(f̃(x)) // According to (4.17)

5: H̃u(x)← min{H̃u(x), Htmp}
6: f(x)← f̃(x)
7: end while

Adding zero, with 0 =
∫
f1(x) log f(x)

f̃(x)
dx−

∫
f1(x) log f(x)

f̃(x)
dx yields

0 ≤
∫
Rnx

(
f1(x)− f̃1(x)

)
⋅ log f̃(x) dx+

∫
Rnx

f(x) log
f(x)

f̃(x)
dx︸ ︷︷ ︸

(KLD, constant) ≥ 0

. (4.21)

The second summand corresponds to the Kullback-Leibler divergence (2.30), which is non-
negative. Hence, it is sufficient to further concentrate on the first summand. Here, separating
f̃1(x) and f2(x) from f̃(x) in the logarithm similarly to the proof of Theorem 4.3 leads to∫

Rnx

(
f1(x)− f̃1(x)

)
⋅ log f̃(x) dx ≥

∫
Rnx

(
f1(x)− f̃1(x)

)
⋅ log f̃1(x) dx = 0 .

The equality to zero follows from the fact that f1(x) and f̃1(x) yield the same first two moments

of the quadratic form log f̃1(x) (see [45]). Hence, both summands in (4.21) are greater or equal
to zero, which concludes the proof. □

It is important to note that Theorem 4.4 and (4.20), respectively, provide a family of upper
bounds: All possible combinations of merged and unmerged Gaussian components give an
upper bound. Obviously, the better the merged components can be represented by a single
Gaussian, the tighter the upper bound provided by Theorem 4.4 is. A lowest upper bound will
be one that merges clusters of Gaussians that are approximately Gaussian-shaped and does
not merge well-separated components. In this case, the entropy value contribution of a merged
cluster to the bound (4.17) is close to the entropy of the original (unmerged) mixture and thus
potentially lower than the contribution of the individual Gaussians of the original mixture to
the bound.

Instead of evaluating the whole family of bounds in a brute-force fashion for obtaining the
lowest upper bound, a more efficient algorithm is proposed. According to Algorithm 3, Gaussian
components of the mixture f(x) are successively merged in order to identify Gaussian-shaped
clusters (line 3). Afterwards, the corresponding upper bound is calculated (line 4) and compared
with the currently lowest upper bound (line 5).

Methods that can be used for merging in line 3 are manifold. They differ in the distance
measure used for identifying similar Gaussian components in f(x) and the number of compo-
nents merged in one step. Merging-based Gaussian mixture reduction methods like Salmond’s
clustering algorithm [155] or Runnall’s reduction method [153] typically provide a good trade-
off between computational complexity and accuracy in identifying Gaussian-shaped clusters.
Here, Runnall’s method is employed, where at each step two components are merged. The
distance measure of this method is based on the Kullback-Leibler divergence (2.30), which is
scale invariant and thus is an ideal measure for Gaussian mixture reduction purposes.
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Figure 4.4: (a) Bivariate Gaussian mixture with L = 6 components. (b) Gaussian mixture with three components
that yields the lowest upper bound by applying Algorithm 3 on the mixture in (a).

Example 4.2: Upper Bound Refinement
In this example, the functionality of Algorithm 3 is demonstrated by applying it to a two-dimensional
random vector x represented by the six component Gaussian mixture depicted in Figure 4.4 (a). The
sequence of upper bounds generated by Algorithm 3 is listed in Table 4.1. Accordingly, the lowest
upper bound is calculated at step four, which is also the return value of Algorithm 3. As depicted in
Figure 4.4 (b), this bound corresponds to a Gaussian mixture reduced to three components, which is
sufficient for representing the three modes of the original mixture. Comparing with the true entropy
value H(x) = 3.1220, it can be stated that the resulting bounding value is tight. ■

Table 4.1: Intermediate steps of Algorithm 3 for refining the upper entropy bound for the Gaussian
mixture depicted in Figure 4.4 (a).

step 1 2 3 4 5 6

H̃u(x) 3.671 3.601 3.463 3.329 3.467 3.594
# Gaussians 6 5 4 3 2 1

Lower Bound Refinement

By employing the dual operation to merging it is also possible to refine the lower bound given
by (4.14). Here, a Gaussian component of the Gaussian mixture is replaced by a mixture of
Gaussians, whereas the mean and covariance of the original Gaussian component are preserved.
This procedure is referred to as splitting a single Gaussian into many. As shown in the following
theorem, any moment-preserving splitting of Gaussian components provides a lower bound on
the true entropy.

Corollary 4.1 (Lower Bound by Splitting Gaussians) Given a Gaussian mixture ran-
dom vector x ∼ f(x), where the mixture f(x) is divided into two mixtures according to f(x) =
f1(x) + f2(x), with f1(x) = ! ⋅ N (x; x̂,C) being a weighted single Gaussian. Replacing f1(x) by

a weighted Gaussian mixture f̃1(x) =
∑M

i=1 !i ⋅ N (x; x̂i,Ci) that matches the first two moments
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Algorithm 4 H̃l(x)← RefineLowerBound(f(x))

1: H̃l(x)← LowerBound(f(x)) // According to (4.14)
2: repeat
3: f̃(x)← Split(f(x))

4: Htmp ← LowerBound(f̃(x)) // According to (4.14)

5: H̃l(x)← max{H̃l(x), Htmp}
6: f(x)← f̃(x)
7: until termination condition fulfilled // E.g. number of loops

of f1(x), where ! =
∑

i !i, yields a new mixture f̃(x) = f̃1(x) + f2(x) with

H(x) ≥ −
∫
Rnx

f̃(x) ⋅ log f̃(x) dx =: H̃l(x) . (4.22)

Proof. This result can be shown in analogy to the proof of Theorem 4.4 by switching the role
of f(x) and f̃(x). □

Applying Corollary 4.2 on (4.22) yields a new analytic lower bound for the entropy of x.
Algorithm 4 represents a basic procedure for refining the lower bound of the entropy value.
Similarly to the upper bound refinement introduced before, selecting appropriate Gaussians for
replacement in line 3 is important for improving the lower bound accuracy. Moment-preserving
splitting is a more difficult problem than merging, however, since many free parameters, i.e.,
weights, mean vectors and covariance matrices, have to be calculated. A straightforward but
also computationally demanding way is to recursively split any Gaussian along any principal
axes of the corresponding covariance ellipsoid. The performance of this procedure is illustrated
in the following example. For a detailed description of splitting see for example Section 7.2.2.

Example 4.3: Lower Bound Refinement
Consider again the two-dimensional random vector x of Example 4.2. Its Gaussian mixture density
comprising six components is depicted in Figure 4.4 (a). For refining the lower bound of the
entropy of x, each Gaussian is recursively split into two Gaussians for both principal axes in line 3 of
Algorithm 4. Hence, one Gaussian is replaced by a mixture of four Gaussians. Then, splitting is again
applied to any component of the resulting Gaussian mixture and so on. This procedure is repeated
four times. The resulting lower bound values according to (4.14) are listed in Table 4.2, where the
second column corresponds to the bounding value by applying (4.14) on the original mixture. It can
be observed, that for an increased number of components, the bounding value approaches the true
entropy value H(x) = 3.1220. Admittedly, the number of components and thus the computation
time grows exponentially. To face this problem, it is important to note that many Gaussians are
split unnecessarily as the splitting result does not contribute noticeably. ■

Table 4.2: Refinement of the lower entropy bound by repeated component splitting.

step 0 1 2 3 4

H̃l(x) 2.8571 2.9853 3.0129 3.0423 3.0713
# Gaussians 6 24 96 384 1536

Hence, a more directed selection of Gaussians for replacement in the context of lower bound
refinement would lead to accurate bounding values, while the computations can be kept on a
low level. The derivation of such a directed splitting scheme is content of future work.
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4.3 Simulation Results

The effectiveness of the proposed information theoretic sensor management approach is evalu-
ated by means of a simulation from the field of target tracking via a sensor network. The target
is assumed to be a vehicle with differential drive kinematics. Hence, the system model is given
by

xk+1 = xk + T ⋅

⎡⎣vk ⋅ cos(�k)
vk ⋅ sin(�k)

�k

⎤⎦+wk , (4.23)

where the three-dimensional system state xk comprises the position [xk,yk]
T and the orien-

tation �k. The sampling time T is set to be 1 s, the velocity vk is set to be 5 m/s, and the
steering angle �k is set to be 0 rad. The additive noise wk is zero-mean Gaussian with co-
variance matrix Cw

k = diag([0.01 m2, 0.01 m2, (5�/180)2 rad2]). The initial target state x0 is
characterized by means of Gaussian density with mean x0 = [0 m, 0 m, 0 rad]T and covariance
C0 = diag([25 m2, 25 m2, (5�/180)2 rad2]).

The Sensor Network

The vehicle is driving through a small sensor network, similar to the network considered in
Section 3.3.5, where only one out of five sensors is allowed to perform a measurement per
time step. The position [xu, yu]T of each sensor is depicted in Figure 4.5 (a). For this sensor
scheduling problem, the set of configurations U = {1, 2, . . . , 5} represents the sensor indices. For
the three bearing sensors with indices u ∈ {1, 4, 5}, the sensor model accords to (3.15), where
the measurement noise vuk is zero-mean Gaussian with standard deviation �v,uk = 5�/180 rad.
The sensor network further comprises two signal strength sensors with indices u ∈ {2, 3} and
sensor model

zuk =
c

d+ (xk − xu)2 + (yk − yu)2
+ vuk . (4.24)

This sensor model relates the position [xk,yk]
T of the vehicle to the relative signal strength zuk

according to the free-space propagation model [78]. It allows localizing by means of measuring
the signal strength of electromagnetic signals emitted by the vehicle. Even for additive noise, the
sensor model (4.24) incorporates to some degree distance-dependencies of the measurements,
which is not the case for direct distance measurements according to the sensor model (3.16).
Here, both constants c and d are set to be 400 and the measurement noise vuk is zero-mean
Gaussian with standard deviation �v,uk = 0.03.

Thanks to the additive Gaussian noise terms of the sensor models, merely the first entropy
term H(zn) of the mutual information step objective (4.11) needs to be bounded from below,
while the conditional entropy H(zn∣xpn) can be determined exactly.

Sensor Managers and Tracking Performance

As estimator for inference and planning the HDF is employed, whereas the number of com-
ponents is 112 ⋅ 21 for inference and 113 for planning purposes. Hence, less components are
used for state estimation during planning in order to reduce the computation load due to the
multiple execution of the HDF. Furthermore, three virtual measurements are calculated for
measurement anticipation.

For this setup, 75 Monte Carlo simulation runs are performed for three different information
theoretic sensor managers (ITSMs) with time horizon length N ∈ {1, 2, 3}. The root mean
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Figure 4.5: (a) Simulation setup and example trajectory of the vehicle. (b) Rmse over 75 Monte Carlo simulation
runs for three different information theoretic sensor managers.

square errors (rmse) of the position estimates over all simulation runs for the first ten time
steps are depicted in Figure 4.5 (b). As expected, the tracking performance increases with
an increasing length of the time horizon, whereas the performance gain is more significant for
N = 3. For N = 1 and N = 2, the rmse is similar. At time step one, both sensor managers
always select the same sensor for measurement. Then, the manager with N = 2 slightly benefits
from the longer lookahead. In contrast, the sensor manager with N = 3, takes a temporarily
loss in performance at time step one by selecting an apparently poor sensor. But in doing so,
it can significantly benefit from this decision from time step two on.

Information Theoretic vs. Covariance-based Objective

The effect of taking an information theoretic objective function, namely mutual information,
is demonstrated in the following by comparing the performance of the three information theo-
retic sensor managers with three managers that indeed employ a closed-loop model predictive
control scheme but now with an covariance-based objective. More specifically, the covariance-
based sensor managers (CBSMs) employ the trace-based objective (2.22). The rmse for N = 2
and N = 3 is illustrated in Figure 4.6 (a)3. It is obvious that the ITSM with N = 3 leads to
the best estimation accuracy, while the ITSM for N = 2 is comparable to the CBSMs. More
interesting, there is almost no difference between both CBSMs. The CBSM with N = 3 does
not benefit from the longer lookahead compared to its ITSM counterpart.

In addition, as Figure 4.6 (b) indicates, the ITSM with N = 3 minimizes the trace of the
state covariance even stronger, although this is the main objective of the CBSMs. One reason
for this is that information theoretic objectives prefer different uncertainty regions, which are
indicated by multiple modes in the state density function, while covariance-based objective
prefer one single uncertainty region corresponding to a Gaussian-like density. In the considered
tracking scenario, the state density is typically non-Gaussian (compare with Example 4.1) and
the different modes correspond to different regions of potential vehicle positions. By employing
an information theoretic objective in combination with long time horizons, tolerating multi-
modal densities in the first instance followed by explicitly eliminating modes and thus potential

3 Since the performance of CBMS for N = 1 is comparable with the performance of ITSM
with N = 1, both rmse curves are omitted for clarity.
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Figure 4.6: Comparison of information theoretic with covariance-based sensor management. (a) Rmse of the
position estimates for the time horizons N = 2 and N = 3. (b) Evolution of the trace of the state covariance,
averaged over all simulation runs. Merely the covariance matrix diagonal elements corresponding to the vehicle
position are considered for this plot.

vehicle positions is possible. This in turn leads to more certain state estimates as it would be
the case for covariance-based objective functions, which are not able to quantify higher-order
information of the state density. Consequently, not only the state covariance is minimized but
also an integral minimization of the uncertainty incorporated in the state density is achieved.
Additionally, mutual information allows comparing different entities of the state vector, i.e., po-
sition and orientation, on an equal basis. This is not the case for the employed covariance-based
objective function.

4.4 Summary

The information theoretic approach introduced in this chapter provides a feasible closed-loop
model predictive control solution to the sensor management problem. The anticipation of future
measurement values and thus the incorporation of the influence of uncertainties arising from
noise-corrupted measurements on the sensor management decisions is accomplished by means
of virtual measurements. In consideration of highly nonlinear system and sensor models, the
behavior of the Bayesian estimator is mimicked during planning by providing accurate Gaussian
mixture representations of the state estimates within the time horizon. In order to extract
meaningful higher-order information from this non-Gaussian state representation, the proposed
information theoretic sensor management approach employs mutual information as objective
function. As demonstrated in the simulations, configuration sequences determined by means of
this type of objective function yields improved estimates of the observed system state compared
to the widely-used covariance-based objectives.

To reduce the substantial computational burden, three steps are taken. First, the number
of virtual measurements, which has an significant impact on the computational tractability,
can be kept on low level by employing Dirac mixture approximation techniques. This allows
determining a small number of representative expected measurement values. Second, for an
efficient tree search that additionally is capable of dealing with the probabilistic nature of the
virtual measurements, the probabilistic branch-and-bound algorithm is employed. And finally,
computationally cheap lower and upper bounds to the differential entropy are derived for the
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employed Gaussian mixture representation of the system state. These bounds provide the
foundation for a tight and meaningful approximation of the mutual information objective.

The proposed information theoretic sensor management approach represents one of the few
existing closed-loop model predictive control approaches for continuous states, measurement
values, and non-myopic optimization. In [107] for instance, Monte Carlo sampling was employed
for both state estimation and measurement value anticipation purposes. Since Monte Carlo
sampling results in many non-representative measurements, the amount of computations is
large. To face this problem, an application-specific value-to-go approximation is proposed
in addition, which significantly reduces the computation time and simultaneously keeps the
loss in estimation performance to a minimum. Such an approximation is one option that
should be considered for improving the proposed sensor management approach. Here, deriving
more generally applicable approximations compared to the one presented in [107, 110] are
desirable. Eventually, those approximation could provide a tight lower bound on the value-
to-go. These bounds could additionally be employed in the PBAB algorithm for an improved
pruning performance.

A further option for future work is to transfer the proposed techniques for calculating rep-
resentative virtual measurements and tight bounds of information theoretic objectives to open-
loop sensor management. Similarly to the approach proposed in [42], this would compromise
between open-loop and closed-loop sensor management. In doing so, the virtual measurements
would be merely utilized for calculating expected information theoretic objective function val-
ues for non-Gaussian state densities, whereas state estimation within the time horizon is still
performed in an open-loop control fashion. Hence, the effect of future measurement values is
not totally neglected as in a pure open-loop approach, while the computational burden of a
pure closed-loop approach is avoided.





CHAPTER 5

Gaussian Estimator based on
Deterministic Sampling

The open-loop model predictive control sensor management scheme introduced in Section 3
strongly relies on statistical linearization for converting a nonlinear non-Gaussian management
problem into a linear Gaussian one. In principle, every linear regression Kalman filter (LRKF)
can be employed within this management scheme. However, typical LRKFs only take the
lower-order statistics of the state into account, while the regression point calculation of the
Gaussian estimator proposed in this chapter also considers the shape of the distribution func-
tion of the prior Gaussian density. In recursive state estimation, this incorporation of shape
information automatically leads to a more accurate approximation of higher-order moments,
especially in cases of near Gaussian posterior densities. Together with a freely adjustable num-
ber of regression points, an improved linearization quality and estimation accuracy are the
consequence.

To provide shape approximation under the constraints of exactly capturing mean and co-
variance, an optimization problem is formulated in Section 5.2 for one-dimensional states, where
the regression points are interpreted as an analytic density function, namely a Dirac mixture.
This is different from most of the existing LRKFs or even particle filters, where the regression
points are not chosen in order to explicitly incorporate shape information and higher-order
moments, respectively. The solution of the optimization problem can be calculated off-line and
is extended to multivariate densities in Section 5.3. Here, two approaches are proposed, where
the axis-aligned approach relies on a sparse placement of regression points along the principal
axes and thus, the number of required regression points only grows linear with the dimension
of the state space. The grid approach on the other hand provides a more dense coverage of
regression points, which is potentially more accurate but comes at the expense of an exponen-
tial increase in complexity. The complete Gaussian estimator and an extension to Gaussian
mixtures is presented in Section 5.4 and Section 5.5, respectively.

The Gaussian estimator introduced in this section was published in [217] and its applicabil-
ity on the real-world localization problem of tracking a human in a telepresence environment was
demonstrated in experiments in [209]. Extensions to these publications are the grid approach
for the extension to multivariate densities and the extension to Gaussian mixtures.

5.1 Problem Formulation

In order to derive a Gaussian estimator based on the linear regression Kalman filter framework,
it is sufficient to restrict the focus on a nonlinear transformation

y = g(x) , (5.1)
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Figure 5.1: Principle of the proposed Gaussian estimator. The set of regression points X representing the Gaussian
density of x is propagated through the nonlinear transformation y = g(x). By means of the transformed set of
regression points Y, mean and covariance matrix for the Gaussian density N (y; ŷ,Cy) can be calculated in order to
approximate the true mean and covariance of y (light gray cross and ellipse, respectively).

where x ∈ Rnx and y ∈ Rny are random vectors and g( ⋅ ) is an arbitrary nonlinear function.
With (5.1), the random vector x is nonlinearly mapped to the random vector y. This trans-
formation is analogous to the prediction of the system state xk and the measurement zk by
means of the nonlinear functions ak( ⋅ ) and ℎk( ⋅ ) in the nonlinear system model (2.1) and
sensor model (2.3), respectively.

5.1.1 Estimation via Regression Points

In general, calculating the density function or the statistics of y cannot be carried out in closed
form. For arbitrary nonlinear transformations, analytic expressions for the formulas of the
Bayesian estimator are not available. Hence, directly processing the density or the moments
is computationally demanding and imprecise, or even impossible in cases where the nonlinear
transformation is not given in an analytic form. By considering a sample representation, pro-
cessing the density function of x can be simplified and efficiently calculating an approximate
density function representing y is possible.

A specific way to maintain a computationally efficient estimator is to consider a Gaussian
density representation f̃(x) = N (x; x̂,Cx) of x. Gaussian densities are able to represent the
most interesting statistical values, namely the mean and the covariance. This is especially the
case for tracking applications, where the main interest is on estimating the target position and
some kind of uncertainty around the estimated mean. Within the LRKF framework, it is pos-
sible to obtain a set of regression points X , i.e., a set of sample points, that exactly captures
these first two moments. As illustrated in Figure 5.1, the regression points then can be easily
propagated through the nonlinear transformation (5.1) and in turn allow efficiently approxi-
mating the true density function of y by a Gaussian density f(y) = N (y; ŷ,Cy). Therefore,
only the first two moments, i.e., mean vector ŷ and covariance matrix Cy, need to be calculated,
which can be performed with polynomial complexity with respect to the dimension of x and y.

5.1.2 Contrast to Prior Work

The achievable accuracy of the Gaussian approximation for y strongly depends on the strategy
of determining the sample representation of x. Most of existing LRKF approaches like the
unscented Kalman filter (UKF, see [91, 92]), the divided differences filter (DDF, [137]), or the
central differences filter (CDF, [160]) use a minimal fixed-size set consisting of 2 ⋅nx + 1 regres-
sion points with corresponding weights that exactly captures the mean x̂ and the covariance
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matrix Cx of x. An extension of the UKF employing 6 ⋅nx + 1 regression points was pro-
posed in [197]. For any nonlinear transformation, the propagated regression points capture the
posterior mean and covariance matrix accurately up to the second order of the corresponding
Taylor-series expansion [180].

For further improving the accuracy, the set of regression points used for the Gaussian
estimator proposed in this chapter is not restricted to a fixed size. Increasing the number of
regression points gives several advantages. Since more regression points are propagated, more
information of the nonlinear transformation is captured. This leads to improved and more
robust estimates and the Gaussian estimator is well applicable to a larger number of nonlinear
transformations. Furthermore, the user is able to adjust the quality as well as the computational
demand of the approximation. A LRKF based on a set of regression points of variable size is
introduced in [85]. Here, Gauss–Hermite quadrature is employed, which results in exponential
complexity with respect to nx. The complexity of the proposed Gaussian estimator instead
remains polynomial with the respect to the dimension of the state space.

To gain the advantages of a larger set of regression points, as much information about x as
possible has to be incorporated when determining the regression points. While for example the
UKF only considers mean and covariance, the regression point selection scheme derived in the
following section is based on directly approximating the cumulative distribution function of the
prior Gaussian. This is motivated by the fact that an accurate approximation of the distribution
function automatically approximates higher-order moments. These moments in turn have an
impact on higher-order terms of the Taylor-series expansion of the nonlinear function, which
leads to improved estimation results.

For an accurate approximation, the key idea is now to reformulate the approximation
problem for determining the regression points as an optimization problem by minimizing a
certain distance measure G( ⋅ ) between the Gaussian and a convenient analytic representation
of the regression points under the constraints that mean x̂ and covariance Cx of x are captured
exactly. This is different from classical LRKFs or even particle filters [9], where no distance
measure is employed. The calculation scheme for the regression points presented in the following
can be interpreted as deterministic sampling, since it deterministically exploits the distribution
function of the random vector, while particle filters employ random sampling.

5.2 One-Dimensional Approximation

At first, only one-dimensional transformations y = g(x) are considered, where the random
variable x is characterized by mean x̂ and variance �2

x. Without loss of generality, it can be

assumed that x̂ = 0 and �2
x = 1, which leads to a standard Gaussian density f̃(x) = N (x; 0, 1)

for representing x. This restriction is justified, since every Gaussian can be affinely transformed
into a standard Gaussian density.

To achieve the goal of calculating a set of regression points X = {!i, x̂i∣i = 1, . . . , L} that
accurately represents both the density function and the first two moments of x, constrained
optimization

min
X

G
(
f̃(x),X

)
(5.2)

w.r.t. x̂ = 0 and �2
x = 1

is required. Here, G( ⋅ ) is an appropriate distance measure quantifying the deviation between
the density of x and the set of regression points X .
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5.2.1 Dirac Mixture

To provide the desired regression point representation of x that incorporates information of
the density function, an analytic and parametric form for representing the regression points in
terms of a so-called Dirac mixture density function

f(x; �) =
L∑
i=1

!i ⋅ �(x− x̂i) , (5.3)

is employed, which is a weighted sum of L Dirac delta distributions �(x − x̂i) representing
the weighted regression point at position x̂i. Hence, the parameter vector � comprises the
regression points x̂i with corresponding weighting coefficients !i. A summary of the properties
of Dirac delta distributions and Dirac mixtures can be found in Section A.1.3 and Section A.2.2,
respectively.

To reduce the number of parameters of f(x; �) to be adjusted for approximation, equal
weighting coefficients !i are assumed, i.e., !i = 1/L. Furthermore, by assuming that the
positions x̂i of the Dirac delta distributions are sorted in ascending order, i.e.,

x̂1 < x̂2 < . . . < x̂L ,

capturing the mean x̂ can easily be guaranteed by placing the Dirac delta distributions sym-
metrically around x̂, i.e.,

x̂L+1−i = 2x̂− x̂i = −x̂i

for i = 1, 2, . . . , L̄ with L̄ := ⌈L−1
2
⌉. This further reduces the length of �. If L is odd, the center

Dirac delta distribution is fixed at the mean x̂ by setting x̂L̄+1 = x̂ = 0. Finally, the parameter
vector � is given by � = [x̂1, x̂2, . . . , x̂L̄]T .

5.2.2 Distance Measure

Typical measures quantifying the distance between densities, like the Kullback-Leibler diver-
gence (2.30) or the squared integral measure [86], cannot be applied directly due to the used
Dirac delta distributions in (5.3). Thus, the corresponding cumulative distribution functions

are employed instead. The distribution function of the true density f̃(x) can be written as

F̃ (x) =

∫ x

−∞
f̃(t) dt =

1

2

(
1 + erf

(
x− x̂√

2�x

))
,

where erf( ⋅ ) is the Gaussian error function, while the distribution function corresponding to
the Dirac mixture f(x; �) is given by

F (x; �) =
L∑
i=1

!i ⋅H(x− x̂i) ,

where H( ⋅ ) is the Heaviside step function

H(x− x̂) =

⎧⎨⎩
1 , x > x̂
1
2
, x = x̂

0 , otherwise

(5.4)

at position x̂.
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By employing the Lagrange multiplier approach [125], the constrained optimization prob-
lem (5.2) can be converted into an unconstrained one. For this purpose the distance measure

G(�, �) =
1

2

∫
R

(
F̃ (x)− F (x; �)

)2

dx+ � ⋅
( 1

L

L∑
i=1

x̂2
i − �2

x

)
(5.5)

is considered in the following. The first term in (5.5) is the so-called Cramér-von Mises distance
[24, 162] quantifying the deviation between the distribution functions and � in the second term
is a Lagrange multiplier. By means of the Lagrange multiplier approach, exactly capturing the
variance �2

x is guaranteed if L ≥ 2, while exactly capturing the mean is automatically guaranteed
thanks to the symmetric positioning of the regression points around the mean x̂ = 0.

5.2.3 Solution

To minimize the distance measure with respect to � and �, the necessary conditions for a
minimum ∂G(�, �)/∂� = 0 and ∂G(�, �)/∂� = 0 have to be satisfied. Utilizing the sifting
property of the Dirac delta distribution, the partial derivative of G( ⋅ ) with respect to the
regression point position x̂i yields

∂G(�, �)

∂x̂i
=

1

L
⋅
(
F̃ (x̂i)− F (x̂i; �) + 4�x̂i −

(
F̃ (−x̂i)− F (−x̂i; �)

))
, (5.6)

for i = 1, . . . , L̄. With the identities

F (x̂i; �) = 2i−1
2L

,

F̃ (−x̂i) = 1− F̃ (x̂i) ,

F (−x̂i; �) = 1− F (x̂i; �) ,

and by setting (5.6) equal zero yields

F̃ (x̂i)−
2i− 1

2L
+ 2�x̂i = 0 . (5.7)

The partial derivative of G( ⋅ ) with respect to � results in

L̄∑
i=1

x̂2
i − L

2
�2
x = 0 . (5.8)

The resulting system of nonlinear equations comprising (5.7) and (5.8) is square, i.e., the
number of equations equals the number of unknowns. The optimal solution can be determined
in closed form for L ∈ {2, 3}. Here, (5.8) has the unique solutions

x̂1 =

{
1 , if L = 2√

3
2
, if L = 3

. (5.9)

This result coincides with the result of the unscaled unscented transformation employed for
the UKF. For L > 3, iterative root finding algorithms can be applied for determining a root,
where the trust-region dogleg method [146] is used throughout this thesis. The required initial
solution is defined as

x̂i =
√

2 ⋅ erf−1
(

2i−1−L
L

)
, i = 1, . . . , L̄ ,

� = 0 ,
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f(x) f(x)F(x) F(x)

(a) (b)

Figure 5.2: (a) Approximation of the standard Gaussian f̃(x) = N (x; 0, 1) (black lines) by means of L = 7
regression points. (b) Approximation resulting from random sampling with L = 7 samples. For both methods, the
left figure depicts the approximation in density space, while the right figure depicts the approximation in distribution
space.

which is the optimal solution of minimizing G( ⋅ ) without considering the constraint on the
variance [162].

In Table 5.1, the parameters for sets of regression points with different size are listed. The
corresponding approximation of f̃(x) in the density space as well as in the distribution space
is depicted in Figure 5.2 (a) for L = 7. As noted in the beginning, the calculation of the
regression points by minimizing (5.5) can be considered as deterministic sampling. By the
proposed calculation scheme (or deterministic sampling), the regression points (or samples) are
placed in a sensible fashion in order to provide an accurate representation of the moments and
distribution function. Employing random sampling instead leads to very irregular placements
as illustrated in Figure 5.2 (b). Consequently, a much larger set of points is necessary for
obtaining comparable approximates of the moments and distribution function of x.

Table 5.1: Parameters for several numbers of regression points.

L x1 x2 x3 x4 x5 x6 x7

3 -1.2247 0 1.2247 – – – –
5 -1.4795 -0.5578 0 0.5578 1.4795 – –
7 -1.6346 -0.8275 -0.3788 0 0.3788 0.8275 1.6346

5.2.4 Off-line Approximation

The resulting regression points x̂i that minimize (5.5) are valid for a standard Gaussian density.
For arbitrary Gaussians it is beneficial to split the approximation task into an off-line and an on-
line part, instead of solving a similar optimization problem on-line. In doing so, the calculation
scheme for the regression points derived before is performed off-line for a desired number of
regression points (see Table 5.1 for several approximations). Then, for on-line estimation, these
regression points have to be scaled and shifted according to

x̂+ �x ⋅ x̂i ,

where x̂ and �x are now arbitrary means and standard deviations, respectively. This trans-
formation leads to an on-line approximation of any Gaussian density without impairing the
approximation quality. Furthermore, the on-line performance for state estimation is drastically
increased.
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Table 5.2: Approximate calculation of the moments of the random variable y = ∣x∣.

Moments
1 2 3 4 5

MC 0.8955 1.2500 2.2064 4.5616 10.6191
UKF 0.9832 1.2500 1.8788 3.0625 5.1646

GE with L = 3 0.9832 1.2500 1.8788 3.0625 5.1646
GE with L = 7 0.9177 1.2500 2.0523 3.7419 7.2679
GE with L = 15 0.9032 1.2500 2.1266 4.0948 8.5405

Example 5.1: Scalar Transformation
In this example, the improved estimation performance by employing a large set of regression points
is demonstrated by means of the scalar transformation

y = ∣x∣ ,

where x is Gaussian with mean x̂ = 0.5 and variance �2
x = 1, i.e., f̃(x) = N (x; 0.5, 1). The

resulting random variable y is non-Gaussian and the odd moments are non-zero [176]. A Monte
Carlo (MC) simulation with 10 million samples is performed to determine the true (non-central)
moments of y. The results are shown in Table 5.2 together with the estimates of the UKF1 and
the proposed Gaussian estimator (denoted as GE). For the GE, L ∈ {3, 7, 15} regression points are
used. It is obvious that the results of UKF and GE coincide for L = 3 (recall (5.9)), while the
moment estimates of the GE converge to the MC results when increasing the number of regression
points. Especially the moments of order three and higher can be approached, which is not possible
for the UKF. The only parameter to be adjusted for an increased estimation quality is the number
of regression points L, while the UKF provides three parameters, whose tuning has to be carried
out very carefully. ■

5.2.5 Consideration of Higher-order Moments

Thanks to consideration of the distribution function during the calculation of the regression
points, information about higher-order moments is implicitly incorporated. The quality of
approximating higher-order moments can be further increased, if information about higher-
order moments is explicitly considered. For this purpose, additional Lagrange multipliers have
to be introduced in (5.5). Hence, when capturing the first R moments of f̃(x), the modified
distance measure is given by

G(�, �) =
1

2

∫
R

(
F̃ (x)− F (x, �)

)2

dx+
R∑

m=2

(
�m ⋅

( 1

L

L∑
i=1

x̂mi − Ex{xm}
))

. (5.10)

Obviously, by increasing the number of considered moments R, the minimum number of
regression points that is necessary for accurately capturing the moments also increases.

In cases where the higher-order moments correspond to the moments of the Gaussian
f̃(x), the approximation can still be performed off-line, since the calculation of all higher-
order moments of a Gaussian merely depend on the mean and variance. But in some situation
it may occur that information about higher-order moments of the true non-Gaussian density
function is provided on-line during the estimation process. Here, minimizing (5.10) cannot
be carried out off-line any longer. However, the benefit of explicitly capturing higher-order
moments is demonstrated in the following example.

1 The parameters of the UKF are set to � = 1, � = 0 and � = 0.5.
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Table 5.3: Approximate moments of y by explicitly considering the forth moment of x.

Moments
1 2 3 4 5

MC 0.8955 1.2500 2.2064 4.5616 10.6191
GE with L = 3 0.9832 1.2500 1.8788 3.0625 5.1646
GE* with L = 7 0.8708 1.2500 2.2498 4.5625 9.8338
GE* with L = 15 0.8845 1.2500 2.2270 4.5625 10.2094
GE* with L = 31 0.8916 1.2500 2.2161 4.5625 10.3970

Example 5.2: Scalar Transformation (continued)
Consider again the scalar transformation employed in Example 5.1. Now, an additional Lagrange
multiplier is used for capturing the forth moment of x, which is 3 for the considered Gaussian. Three
different sets of regression points are used for approximation, where the set sizes are L ∈ {7, 15, 31}.
The resulting moment estimates of y are listed in Table 5.3, where the last three rows (indicated by
GE*) correspond to the estimates capturing the forth moment of x. It can be clearly seen, that not
even the forth moment benefits from the explicitly consideration. Also the third and fifth moments
of y are much better approximated compared to the result without the additional multiplier (second
row). ■

Similar extensions of the regression point calculation procedure of other LRKFs are quite
rare. In [89], an extension of the unscented transform, which is employed by the UKF, is
presented. This extension allows suboptimally capturing the third-order moment, i.e., the
skew. The incorporation of an arbitrary number of moments into the unscented transform is
proposed in [176].

5.3 Extensions to Multivariate Case

In the following, vector-valued nonlinear transformations as in (5.1) are considered, i.e., the
multivariate random vector x ∈ Rnx with mean vector x̂ and covariance matrix Cx is mapped
to the random vector y.

One way to do so, is to directly extend the optimization problem to multivariate Gaussians.
Although this extension would work, it suffers from a computational load increasing with the
dimension of x, where multidimensional integrals have to be evaluated numerically. Instead,
the goal is to approximate an arbitrary Gaussian density f̃(x) = N (x; x̂,Cx) by a set of re-
gression points X under utilization of the previously introduced one-dimensional regression
point calculation. This can be achieve by means of a two step procedure: (1) transforma-

tion of f̃(x) to the multivariate standard Gaussian and then (2) reduction of the multivariate
standard Gaussian to the univariate case. Although this procedure is suboptimal compared
to directly approximating the arbitrary multivariate Gaussian f̃(x), it is much more efficient
since the formerly nx-dimensional optimization problem is decomposed into nx one-dimensional
optimization problems, where the most demanding operations can be performed off-line.

5.3.1 Step 1: Transformation to Multivariate Standard Gaussian

The first step of the approximation procedure is based on the fact that any multivariate Gaus-
sian density N (x; x̂,Cx) can be transformed into a multivariate standard Gaussian N (z; 0, I)
with zero mean and covariance matrix I. Exploiting the eigenvalue decomposition

Cx = VDVT ,
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on-lineoff-line

scaling and
rotation

scaling and
rotationAxis-aligned (a)

Grid (b)

Figure 5.3: Approximating a multivariate Gaussian density by means of (a) the axis-aligned and (b) the grid
approach. Determining the set of regression points for a multivariate standard Gaussian can be performed off-line,
while adapting (scaling and rotation by means of the eigenvalue decomposition) this set to an arbitrary Gaussian
remains an on-line operation.

where V is the orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues of
Cx, the linear transformation

z =
(
V
√
D
)−1

⋅ (x− x̂) . (5.11)

yields this transformation to the standard Gaussian case. This transformation leads to an
identity matrix Cz = I and thus, eliminates all correlations of the original Gaussian. Now it
is sufficient to determine a set of regression points Z first for approximating N (z; 0, I). By
inverting the transformation (5.11), this set then can be affinely transformed into the desired
set X for representing the Gaussian N (x; x̂,Cx).

5.3.2 Step 2: Reduction to Univariate Standard Gaussian

For determining the set Z, two possibilities of applying the one-dimensional placement of the
regression points as described in Section 5.2 arise:

Axis-aligned Approach Each univariate marginal density of the multivariate standard Gaus-
sian is represented by a set of L regression points. Approximating the multivariate Gaus-
sian is achieved by arranging the marginal sets along the principal axes of the Gaussian
density.

Grid Approach As for the axis-aligned approach, the marginal Gaussians are approximated
first. But now, the marginal sets are multiplied according to a cartesian product, which
corresponds to an irregular grid representation of the multivariate standard Gaussian
density.

For both approaches, calculation and arrangement of the marginal sets can be performed off-
line, while inverting the transformation (5.11), i.e., scaling and rotation of the set X are on-line
operations. If not explicitly stated elsewhere, the axis-aligned approach is employed throughout
this thesis thanks to its computational efficiency. Both approaches are illustrated in Figure 5.3
and are discussed in detail in the following, together with their pros and cons.
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Axis-aligned Approach

For a multivariate standard Gaussian f̃(z) = N (z; 0, I), the univariate marginal density in
dimension n is given by

N (zn; 0, 1) =

∫
R

⋅ ⋅ ⋅
∫
R

N (z; 0, I) dz1 ⋅ ⋅ ⋅ dzn−1 dzn+1 ⋅ ⋅ ⋅ dznz ,

where z = [z1, . . . , znz ]
T. To obtain an approximation of the multivariate standard Gaussian,

each univariate marginal density can be independently represented by a set of L regression
points Zn. Afterwards, the regression points representing the approximate marginal Gaus-
sians are placed along the principal axes of N (z; 0, I) as illustrated in Figure 5.3 (a). By
employing the inverse transformation of (5.11), the desired approximation of an arbitrary

Gaussian density f̃(x) = N (x; x̂,Cx) is given by the set of multivariate regression points
X = {!i, x̂i∣i = 1, . . . , nx ⋅L}, where

x̂i = x̂+ V
√
D ⋅ ẑjn ⋅ en ,

!i = 1
nx ⋅L .

(5.12)

The index jn of ẑjn indicates the j-th univariate regression point of the set Zn for dimension
n and the index i = (L ⋅ (n− 1) + jn) ∈ {1, 2, . . . nx ⋅L}. en = [0, . . . , 0, 1, 0, 0, . . . , 0]T is the
canonical unit vector, where only element n is equal to one. In case of L being odd, the mean
vector x̂ appears nx times in (5.12). To avoid overestimating the mean, the weights of the
concerned regression points have to be adapted according to

!i = 1
1+nx ⋅ (L−1)

⋅

{
1
nx
, (i− L̄− 1) mod L ≡ 0

1 , otherwise
.

From the resulting set of weighted regression points X , the mean x̂ and covariance Cx of
f̃(x) can be reconstructed by means of

x̂ =
∑
i

!i ⋅ x̂i ,

Cx =
1

L

∑
i

(x̂i − x̂) ⋅ (x̂i − x̂)T . (5.13)

It is important to note that (5.13) does not coincide with the weighted sample covariance that
is typically employed in the context of statistical linearization. Employing the weighted sample
covariance would lead to an underestimation of the covariance. Instead, the factor 1/L is used
for the weights !i, which provides an unbiased estimate of Cx for the employed regression
point representation. This characteristic of the axis-aligned approach follows from the fact
that the dimension of the state space has no impact on the calculation of the positions x̂i of
the regression points in (5.12). Thus, no scaling of the regression points for high-dimensional
estimation problems is required. This is contrary to the unscented transform, where the radius
of the sphere that bounds the set of regression points increases with the dimension of the
state space. Hence, a scaled version of the unscented transform is necessary to avoid capturing
non-local effects [90].

Due to the placement of the marginal sets of regression points along the principal axes,
the number of required regression points for approximating f̃(x) grows only linearly with the
dimension of the state space nx. This facilitates computationally efficient state estimation even
for high-dimensional estimation problems. However, for some estimation problems, the sparse
placement resulting from the axis-aligned approach leads to an inferior estimation performance
compared to the grid approach introduced next.
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Grid Approach

The grid approach exploits the separation of the multivariate standard Gaussian into nz
univariate standard Gaussians according to

N (z; 0, I) =
nz∏
n=1

N (zn; 0, 1) , where z = [z1, . . . , znz ]
T . (5.14)

By replacing each univariate standard GaussianN (zn; 0, 1) in (5.14) with the Dirac mixture rep-

resentation
∑Ln

j=1
1
Ln
⋅ �(zn− ẑjn) calculated according to Section 5.2, the multivariate standard

Gaussian N (z; 0, I) is approximated by

N (z; 0, I) ≈
nz∏
n=1

Ln∑
j=1

1

Ln
⋅ �(zn − ẑjn)

=

L1∑
j1=1

⋅ ⋅ ⋅
Lnz∑
jnz=1︸ ︷︷ ︸

nz times

nz∏
n=1

1

Ln
⋅ �(zn − ẑjn)︸ ︷︷ ︸

=: !i ⋅ �(z−ẑi)

=
L∑
i=1

!i ⋅ �(z − ẑi) , (5.15)

with index i = (1 +
∑nz

n=1(jn − 1) ⋅Ln−1
n ) ∈ {1, 2, . . . L}, the number Ln of Dirac components for

dimension n, the total number of Dirac components L =
∏nz

n=1 Ln, and the weights !i = 1/L.
This procedure corresponds to arranging the regression points in form of an irregular grid as
depicted in Figure 5.3 (b).

To approximate an arbitrary multivariate Gaussian, the inverse transformation of (5.11)
needs to be applied on (5.15), which leads to a scaling and rotation of the regression points
according to

x̂i = x̂+ V
√
D ⋅ ẑi

and thus, the multivariate Gaussian is approximated according to

N (x; x̂,Cx) ≈
Lnz∑
i=1

!i ⋅ �(x− x̂i) .

Analogously to the axis-aligned approach, merely scaling and rotation have to be performed on-
line. In contrast to the axis-aligned approach, the covariance matrix of the GaussianN (x; x̂,Cx)
is now calculated by means of the sample covariance, i.e.,

Cx =
∑
i

!i ⋅ (x̂i − x̂) ⋅ (x̂i − x̂)T . (5.16)

Due to the placement of the regression points in form of a grid, the number of necessary grid
points grows exponentially with the dimension of the state space, which apparently restricts this
approach to low dimensional estimation problems. Fortunately, the grid approach facilitates
the use of sets with different size for different dimensions, which attenuates the scaling problem.
Less relevant dimensions of the state can be represented by fewer regression points, e.g., in case
of an augmented state vector (see next section), where the noise dimensions can be considered
as less relevant. Furthermore, the techniques proposed in Section 6.3.2 for decomposing the
state vector can also be employed here (see [208]). By this means, only parts of the state vector
needs to be represented by a set of regression points, which facilitates the application of the
grid approach even for many high-dimensional problems.
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5.4 Gaussian Estimator

For applying the proposed deterministic sampling approach to recursive nonlinear estimation for
systems and sensors characterized according to (2.1) and (2.3), respectively, the system state has
to be augmented with the noise variables. The resulting augmented system state is denoted by
Xk = [xT

k ,w
T
k ,v

T
k ]T. The regression points Xk = {!i, X̂k,i∣i = 1, . . . , nX ⋅L, nX = nx+nw+nv}

are now determined for the augmented system state, where X̂ i =
[
(x̂k,i)

T, (ŵk,i)
T, (v̂k,i)

T
]T

.

5.4.1 Estimator Equations

In the following, the equations of the Gaussian estimator for nonlinear state estimation based
on the novel approximation scheme are listed in analogy to the equations of the UKF presented
in [183]. Initially, the augmented system state at time step k = 0 is given by X0 with mean
and covariance matrix

X̂0 = [(x̂e0)T, ŵT
0 , v̂

T
0 ]T , CX

0 =

⎡⎣Ce
0 0 0
0 Cw

0 0
0 0 Cv

0

⎤⎦ .

For the time steps k = 1, 2, . . . do:

1. Determine the set of regression points Xk−1 for Xk−1.

2. Prediction step:

(Predicted regression points) x̂k,i = ak−1

(
x̂k−1,i, ŵk−1

)
(Predicted mean) x̂pk =

∑
i

!i ⋅ x̂k−1,i (5.17)

(Predicted covariance) Cp
k =

1

L

∑
i

(
x̂k,i − x̂

p
k

)
⋅
(
x̂k,i − x̂

p
k

)T
(5.18)

3. Measurement update step:

(Measurement regression points) ẑk,i = ℎk
(
x̂k,i, uk, v̂k,i

)
(Predicted measurement value) ẑpk =

∑
i

!i ⋅ ẑk,i (5.19)

(Measurement covariance) Cz
k =

1

L

∑
i

(
ẑk,i − ẑ

p
k

)
⋅
(
ẑk,i − ẑ

p
k

)T
(5.20)

(Cross covariance) Cxz
k =

1

L

∑
i

(
x̂k,i − x̂

p
k

)
⋅
(
ẑk,i − ẑ

p
k

)T

(Estimated Kalman gain) Kk = Cxz
k (Cz

k)
−1

(Posterior mean) x̂ek = x̂pk + Kk ⋅ (ẑk − ẑ
p
k)

(Posterior covariance) Ce
k = Cp

k −KkC
z
kK

T
k

The estimator equations are designed for the axis-aligned approach. The adaptation to the grid
approach can be easily achieved by replacing the covariance matrix calculations above with the
sample covariance (5.16).

Since merely forward mapping of regression points is required, it is not necessary to have
an analytic description of the nonlinear system function ak( ⋅ ) and the nonlinear measurement
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function ℎk( ⋅ ). It is additionally assumed for the measurement update step that the predicted
system state xpk and the measurement zk are jointly Gaussian. This assumption is only true for
linear relationships between xpk and zk, otherwise it is an approximation. This approximation
also appears in other LRKFs and thus, the Gaussian estimator employes the same sequence of
operations as typical LRKFs for determining the predicted and posterior state estimate.

For a small number of regression points L, the computational complexity for calculating
an estimate is comparable to those LRKFs with a fixed-size set of regression points, since the
main effort is spent for solving the optimization problem, which can be carried out off-line.
Performing the eigenvalue decomposition of CX

k for on-line scaling and rotation has the same
complexity as for example the matrix square root required for the UKF.

5.4.2 Simulation Examples

The estimation performance of the novel Gaussian estimator is compared to the popular UKF
by means of two simulations from the field of target localization and tracking. In the first
simulation example, the target is tracked by a single stationary sensor. The impact of both
estimators when employed in the quasi-linear sensor manager as estimator for planning, i.e.,
when employed for statistical linearization, is demonstrated in the second simulation for the
mobile sensor control problem.

Stationary Sensor

In the considered simulation scenario, the target with bicycle kinematics is localized using dead-
reckoning and measurements from a single distance sensor located at the origin. Dead-reckoning
employs the kinematic model

xk+1 :=

⎡⎣xk+1

yk+1

�k+1

⎤⎦ = xk + (vk +wv
k) ⋅

⎡⎣ cos(�k)
sin(�k)

tan(�k +w�
k )

⎤⎦ , (5.21)

where the system state xk comprises the position [xk,yk]
T and the orientation �k of the bi-

cycle. This type of kinematics is often also employed for modeling cars. The sensor model
accords (2.4), where [xsk, y

s
k]

T = [0, 0]T. The noise wk = [wv
k,w

�
k ]T and vk are zero-mean white

Gaussian with covariance matrix Cw
k = diag ([0.001 m2/s2, 0.001 rad2]) and Cv

k = 0.001 m2,
respectively.

For simulation purposes, constant inputs vk = 5 m/s, which is the velocity, and �k =
0.05 rad, which is the steering angle, are used. The initial system state x0 has the mean
x̂0 = [0 m, 0 m, 0 rad]T and covariance matrix C0 = diag([0.1 m2, 0.1 m2, 0.01 rad2]). With
this configuration 100 Monte Carlo simulation runs are performed. Each run consists of 50
alternating prediction and measurement update steps. The Gaussian estimator (GE) employs
the axis-aligned approach with L = 5 regression points per dimension and the parameters of
the UKF are set to � = 1, � = 0, and � = 0.

In Figure 5.4 (a), the root mean square error (rmse) of the position estimate [xk,yk]
T of

the first 50 simulation runs are depicted. Together with Table 5.4, where the average rmse over
all simulations runs for each element of the state vector is listed, it can be seen that the GE

Table 5.4: Average rmse over 100 simulation runs.

rmsex rmsey rmse�
UKF 3.5068 2.5991 0.2460
GE 2.5125 1.8655 0.2036
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Figure 5.4: (a) Rmse of the position estimates of the GE and the UKF for the first 50 simulation runs. (b)
Example simulation run. The true trajectory of the vehicle in [x̂k, ŷk]T (green, dashed) is depicted together with
the estimates of the Gaussian estimator (black, solid) and the UKF (red, dotted).

significantly outperforms the estimation results of the UKF, while the computation time is in
the same order of magnitude; GE needs 0.084 s per run on average and the UKF needs 0.055 s.2

For instance in 41 out of the first 50 runs the GE provides better position estimates and in 79
out of all 100 runs the GE provides better orientation estimates �k than the UKF.

One reason why the results of the UKF are inferior is illustrated in Figure 5.4 (b), where
the rmse of both estimators for this particular simulation run is almost identical to the average
rmse listed in Table 5.4. Here, the estimated trajectory of the UKF begins to strongly deviate
from time step k = 18 on (indicated by the blue rectangle in Figure 5.4 (b)), caused by
a strong estimation error of the orientation. This error in turn is caused by the statistical
linearization of the UKF. As the orientation is not directly observable by means of the sensor
model, linearization errors are more severe. The GE instead provides a more sophisticated
representation of the state density comprising a larger sample set of regression points. This
offers statistical linearization with higher-order accuracy and thus, the GE behaves more robust.
The same argument holds for the strong nonlinearity of the system model introduced by the
tangent function.

Mobile Sensor Control

In this simulation scenario, the target with bicycle kinematics (5.21) is tracked by means of
a mobile distance sensor. Compared to the previous simulation, the system noise covariance
of the target is increased in order to force a diverging estimation results for myopic sensor
management. Hence, the noise covariance is set to be Cw

k = diag([0.01 m2, 0.0025 rad2]). These
noise terms affect the target velocity and steering angle, which are set to be vk = 6 m/s and
�k = 0 rad, respectively. The initial estimate of the pose of the target x0 has the mean
x̂0 = [0 m, 500 m, 5�/4 rad]T and the covariance C0 = diag([500 m2, 500 m2, 1 rad2]).

The sensor behaves analogously to the simulation in Section 3.3.5, i.e., the kinematic model
of the sensor accords (2.6), where the sensor moves with a velocity of v = 20 m/s after changing
its orientation by one of five possible steering angles u ∈ { i�

8
∣i = −2, . . . , 2}. The sensor

can further stop its motion for the considered time step. The initial sensor position and the
measurement noise are [xsk, y

s
k, �

s
k]

T = [−100 m, 300 m, �/2 rad]T and �vk = 0.5 m, respectively.

2 Computation times are based on a Matlab 7.5 implementation running on a Intel Core2
Duo 2×2.4 GHz PC.
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Figure 5.5: (a) Rmse of the position estimates of Gaussian estimator and unscented Kalman filter for time horizons
N ∈ {1, 2, 4}. (b) Average rmse of both estimators for time horizons N ∈ {1, 2, 3, 4}.

This simulation aims at demonstrating the effect of different regression point calculation
schemes for statistical linearization on the estimation performance of the quasi-linear sensor
manager proposed in Chapter 3. For this purpose, the deterministic sampling scheme of the
GE is compared with the corresponding scheme of the UKF. For both estimators, the time
horizons N ∈ {1, 2, 3, 4} are investigated in 100 Monte Carlo runs. The rmse of the position
estimates over all simulation runs for the first 50 time steps are depicted in Figure 5.5 (a). For
all considered time horizons, the quasi-linear sensor manager employing the GE provides better
estimates3. The strongest deviation of the estimation results occurs for the time horizon N = 2.
Here, planning with the UKF often leads to sensor trajectories for the time steps five to ten,
where the sensor is not appropriately placed for performing informative measurements and thus,
for reducing the overall uncertainty of the target position. Hence, the estimation performance
is only slightly better as it the case for myopic sensor management, i.e., for N = 1. Only by
employing a longer lookahead, i.e., for N > 2, the UKF allows for a rapid convergence of the
estimation results, as indicated by Figure 5.5 (b).

In contrast, planning based on the GE controls the sensor maneuvers in such a way that
a rapid convergence is even possible for N = 2. Thanks to the improved regression point
selection of the GE, the linearization error can be kept on a lower level compared to the UKF.
This is of particular importance for open-loop sensor management, where the linearization of
the nonlinear system and sensor models is performed in a predictive fashion and thus, the
linearization errors accumulate over the time horizon.

5.5 Gaussian Mixture Estimator

In many practical nonlinear estimation problems, representing the state or the noise density
by means of a single Gaussian is not adequate, especially in cases of multimodal or highly
skewed distributions. These non-Gaussian densities can be represented accurately by means
of Gaussian mixtures, i.e., a finite sum of weighted Gaussians (see Section A.2). Due to their
universal approximation property [124], Gaussian mixtures are very convenient for that purpose.

In the following, a Gaussian mixture estimator for estimation problems with Gaussian
mixture state and noise densities is introduced. Basically, the Gaussian mixture estimator

3 The results for N = 3 are not depicted for clarity reasons.
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applies the previously derived Gaussian estimator to each Gaussian component of the given
Gaussian mixtures.

5.5.1 Prediction Step

Assume that at time step k the density of the estimated state xek is represented by the Gaussian
mixture

f ek(xk) =
Le∑
i=1

!ek,i ⋅ N
(
xk; x̂

e
k,i,C

e
k,i

)
,

with
∑

i !
e
k,i = 1. Furthermore, the density of the system noise wk is given by

fwk (wk) =
Lw∑
j=1

!wk,j ⋅ N
(
wk; ŵk,j,C

w
k,j

)
,

with
∑

j !
w
k,j = 1. Applying the Chapman-Kolmogorov equation (2.7) of the optimal Bayesian

estimator on both mixtures yields the predicted density

fpk+1(xk+1) =

∫
Rnx

∫
Rnw

�(xk+1 − ak(xk, wk)) ⋅ fwk (wk) ⋅ f ek(xk) dxk dwk (5.22)

=
Le∑
i=1

Lw∑
j=1

!ek,i ⋅!wk,j ⋅∫
Rnx

∫
Rnw

�(xk+1 − ak(xk, wk)) ⋅ N
(
xk; x̂

e
k,i,C

e
k,i

)
⋅ N
(
wk; ŵk,j,C

w
k,j

)
dxk dwk︸ ︷︷ ︸

≈ N(xk+1;x̂pk+1,i,j ,C
p
k+1,i,j) (prediction step of Gaussian estimator)

.

The integral on the right hand side corresponds to performing a prediction step for the prior
density given by the product of the Gaussians fxk,i(xk) := N

(
xk; x̂

e
k,i,C

e
k,i

)
and fwk,j(wk) :=

N
(
wk; ŵk,j,C

w
k,j

)
that represent the state and the noise, respectively. Due to the nonlinearity

of the system function ak( ⋅ ), evaluating the integral in closed form is impossible, in general.
However, an approximate solution can be obtained by applying the prediction step of the Gaus-
sian estimator. This corresponds to a local statistical linearization of the nonlinear function
ak( ⋅ ) around the uncertainty regions characterized by fxk,i(xk) and fwk,j(wk), respectively. In

doing so, the integral is replaced by a predicted Gaussian N
(
xk+1; x̂pk+1,i,j,C

p
k+1,i,j

)
with mean

x̂pk+1,l and covariance Cp
k+1,l according to (5.17) and (5.18), respectively. Performing the pre-

diction step of the Gaussian estimator for each combination of Gaussians fxk,i(xk) and fwk,j(wk)
results in the Gaussian mixture

fpk+1(xk+1) ≈
Le∑
i=1

Lw∑
j=1

!pk+1,i,j ⋅ N
(
xk+1; x̂pk+1,i,j,C

p
k+1,i,j

)
=

Lp∑
l=1

!pk+1,l ⋅ N
(
xk+1; x̂pk+1,l,C

p
k+1,l

)
(5.23)

for approximating the predicted density, where l = (i − 1) ⋅Lw + j and Lp = Le ⋅Lw . It is
worth mentioning that all means and covariance matrices of the Gaussian mixture (5.23) can
be calculated independently, i.e., the required Lp prediction steps of the Gaussian estimator
can be performed in parallel for calculating the means and covariance matrices.
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Parallel Weight Calculation

So far, merely calculating the new weights !pk+1,l is left unconsidered. A straightforward way
for updating the weights is to do it in parallel as already done for the means and covariances.
Here, the predicted weights are given by

!pk+1,l = !ek,i ⋅!wk,j .

This weight update is exact for linear system models and it corresponds to the weight update
proposed for the well-known Gaussian sum filter [5], where the prediction step of the EKF is
applied on (5.22).

Simultaneous Weight Calculation

However, for the considered nonlinear models, it is more desirable to simultaneously calculate
the weights in order to improve the approximation quality of the predicted Gaussian mixture. A
simultaneous weight calculation is advantageous in particular when predictions steps have to be
performed consecutively without a measurement update in-between or when the measurement
noise is strong. For the Gaussian sum filter, a simultaneous weight calculation is derived in
[177], which can be adapted for the proposed Gaussian mixture estimator in a straightforward
manner.

5.5.2 Measurement Update Step

Analogously to the prediction step, state and noise Gaussian mixtures are processed component-
wise in the measurement update step of the Gaussian mixture estimator. Assume that the
measurement noise is represented by means of the Gaussian mixture

f vk (vk) =
Lv∑
j=1

!vk,j ⋅ N
(
vk; v̂k,j,C

v
k,j

)
,

with
∑

j !
v
k,j = 1. After receiving the measurement value ẑk, the posterior density f ek(xk) of

the state can be approximated by the Gaussian mixture

f ek(xk) ≈
Lp∑
l=1

Lv∑
j=1

!ek,l,j ⋅ N
(
xk; x̂

e
k,l,j,C

e
k,i,j

)
=

Le∑
i=1

!ek,i ⋅ N
(
xk; x̂

e
k,i,C

e
k,i

)
, (5.24)

where i = (l − 1) ⋅Lv + j and Le = Lp ⋅Lv . This approximation results from firstly plugging
the mixtures fpk (xk) and f vk (vk) into the Bayesian measurement update equation (2.9) and then
from applying the measurement update step of the Gaussian estimator in a parallel manner on
each possible combination of the Gaussian components of fpk (xk) and f vk (vk). This procedure
yields the means x̂ek,i and covariances Ce

k,i.
The calculation of the weight can be adapted from to the prediction step. Hence, the

computationally less demanding parallel weight update is given by

!̄ek,i = !pk,l ⋅!
v
k,j ⋅ ck,l,j ,
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Figure 5.6: Target tracking performance in presence of Gaussian mixture system noise. The rmse in the
position (right plot) and in the orientation (left plot) for the Gaussian estimator (GE), the Gaussian mixture
estimator (GME), the UKF, and the Gaussian mixture variant of the UKF (GMUKF).

with ck,l,j = N
(
ẑk; ẑ

p
k,l,j,C

z
k,l,j

)
, where ẑpk,l,j, C

z
k,l,j are defined by (5.19) and (5.20), respectively.

After normalization the desired weights of the posterior Gaussian mixture are

!ek,i =
!̄ek,i∑
i !̄

e
k,i

.

Again, this kind of parallel weight calculation corresponds to the Gaussian sum filter [5] and
is only exact for linear sensors. A more accurate but computationally demanding simultaneous
weight calculation for the measurement update step is given in [85].

Remark 5.1 (Exponential Growth) Gaussian mixture extensions exist almost for each LRKF.
As noted previously, the Gaussian sum filter extends the EKF, [168] proposes a Gaussian mix-
ture variant for the UKF, and [85] introduces the Gauss–Hermite filter together with its mixture
extension. Like the previously introduced Gaussian mixture estimator, all these extensions of
existing LRKFs have one problem in common. Examine the Gaussian mixture densities in
(5.23) and (5.24), it stands out that the number of mixture components increases with each
prediction and measurement update step. More precisely, if at least one of the noise densi-
ties is represented by means of a Gaussian mixture, the number of components in fpk (xk) and
f ek(xk) grows exponentially over the time, which reduces the practicability of the Gaussian mix-
ture estimator significantly. In order to keep this growth bounded, Gaussian mixture reduction
techniques have to be applied from time to time; at each time step in extreme cases. A very
accurate Gaussian mixture reduction algorithm is introduced in Chapter 7.

5.5.3 Simulation Example

The increased estimation performance of the proposed Gaussian mixture extension is demon-
strated in this section by revisiting the simulation example exploited in Section 5.4.2. But now,
the system noise wk is represented by the bimodal Gaussian mixture

fwk (wk) = 0.5 ⋅ N
(
wk; [−1, 0]T,C

)
+ 0.5 ⋅ N

(
wk; [1, 0]T,C

)
,

with C = diag ([0.001 m2/s2, 0.0001 rad2]). Together with the input vk = 5 m/s, this noise
representation reveals that the uncertainty over the target velocity can restricted to variations
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around 4 m/s or 6 m/s. The motion of the vehicle is now observed via a bearings sensor
with sensor model (2.5). The sensor is located in the origin, i.e., [xsk, y

s
k]

T = [0, 0]T, and the
measurement noise is zero-mean Gaussian with standard deviation �vk = 0.01 rad.

For this setup, the proposed Gaussian estimator (GE) together with its Gaussian mix-
ture extension (GME) are compared to the UKF and its Gaussian mixture variant (GMUKF).
Due to the Gaussian mixture representation of the system noise, Gaussian mixture reduction is
required for remaining the complexity for the GME and GMUKF bounded. For this purpose,
the progressive Gaussian mixture reduction algorithm introduced in Section 7 is applied for the
mixture estimators whenever the number of Gaussian components exceeds 128 components.
The mixtures are then reduced to a maximum of 8 components.

The rmse in the position and orientation are obtained in 100 Monte Carlo simulation runs.
In Figure 5.6, the rmse in the position in x direction and in the orientation are depicted. It is
observed that the GME provides the best tracking performance. Especially for the first 30 time
steps, the GME provides significantly better estimation results than the GMUKF. The GME
instead benefits from the superior deterministic sampling scheme of the GE, while the worse
statistical linearization results of the UKF also have a strong impact on its mixture extension.
This impact is such considerable, that the tracking performance of the GMUKF is even inferior
to the performance of the GE for the first 20 time steps. But from time step 40 on, both single
Gaussian estimators are not longer capable of dealing with the Gaussian mixture system noise
and the tracking accuracy degrades drastically.

5.6 Summary

In this section, the approach of linear regression Kalman filters is extended by the idea of
interpreting the regression points as analytic density function, namely a Dirac mixture. In doing
so, directly approximating the distribution function of a Gaussian by the regression points is
possible and higher-order information of the Gaussian density is implicitly incorporated. This
way of approximating a Gaussian can be interpreted as deterministic sampling, where the
samples, i.e., the regression points, are placed in a deterministic manner in order to accurately
approximate the shape of the distribution function and to exactly capture mean and variance.
While computationally demanding parts of this approximation are carried out off-line, adapting
the regression points on the current Gaussian density is performed on-line.

For multivariate Gaussians, two approximation techniques are introduced. The grid ap-
proach places the regression points in form of a irregular grid and thus, leads to an extensive
covering of the state domain. The axis-aligned approach is more scalable as it aims on covering
the principal axes of the covariance ellipsoid. Both approaches result in a Gaussian estima-
tor with simple structure. In terms of the computational complexity, especially the estimator
based on the axis-aligned approach is comparable to typical LRKFs like the famous unscented
Kalman filter. However, in contrast to most of the LRKFs, the number of regression points is
adjustable, which allows altering the approximation quality. Thus, by increasing the number of
regression points, nonlinearities of the state transformation can be captured more accurately. In
case of very high-dimensional estimation problems, the size of the set of regression points can be
kept on a minimum for ensuring low computation times. As demonstrated in the simulations,
a small number of regression points suffices to outperform the UKF.

The proposed Gaussian estimator can be also applied to non-Gaussian scenarios, where
the state and the noise densities are represented by means of Gaussian mixtures. Here, the
extension is straightforward, as the Gaussian estimator can be applied component-wise. Merely
the calculation of the updated weights is more challenging. Beside the well-known suboptimal
parallel weight calculation, more accurate but also more demanding simultaneous calculation
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procedures can be employed. The problem of the exponential growth of the number of mixture
components is handled in the Chapter 7.

Even if the proposed Gaussian mixture estimator already provides superior estimation
performance, further extensions are possible. Currently, merely the Gaussian components of
the current state density and the noise densities are exploited. In cases of strong nonlinearities
this may not suffice. Here, strong nonlinear regions of the considered probabilistic models
could by captured more accurately by the introduction of new components. This requires the
systematic and efficient identification of relevant regions. A basic approach towards an efficient
identification can be found in [70]. The introduction of new components can be achieved for
example by the splitting method employed in Section 7.2.2.



CHAPTER 6

The Hybrid Density Filter

For the considered nonlinear system and sensor models, a closed-form solution of the Bayesian
estimator is impossible to obtain in general. However, an accurate inference of the system
state after applying the configuration vector to the sensors is essential, especially in case of
non-Gaussian multimodal density functions. Besides that, an accurate non-Gaussian density
representation is also of paramount importance for state estimation during planning and for
measurement prediction, particularly for the information theoretic sensor management scheme
introduced in Chapter 4. While a great effort can be spent for state inference after planning in
order to achieve the desired accuracy, state estimation during planning necessitates a trade-off
between computational burden and accuracy. To meet these demands, the hybrid density fil-
ter (HDF), an approximate but accurate estimator for nonlinear non-Gaussian state estimation,
is introduced in this chapter.

While most of the existing estimators focus on directly approximating the density function
representing the system state, the HDF is based on optimally approximating the conditional
densities, i.e., the transition density and the likelihood, which are probabilistic representations
of the underlying nonlinear system and sensor models. For approximating the conditional
density and as inspiration for naming this estimation approach, a so-called hybrid density is
employed that consists of Dirac delta distributions and Gaussian densities. To optimally adapt
the parameters of the hybrid density to the conditional density, the approximation problem
is reformulated as an optimization problem for minimizing the Cramér-von Mises distance.
This special type of a squared integral measure, which was also utilized for the Gaussian
estimator in Chapter 5, allows quantifying the deviation especially in case of the used Dirac
delta distributions and thus, is defined over the corresponding cumulative distribution functions
of the true and the approximate conditional density. In case of scalar states, this optimization
problem can be solved optimally in closed form. An approximate but easy to calculate solution
for the multivariate case is presented in Section 6.3.

The hybrid structure of the approximate conditional density facilitates an analytical and
efficient evaluation of the prediction step as well as the measurement update step (see Sec-
tion 6.2). While performing the prediction step is straightforward and results in a Gaussian
mixture representation of the predicted density, measurement updating requires an additional,
easy to compute interpolation step for retaining a Gaussian mixture representation. However,
a very accurate approximation in shape and moments of the resulting complex density function
of the system state is achieved. All approximation components of the HDF are depicted in
Figure 6.1. As discussed in Section 6.4, predictions or measurement updates by means of the
hybrid conditional density approximation can also be interpreted as sampling the prior density
deterministically. This deterministic sampling interpretation gives a straightforward way for
implementation.
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Figure 6.1: Structure of the HDF prediction and measurement update step. The dashed box highlights the
components of the Bayesian estimator, while all other components contain the approximations that are necessary
for performing estimations by means of the HDF.

The HDF for scalar states was published in [215, 216], while the extension to the multivari-
ate case represents unpublished material. The proposed estimator was applied to stochastic
model predictive control problems [226, 230] and parameter identification problems [222].

6.1 Conditional Density Approximation

In this section, only scalar states are considered for brevity and clarity. The extension to multi-
variate states is content of Section 6.3. Furthermore, it is assumed that the nonlinear system
model

xk+1 = ak(xk) +wk (6.1)

and the nonlinear sensor model

zk = ℎk(xk) + vk , (6.2)

are affected by additive white Gaussian noise wk ∼ fwk (wk) = N (wk; ŵk, (�
w
k )2) and vk ∼

f vk (vk) = N (vk; v̂k, (�
v
k)

2), respectively. Here, ak( ⋅ ) and ℎk( ⋅ ) are nonlinear functions with at
most a finite number of points of discontinuities, and xk ∈ Ωk is the scalar system state at time
step k with density fxk (xk) and support

Ωk := [�k, �k] ⊂ R ,

where ∀xk ∈ Ωk : fxk (xk) > � for constant � with 0 < � ≪ 1. It is further assumed that ak( ⋅ )
and ℎk( ⋅ ) are bounded functions on Ωk.

6.1.1 Conditional Densities in Bayesian Estimation

Thanks to the assumption of additive noise, the transition density (2.8) required for performing
the prediction step can be simplified to

fTk (xk+1∣xk) = fwk (xk+1 − ak(xk)) .

Similarly, the likelihood, which is employed at the Bayesian measurement update step (2.9) can
be written according to

fLk (ẑk∣xk) = f vk (ẑk − ℎk(xk)) .
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Both, the likelihood and the transition density are based upon conditional densities, which in
turn depend on the noise densities f vk (vk) and fwk (wk) as well as on the structure of the sensor
and system model, respectively. Additionally, the likelihood depends on the actual measurement
ẑk. Since (6.1) and (6.2) are time-variant and both noise processes are non-stationary, transition
density and likelihood are also time-variant, i.e., their shapes change with time index k.

Generally, recursive Bayesian estimation for nonlinear systems is of conceptual value only,
since the complex shapes of the conditional densities prevent a closed-form and efficient solution.
Furthermore, for the case of nonlinear systems with arbitrarily distributed random variables,
there exists no analytic density that can be calculated without changing the type of repre-
sentation in general. To overcome this problem, an appropriate approximation is inevitable.
From now on, true densities will be indicated by a tilde, e.g. f̃( ⋅ ), while the corresponding
approximation will be denoted by f( ⋅ ).

Instead of directly approximating the densities fpk+1(xk+1) and f ek(xk) resulting from (2.7)
and (2.9), respectively, which is computationally demanding, the key idea is to approximate
the conditional density

f̃(y∣x) = N (y; (x), �2) .

Here,  ( ⋅ ) represents a nonlinear function over the random variable x ∈ Ω = [�, �] ⊂ R. To
obtain for example the transition density at time step k, one has to substitute y, x,  ( ⋅ ) and
� such that

f̃Tk (xk+1∣xk) = f̃(y∣x)
∣∣∣
y=xk+1, x=xk,  ( ⋅ )=ak( ⋅ ), �=�w

k

.

6.1.2 Hybrid Density

As a novel type of density representation for approximating the conditional density f̃(y∣x), the
(unnormalized) hybrid density

f(y, x; �) =
L∑
i=1

!i ⋅ �(x− x̂i) ⋅ N (y; ŷi, (�
y
i )

2) (6.3)

with parameter vector

� = [�T

1
, �T

2
, . . . , �T

L
]T, where �T

i
= [!i, x̂i, ŷi, �

y
i ] .

is proposed. Here, L is the number of components, !i are weighting coefficients with !i > 0,
x̂i and ŷi are the means, and �yi is the standard deviation of N (y; ŷi, (�

y
i )

2). The marginal
densities of a hybrid density consist of two different types of analytic densities: the densities of
x are Dirac delta distributions �(xk − x̂i) and the densities of y are Gaussians N (y; ŷi, (�

y
i )

2).

Example 6.1: Hybrid Density
The nonlinear system model

xk+1 = sin(xk) + xk +wk (6.4)

represents parts of the kinematic model (5.21). The density of the system noise wk is given by
fwk (wk) = N (wk; 0, 1). Figure 6.2 (a) depicts the system function (black, dashed line) and the
corresponding transition density. Furthermore, the red lines in Figure 6.2 (a) and Figure 6.2 (b)
illustrate a hybrid density with L = 4 components. Due to the Dirac delta distributions, a single
hybrid density component can be interpreted as a vertical slice of the transition density. ■
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Figure 6.2: Top view (a) and perspective view (b) on the transition density of the system xk+1 = sin(xk)+xk+wk.
The shape of the transition density strongly depends on the system function (black, dashed line). An approximate
hybrid density with L = 4 components slices the transition density (red, solid lines) in 5 parts. Each slice is a
Gaussian density.

The goal is now to minimize a certain distance measure G(�) between the true conditional

density f̃(y∣x) and its approximation f(y, x; �). Generally, the calculation of an appropriate
parameter vector � for a high quality approximation of the transition density is computationally
demanding. Since the conditional densities can be time-variant, these calculations are required
at every time step. By selecting a hybrid density for approximation purposes, the required
computational effort can be drastically reduced and on-line approximation at every time step is
possible. With the given conditional density approximation, the prediction and measurement
update step can be performed efficiently in closed form, as illustrated in Figure 6.1.

6.1.3 Optimal Approximation

The approximation quality of the HDF strongly depends on the similarity between f̃(y∣x) and
its hybrid density approximation f(y, x; �). Hence, the approximation problem is reformulated
into an optimization problem

�
min

= arg min
�
G(�) , (6.5)

with the objective of minimizing a certain distance measure G(�). The result of this opti-
mization problem yields the parameter vector � for f(y, x; �), which minimizes the distance to

f̃(y∣x).

As for the Gaussian estimator developed in Chapter 5, distance measures defined over the
density space cannot be applied directly due to the used Dirac delta distributions in (6.3).

Quantifying the deviation between f̃(y∣x) and f(y, x; �) is only possible when considering the
corresponding cumulative distribution functions instead. The distribution function of the true
conditional density f̃(y∣x) for x ∈ Ω = [�, �] can be written as

F̃ (y∣x) =
1

2

∫ x

�

1 + erf

(
y −  (s)√

2�

)
ds .
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The hybrid distribution function of f(y, x; �) is given by

F (y, x; �) =
1

2

L∑
i=1

!i ⋅H (x− x̂i) ⋅ (1 + erfi(y)) , (6.6)

where

erfi(y) := erf

(
y − ŷi√

2�yi

)
is the error function of component i and H(x− x̂) is the Heaviside step function at position x̂
as defined in (5.4).

As distance measure the so-called Cramér-von Mises distance [24]

G(�) =
1

2

∫
R

∫
Ω

(
F̃ (y∣x)− F (y, x; �)

)2

dx dy (6.7)

is employed. Normally, the underlying nonlinearity complicates solving (6.5), as pointed out
for example in [214] for a pure Gaussian mixture representation of the conditional density
approximation. Thanks to the special structure of the hybrid distribution (6.6), the optimal
solution can easily be derived in closed form.

Theorem 6.1 (Optimal Approximation) Given the distance measure (6.7), the elements
�T
i

= [!i, x̂i, ŷi, �
y
i ] of the optimal solution �

min
of the optimization problem (6.5) are

(Equal weights) !i = �−�
L

,

(Uniformly distributed Diracs) x̂i = � + !i ⋅ 2i−1
2

,

(Nonlinearly shifted Gaussians) ŷi =  (x̂i) ,

(Noise standard deviation) �yi = � .

At first, a lemma is developed, which is used to prove Theorem 6.1.

Lemma 6.1 Given the distance measure

G∗(�) =
1

2

∫
Ω

(
F̃ (x)− F (x; �)

)2

dx (6.8)

for x ∈ Ω over the distribution functions

F̃ (x) =

∫ x

�

f̃(s) ds = x− � , (6.9)

F (x; �) =

∫ x

�

f(s, �) ds =
L∑
i=1

!i ⋅H(x− x̂i)

of the marginal densities

f̃(x) =

∫
R

f̃(y∣x) dy = 1 , (6.10)

f(x; �) =

∫
R

f(y, x; �) dy =
L∑
i=1

!i ⋅ �(x− x̂i) .

Minimizing (6.8) results in

x̂i = � +
1

2
!i +

i−1∑
j=1

!j . (6.11)
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Proof. The partial derivative of (6.8) with respect to x̂i yields

∂G∗(�)

∂x̂i
= −!i

∫
Ω

(
F̃ (x)− F (x; �)

)
⋅ �(x− x̂i) dx . (6.12)

Applying the necessary condition of a minimum ∂G∗(�)/∂x̂i = 0 on (6.12) leads to∫
Ω

F̃ (x) ⋅ �(x− x̂i) dx =

∫
Ω

F (x; �) ⋅ �(x− x̂i) dx .

Employing the sifting property of the Dirac delta distribution finally results in (6.11). □
Proof. [of Theorem 6.1] Without loss of generality it is assumed that

� ≤ x̂1 < x̂2 < ⋅ ⋅ ⋅ < x̂L ≤ � .

The partial derivative of (6.7) with respect to x̂i, i = 1, . . . , L under incorporation of the
necessary condition ∂G(�)/∂x̂i = 0 for a minimum leads to∫

R

∫
Ω

(
F̃ (y∣x)− F (y, x; �)

)
⋅
∂F (y, x; �)

∂x̂i
dx dy = 0 ,

with

∂F (y, x; �)

∂x̂i
= −1

2
!i ⋅ �(x− x̂i) ⋅ (1 + erfi(y)) .

Utilizing the sifting property of the Dirac delta distribution yields∫
R

F̃ (y∣x̂i) (1 + erfi(y)) dy =

∫
R

F (y, x̂i; �) (1 + erfi(y)) dy .

To allow further simplifications, a nonlinear shear is applied by setting

 (x̂i) = K , K ∈ R (constant) . (6.13)

This changes only the position of the probability mass along dimension y. The total probability
mass and the total marginal probability mass of y remain unchanged. Thus, we get

1

2

∫
R

(x̂i − �) ⋅
(

1 + erf

(
y −K√

2�

))
⋅ (1 + erfi(y)) dy =

∫
R

F (y, x̂i; �) ⋅ (1 + erfi(y)) dy .

Resubstituting (6.13) and comparing coefficients leads to

x̂i = � +
1

2
!i +

i−1∑
j=1

!j , ŷi =  (x̂i) , �yi = � .

The solution for x̂i coincides with the result of Lemma 6.1. Thus, minimizing (6.8) is sufficient
for obtaining !i and x̂i. In consideration of (6.9) und (6.10) it is obvious that F̃ (x) represents
the distribution function of an unnormalized uniform distribution over Ω. The optimal approx-
imation of such a distribution by means of Dirac and Heaviside mixtures is well-known [162]
and thus, the remaining free parameters !i and x̂i are given by

!i =
� − �
L

, x̂i = � + !i ⋅
(2i− 1)

2
.

□
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Figure 6.3: Approximation of the conditional distribution function. (a) Conditional distribution function for
the system model xk+1 = sin(xk) + xk + wk. The black dashed line indicates the system function. (b) Hybrid
distribution function with L = 6 components. The red lines indicate the optimally placed hybrid components. (c)
Superposition of the true and the approximate conditional distribution function.

Summarizing the result of Theorem 6.1, optimally approximating the conditional density
is merely a uniform placement of the Dirac delta distributions of the hybrid density within the
interval Ω. Thus, the probability masses enclosed between two adjacent components (slices)
of the hybrid density are all equal. Furthermore, the Gaussian elements N (y; ŷi, (�

y
i )

2) of the
hybrid density are displaced duplicates of the noise density fwk (wk) or f vk (vk) that are placed
along the nonlinear functions ak(x̂i) or ℎk(x̂i), respectively. Hence, each slice of the conditional
density illustrated in Figure 6.2 represents a noise density.

For increasing y, the true conditional distribution F̃ (y∣x) approaches an unnormalized uni-
form distribution over Ω. Hence, the approximation error between the true conditional dis-
tribution and its hybrid approximation F (y, x; �) is dominated by the deviation between the
uniform distribution and its approximation given by the Heaviside step functions, which leads
to the uniform placement of the Dirac delta distributions in Ω. This finding is illustrated in
the following example.

Example 6.2: Hybrid Distribution
Consider again the nonlinear system model of Example 6.1 with xk ∈ Ωk = [−6, 6]. The corre-
sponding distribution function

F̃ (xk+1∣xk) =
1

2

∫ xk

−6

1 + erf

(
xk+1 − sin(s)− s√

2�wk

)
ds

is depicted in Figure 6.3 (a). For xk+1 = 6, the distribution function F̃ (xk+1∣xk) corresponds to
an unnormalized uniform distribution over Ωk. Figure 6.3 (b) illustrates the approximate hybrid
conditional distribution for L = 6 components, where the optimal parameters are !i = 2, �yi = 1,
x̂i = {−5,−3,−1, 1, 3, 5}, and ŷi = {−4.04,−3.14,−1.84, 1.84, 3.14, 4.04}, for i = 1, . . . , 6. By
superimposing the true and the approximate conditional distribution in Figure 6.3 (c), the similarity
between both distributions is revealed. ■

In consideration of the result of Theorem 6.1 and the illustrations of Figure 6.3, it is obvious
that the hybrid density converges towards the true conditional density function for an increasing
number of components L.

6.1.4 Generalization

Typically, a parametric structure is used for representing the noise, which allows directly setting
�yi ofN (y; ŷi, (�

y
i )

2) to the corresponding parameter of the noise density. This can be generalized
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to other parametric noise density representations like Gaussian mixtures, exponential densities
[26] or Edgeworth series [36]. There, the non-Dirac mixture density type of the hybrid density
has to be chosen according to the current noise density representation [215].

If a non-parametric noise density is available or the density type of the noise differs from the
desired type for representing the system state’s density, it is possible to first find an appropriate
noise density approximation, for example using the method described in [74] for non-parametric
noise or the method described in [71] for differing parametric noise, and then to approximate
the conditional density afterwards.

6.2 State Estimation

Due to the simplicity of calculating the optimal hybrid density, the conditional density approxi-
mation can be performed on-line, i.e., at every time step k. This allows deriving an approximate
but efficient computation of the prediction and measurement update step of the Bayesian state
estimator. Both steps of the HDF are presented in the following.

6.2.1 HDF Prediction Step

The special structure of the hybrid transition density approximation is very convenient for
efficiently performing the prediction step, since it allows calculating a closed-form solution of
the Chapman-Kolmogorov equation (2.7).

Theorem 6.2 (Approximate Predicted Density) Given the density fxk (xk) of the cur-
rent system state xk and the hybrid transition density approximation

f(xk+1, xk; �) =
L∑
i=1

!i ⋅ �(xk − x̂i) ⋅ N (xk+1; ŷi, (�
y
i )

2) , (6.14)

with parameter vector � according to Theorem 6.1, the approximate predicted density fpk+1(xk+1)
is a Gaussian mixture density with L components that can be calculated analytically.

Proof. Replacing fTk (xk+1∣xk) in (2.7) by its approximation (6.14) yields

fpk+1(xk+1) =

∫
R

f(xk+1, xk; �) ⋅ fxk (xk) dxk

=
L∑
i=1

!i ⋅ N (xk+1; ŷi, (�
y
i )

2) ⋅
∫
R

fxk (xk) �(xk − x̂i) dxk︸ ︷︷ ︸
=fxk (x̂i)

=
L∑
i=1

!k+1,i ⋅ N (xk+1; ŷi, (�
y
i )

2) , (6.15)

with !k+1,i = !i ⋅ fxk (x̂i). For i = 1, . . . , L, the weighting coefficients !i of the hybrid transition
density have the same constant value, where the value of !i has no impact on the prediction.
Thus, setting !i = 1/

∑L
i=1 f

x
k (x̂i) leads to a normalized predicted density. □

In a Bayesian setting according to Figure 2.2 and Figure 6.1, the prior fxk (xk) can be any
continuous density. Thanks to the point-wise evaluation of the prior density by means of the
Dirac delta distributions of the hybrid density, the HDF prediction step is able to handle any
continuous density. In case of a Gaussian mixture prior density, the HDF prediction step
preserves the density type since the predicted density functions is also Gaussian mixture.
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Furthermore, the complexity of the predicted density remains at a constant level, since the
number of components representing fpk+1(xk+1) only depends on the number L of components
of the hybrid density. This systematically prevents an exponential growth of the number of
mixture components as it occurs for example for the Gaussian mixture estimator in Section 5.5.
Hence, Gaussian mixture reduction is not required in principle. However, due to the point-wise
evaluation of the prior density, performing the HDF prediction step is in O(L2) assuming that
fxk (xk) is represented by L components. For large L, it is reasonable to perform Gaussian
mixture reduction prior to the prediction step for an overall reduced computational complexity,
especially in case of multivariate states (see Section 6.3).

6.2.2 HDF Measurement Update

Performing measurement updates via the HDF differs in two aspects from the prediction step,
as illustrated in Figure 6.1. First, instead of directly incorporating the hybrid conditional
density, an approximate likelihood has to be generated. Second, the posterior density is not a
Gaussian mixture due to the Dirac mixture representation of the likelihood. Thus, an additional
interpolation step is needed in order to preserve a continuous density representation. However,
the number of components of the approximate density remains constant over all additional
steps required for measurement updating and depends, analogously to the HDF prediction
step, merely on the number of components used for approximating the conditional density
function.

Likelihood Generation and Measurement Updating

For a given measurement ẑk at time step k, generating the likelihood is straightforward. Plug-
ging ẑk into the hybrid conditional density approximation f(zk, xk; �) yields the likelihood
approximation

fLk (ẑk∣xk) = f(zk, xk; �)
∣∣∣
zk=ẑk

=
L∑
i=1

!i ⋅ N (ẑk; ŷi, (�
y
i )

2)︸ ︷︷ ︸
=:!x

k,i

⋅ �(xk − x̂i)

=
L∑
i=1

!xk,i ⋅ �(xk − x̂i) , (6.16)

with �
k

= [�T
k,1
, �T

k,2
, . . . , �T

k,L
]T , where �T

k,i
= [!xk,i, x̂i] . Thus, the likelihood is represented by a

Dirac mixture that in subsequent processing steps is very convenient to efficiently perform the
measurement update.

Theorem 6.3 (Dirac Mixture Posterior Density) Given the predicted density fpk (xk)
of the current system state xk and the approximate likelihood (6.16), the posterior density
f̄ ek(xk) is a Dirac mixture.

Proof. Employing Bayes’ law (2.9) yields

f̄ ek(xk) = ck ⋅ fpk (xk) ⋅ fLk (ẑk∣xk) = ck ⋅
L∑
i=1

!xk,i ⋅ �(xk − x̂i) ⋅ f
p
k (xk)︸ ︷︷ ︸

=fpk (x̂i) ⋅ �(xk−x̂i)

= ck ⋅
L∑
i=1

!k,i ⋅ �(xk − x̂i) , (6.17)
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where !k,i = !xk,i ⋅ f
p
k (x̂i). The normalization constant ck = 1/

∑L
i=1 !k,i results from integrating

over the sum in (6.17). □
Directly applying this Dirac mixture posterior density to the prediction step would lead to

a degeneration of the predicted density, since f̄ ek(xk) would be multiplied with the Dirac delta
distributions of the hybrid transition density. Instead, the Dirac delta distributions of f̄ ek(xk)
can be interpolated with arbitrary functions since the point-wise evaluation property of the
HDF prediction step allows processing any continuous density representation.

Interpolation Step

In the following, Gaussians are used for interpolation. This leads to a Gaussian mixture poste-
rior density

f ek(xk) =
L∑
i=1

!k,i ⋅ N (xk; x̂i, (�
x
i )2) (6.18)

of f̄ ek(xk). This density type representation coincides with the result of the prediction step,
i.e., the HDF remains within the same function class for both predictions and measurement
updates.

While the parameters !k,i and x̂i in (6.18) can be directly adopted from f̄ ek(xk), appropriate
standard deviations �xi have to be determined. In general, such an interpolation is computation-

ally demanding. Keeping in mind that the conditional density f̃(zk∣xk) has the uniform distri-
bution property when marginalizing along zk (see Lemma 6.1), the required computational load
can be drastically reduced and a suboptimal interpolation can be performed. It is assumed that
all Gaussian components in (6.18) have the same standard deviation �xi = �x, i ∈ {1, . . . , L}.
Then, the interpolation problem can be reduced to the one-dimensional optimization problem

�x = arg min
�
Ḡ(�) , (6.19)

where

Ḡ(�) =

∫
Ωk

(1− f ek(xk))
2 dxk .

Here, f ek(xk) has to optimally fit with an unnormalized uniform distribution on Ωk. This opti-
mization problem is convex and thus, �x can be derived by means of, e.g. gradient descent. The
required computational load can be further reduced by employing the approximate solution [22]

�x =
�k − �k√

2L
(6.20)

that rapidly convergences to the correct solution of (6.19) for increasing L.

Remark 6.1 (Posterior Mean) The mean of the Dirac mixture posterior density and the
Gaussian mixture posterior density are equivalent, as calculating the mean of f ek(xk) is merely
based on !k,i and x̂i.

The interpolation step can also be considered as a convolution of the Dirac mixture posterior
density (6.17) with the zero-mean Gaussian N (xk; 0, (�x)2) with standard deviation according
to (6.20). Thanks to the equally spaced placement of the Dirac delta distributions in f̄ ek(xk),
this convolution always leads to a smooth density function representation, independent of the
number of components L. This is demonstrated in the following example.
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Figure 6.4: Gaussian mixture posterior densities fe
k(xk) (red solid lines) and Dirac mixture posterior densities

f̄e
k(xk) (red stems) resulting from a HDF measurement update with (a) L = 10, (b) L = 20, and (c) L = 40

components representing the approximate conditional density. The true posterior density (black dashed lines) is
calculated by means of numerical integration.

Example 6.3: Smoothing via the Interpolation Step
In this example the cubic sensor problem [28] is considered, where the sensor model is given by

zk = x3
k + vk . (6.21)

The noise is represented by the Gaussian vk ∼ N (vk; 0, 0.32) and the current state estimate is
represented by the Gaussian xk ∼ N (xk;−1.5, 1.22). Performing the HDF measurement update
step with hybrid conditional density approximations with L ∈ {10, 20, 40} components and a given
measurement value ẑk = 0.2 leads to the posterior densities depicted in Figure 6.4 (a)-(c). It can be
seen that for an increasing number of components L, the approximate Gaussian mixture posterior
approaches the true one. For a very small number of components, i.e., for L = 10, the Gaussian
mixture posterior density is a coarse but smooth approximation, while the deviation between the
true posterior and its approximation is marginal for L = 40. ■

6.2.3 Combined Prediction and Measurement Update

An alternative to separately performing prediction and measurement update steps is to combine
both steps into a single one. For this purpose, the Bayes’ formula (2.9) is plugged into the
Chapman-Kolmogorov integral (2.7), which yields

fpk+1(xk+1) = ck

∫
R

fTk (xk+1∣xk) ⋅ fLk (ẑk∣xk) ⋅ fpk (xk) dxk .

Here, it is sufficient to approximate the transition density only and to perform the prediction
step as described in Section 6.2.1, while the likelihood can be utilized directly without any
approximation. In doing so, the given measurement value ẑk is automatically incorporated into
the state estimate. Furthermore, an additional interpolation step is not required, since the
HDF prediction step results in a Gaussian mixture representation for fpk+1(xk+1) (see (6.15)).
However, by performing a combined prediction and measurement update it is impossible to
achieve a separate posterior density f ek(xk), which is not always preferable, especially in cases
where the measurement rate is higher than the time update rate.

6.2.4 Simulation Example

To investigate the performance of the HDF, the nonlinear system model (6.4) introduced in
Example 6.1 as well as the cubic sensor model (6.21) of Example 6.3 are considered. A total of 50
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Figure 6.5: (a) Posterior density and mean estimates (stems) after the first measurement update. (b) Root mean
square error over 50 Monte Carlo simulation runs. (c) True means (black circles) as well as the mean estimates of
the HDF (green solid line), the UKF (blue, dash-dotted), and the PF (red, dotted) for an exemplary simulation
run. (d) Difference of the three estimators to the ground truth for the exemplary run.

Monte Carlo simulations are performed with �wk = 0.8, �vk = 0.3, L = 75, and an initial Gaussian
density fx0 (x0) = N (x0;−1.5, 1.22). Each of the 50 Monte Carlo simulation runs consists of
20 alternating prediction and measurement update steps, commencing with a prediction. For
comparison, the results of the unscented Kalman filter (UKF) and a particle filter employing
300 particles and systematic resampling (PF) are considered. For an introduction to systematic
resampling see [30].

In Figure 6.5 (a), an exemplary result of the first measurement update is depicted.1 Com-
putationally demanding numerical integration is applied in order to obtain the exact density
as reference. It is obvious that there is almost no shape difference between the exact posterior
density and the Gaussian mixture density approximation resulting from the HDF. As demon-
strated in Example 6.3, the interpolation step of the HDF measurement update can provide an
accurate approximation of the true posterior density. In contrast, the Gaussian assumption of
the UKF results in a significant difference in shape. This also appears for the mean estimate,
while the HDF provides a mean estimate that is almost identical to the ground truth. Also
higher-order moments cannot be tracked that accurate by the UKF. In contrast, the shape
approximation provided by the HDF allows capturing higher-order moments.

Focusing on the mean estimates, Figure 6.5 (b) depicts the root mean square error (rmse)
for each of the 50 simulations runs. The rmse of the HDF is the lowest in 45 simulation runs.

1 The PF provides just a particle representation of the density and thus is omitted here.
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For the remaining 5 runs the PF performs best. Consequently, the average rmse of the HDF
over all simulation runs is the lowest and is one order of magnitude lower as the average rmse
of the PF, although the number of particles of the PF is four times larger than the number of
components of the HDF, which also leads to a larger computation time of the PF. Increasing
the number of particles of the PF does not improve the estimation accuracy significantly.

Figure 6.5 (c) exemplarily shows the mean estimates of all estimators for one of the 50
Monte Carlo runs, while in Figure 6.5 (d) the mean estimation difference of all estimators to
the ground truth is illustrated for this particular run. The relatively poor estimation results
of the PF follows from the potential multimodal nature of the predicted density. So, the PF
sometimes tracks the wrong modes and the mean estimates strongly differ from the true means.
Unlike the PF, the HDF shows almost no deviation from the true means.

6.3 Extension to Multivariate States

So far, the HDF was examined for scalar states. This section is now concerned with an extension
to multivariate states together with some hints for a more computationally efficient application
of the HDF. For this purpose the nonlinear system and sensor models

xk+1 = ak(xk) +wk ,

zk = ℎk(xk) + vk

affected by additive noise are considered, where wk ∼ N (wk; ŵk,C
w
k ) and vk ∼ N (vk; v̂k,C

v
k).

6.3.1 Suboptimal Conditional Density Approximation

In case of multivariate states, the conditional density

f̃(y∣x) = N (y; (x),C)

representing the system model or sensor model needs to be approximated by the hybrid density

f(y, x; �) =
L∑
i=1

!i ⋅ �(x− x̂i) ⋅ N (y; ŷ
i
,Ci) . (6.22)

To adjust the parameter vector � in (6.22), which comprises the weights !i, the means x̂i
of the Dirac delta distributions, the means ŷ

i
of the Gaussians, and the covariance matrices

Ci of the Gaussians, it is possible to formulate an optimization problem equivalent to the
scalar case. Again, the Cramér-von Mises distance (6.7) between the true and the approxi-
mate cumulative distribution function is employed. But in contrast to the scalar case, this
optimization problem cannot be solved in closed form. While optimally approximating the
unnormalized uniform distribution representing the marginal cumulative distribution function
F̃ (x) (see (6.9)) by means of the Heaviside step functions is straightforward for the scalar case
[162], no closed-form optimal approximation can be found for the corresponding multivariate
uniform distribution F̃ (x).

Instead of determining the optimal approximation of the multivariate uniform distribu-
tion by means of numerical optimization, which may be computational demanding or even
intractable, a suboptimal approximation is used instead. For this purpose, the mean vectors x̂i
of the Dirac delta distributions are arranged in a regular grid. More specifically, assuming that
x ∈ Ω, i.e., x is restricted to its support

Ω = [�1, �1]× [�2, �2]× ⋅ ⋅ ⋅ × [�nx , �nx ] ⊂ Rnx ,
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the considered multivariate (unnormalized) uniform distribution can be written as

F̃ (x) =
nx∏
n=1

F̃ (xn) =
nx∏
n=1

(xn − �n) . (6.23)

The optimal approximation for each scalar (unnormalized) uniform distribution F̃ (xn) in (6.23)
on the interval [�n, �n], n ∈ {1, 2, . . . , nx}, is determined first. Calculating the cross product
of all nx scalar approximations yields to suboptimal grid approximation of (6.23), which is
given by

!i =
nx∏
n=1

!̄n ,

x̂i = [�1, �2, . . . , �nx ]T +
[
!̄1 ⋅ 2 ⋅ j1−1

2
, . . . , !̄nx ⋅

2 ⋅ jnx−1
2

]T
,

with the weighting coefficient for dimension n

!̄n =
�n − �n
Ln

.

The index of a component arises from i = (1 +
∑nx

n=1(jn − 1) ⋅Ln−1
n ) ∈ {1, 2, . . . L}, where jn in-

dicates the j-th Dirac component of dimension n. Furthermore, Ln is the number of Dirac com-
ponents used for approximating the scalar uniform distribution F̃ (xn) of dimension n. Hence,
the total number of components L of the hybrid density (6.22) is L =

∏
n Ln. As discussed

in [106], this kind of arrangement provides a locally optimal approximation of a multivariate
uniform distribution over Ω with respect to the Cramér-von Mises distance measure.

The remaining parameters ŷ
i

and Ci can be determined analogously to the scalar case.

Hence, the Gaussian elements of (6.22) are duplicates of the noise density that are placed
along the nonlinear function  ( ⋅ ), i.e., ŷ

i
=  (x̂i) and the covariances Ci are identical to the

corresponding noise covariances Cw
k and Cv

k, respectively.
By means of the hybrid conditional density (6.22), the prediction and measurement update

step coincide to the scalar case. Thanks to the grid arrangement of the Dirac delta distri-
butions, the interpolation step required for measurement updates is also be performed in a
straightforward fashion. Assuming that the covariance matrix C of each component of the
Gaussian mixture posterior density

f ek(xk) =
L∑
i=1

!k,i ⋅ N (xk; x̂i,C) ,

is diagonal, i.e., C = diag([�2
1, �

2
2, . . . , �

2
nx

]), the variances �2
n, n ∈ {1, 2, . . . , nx}, can be

calculated independently by solving the optimization problem (6.19) dimension by dimension.

6.3.2 Improvements in Efficiency

Although the previously introduced extension of the HDF for multivariate state is straightfor-
ward and thus easy to implement, it becomes computationally demanding for large state spaces.
This is due to the fact that the Dirac delta distributions of the hybrid density are arranged in
a grid. The size of the grid grows exponentially with the dimension of the state space. In the
following, two techniques are presented, which attenuate this exponential growth by decreasing
the number of required Dirac delta distributions per time step. This allows applying the HDF
even for high-dimensional states.
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Unobserved State Vector

In many applications, e.g., in target tracking scenarios, the sensor model often merely depends
on parts of the state vector. Here, the state vector can be decomposed into two substate vectors

xk = [(xok)
T, (xuk)

T]T ,

where the observed state vector xok represents the elements of the state vector that occur in the
sensor model, while all other elements are subsumed in the unobserved state vector xuk .

Example 6.4: Unobserved State Vector in Target Tracking
The system state xk = [xk, ẋk,yk, ẏk]

T of the target tracking problem considered in Example 2.1
can be decomposed into

(position) xok = [xk,yk]
T ,

(velocity) xuk = [ẋk, ẏk]
T ,

if distance sensors (2.4) or bearing sensors (3.15) are used. For instance, for distance measure-
ments (relative to the origin), the corresponding likelihood fLk (ẑk∣xk) = fLk (ẑk∣xok) = N (ẑk −√
x2
k + y2

k; v̂k, (�
v
k)

2) only depends on the observed state vector xok. ■

The computational demand of the HDF can be significantly reduced if only the observed
state vector is considered during the measurement update step. The update of the unobserved
part occurs indirectly by using the stochastic dependencies between the observed and unob-
served states introduced in the system model. According to this, only the observed state vector
has to be considered for approximating the conditional density and likelihood, respectively.
Thus, it is not necessary to represent the whole state vector by means of a grid. This finding
is summarized in the following theorem.

Theorem 6.4 (Measurement Update for Observed States) The HDF measurement up-
date for the observed state vector is independent of the unobserved state vector.

Proof. For the Gaussian mixture prior density fpk (xk) representing the current estimate of
the state vector xk, the mean and covariance of a Gaussian component N (xk; x̂k,Ck) of the
Gaussian mixture fpk (xk) can be written as

x̂k = [(x̂ok)
T, (x̂uk)

T]T , Ck =

[
Co
k Cou

k

Cuo
k Cu

k

]
.

Applying Bayes’ law to a Gaussian components yields [150]

N (xk; x̂k,Ck) = N (x
u∣o
k ; x̂

u∣o
k ,C

u∣o
k ) ⋅ N (xok; x̂

o
k,C

o
k) , (6.24)

where

x̂
u∣o
k = x̂uk + Cuo

k (Co
k)
−1 ⋅ (xok − x̂ok) ,

C
u∣o
k = Cu

k −Cuo
k (Co

k)
−1 Cou

k .

Since only the observed state vector is considered for measurement update, the true likelihood
f̃Lk (ẑk∣xok) can be approximated by

fLk (ẑk∣xok) =
L∑
i=1

!k,i ⋅ �(xok − x̂oi ) (6.25)



102 Chapter 6. The Hybrid Density Filter

according to (6.16), where x̂oi indicates the position of the i-th Dirac component used for
approximating the observed state. With (6.24), (6.25), and Bayes’ law (2.9), the Dirac mix-
ture posterior density is given by

f̄ ek(xk) = ck ⋅ fLk (ẑk∣xok) ⋅ f
p
k (xk)

= ck ⋅

(
L∑
i=1

!k,i ⋅ �(xok − x̂oi )

)
⋅

(
M∑
j=1

!k,j ⋅ N
(
x
u∣o
k ; x̂

u∣o
k,j ,C

u∣o
k,j

)
⋅ N
(
xok; x̂

o
k,j;C

o
k,j

))

= ck ⋅
L∑
i=1

M∑
j=1

!k,i,j ⋅ �(xok − x̂oi ) ⋅ N
(
x
u∣o
k ; x̂

u∣o
k,i,j,C

u∣o
k,j

)
(6.26)

with

!k,i,j = !k,i ⋅!k,j ⋅ N
(
x̂oi ; x̂

o
k,j,C

o
k,j

)
(6.27)

x̂
u∣o
k,i,j = x̂uk,j + Cuo

k (Co
k)
−1 ⋅

(
x̂oi − x̂ok,j

)
.

In order to obtain the Gaussian mixture posterior density f ek(xk), the interpolation step can be
applied on the Dirac delta distributions of (6.26). □

Thanks to the way of determining the Gaussian mixtures by the HDF prediction and inter-

polation step, the covariance matrices C
u∣o
k,j of (6.26) are identical for all Gaussian components.

Thus, they need to be calculated only once per time step, which is computationally negligible.
The update of the unobserved state vector and thus, the utilization of stochastic dependencies
is carried out in (6.27) by updating the weighting coefficients.

The benefit of approximating the conditional density and the likelihood only under con-
sideration of the observed state vector comes at the expense of an exponential growth of the
number of components in the posterior density (see the two sums in (6.26)). However, perform-
ing a HDF prediction step automatically leads to a reduction of the posterior Gaussian mixture,
since the complexity of the predicted density only depends on the number of components of
the hybrid transition density. In cases of repeated measurement updates, a separate Gaussian
mixture reduction algorithm as the one proposed in Chapter 7 has to be performed to keep the
exponential growth bounded.

Rao-Blackwellization

The computational demand can be further reduced for system and sensor models of the type

xnk+1 = An
k ⋅xlk + ak(x

n
k) +wn

k ,

xlk+1 = Al
k(x

n
k) ⋅xlk +wl

k ,

ẑk = ℎk(x
n
k) + Hk(x

n
k) ⋅xlk + vk ,

where the state vector and the system noise are composed according to

xk = [(xlk)
T, (xnk)T]T ,

wk = [(wl
k)

T, (wn
k)T]T .

Here, xlk ∈ Rnl
x denotes the state vector with (conditional) linear dynamics and xnk ∈ Rnn

x

denotes the nonlinear parts of the state. It is further assumed that the linear part wl
k and the

nonlinear part wn
k of the system noise wk ∼ N (wk; ŵk,C

w
k ) are stochastically independent, i.e.,

Cw
k =

[
Cl
k 0
0 Cn

k

]
. (6.28)
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In case of stochastic dependencies between the linear and the nonlinear noise parts, techniques
like the Gram-Schmidt procedure can be employed in order to decorrelate the noise [8, 95].

Example 6.5: Linear/Nonlinear States in Target Tracking
For target tracking problems (see Example 2.1) with distance or bearing measurements according
to the sensor models (2.4) and (2.5), respectively, the state vector xk = [xk, ẋk,yk, ẏk]

T can be
decomposed in linear and nonlinear components according to

(velocity) xlk = [ẋk, ẏk]
T ,

(position) xnk = [xk,yk]
T ,

with An
k = T ⋅ I, Al

k = I, ak(x
n
k) = xnk , and Hk(x

n
k) = 0. Even if the system model is purely

linear, the positions act as nonlinear states as they are nonlinearly mapped to the measurements by
the function ℎk(x

n
k). ■

For such systems, the prediction of the nonlinear part of the state vector can be carried
out independently from the linear state. To see this, the density function f ek(xk) representing
the current state estimate can be written as

f ek(xk) = f ek(xlk∣xnk)︸ ︷︷ ︸
Optimal KF

⋅ f ek(xnk)︸ ︷︷ ︸
Approximate HDF

(6.29)

by exploiting Bayes’ law. Under consideration of the stochastically independent parts wl
k and

wn
k of the system noise, performing the transition density approximation and HDF prediction is

merely required for the nonlinear state. More specifically, with (6.28) and (6.29), the prediction
step accords to

fpk (xk) =

∫
Rnx

fTk (xk+1∣xk) ⋅ f ek(xk) dxk

=

∫
Rnn

x

(∫
Rnl

x

fTk (xlk+1∣xk) ⋅ f ek(xlk∣xnk) dxlk︸ ︷︷ ︸
Kalman filter prediction

)
⋅ fTk (xnk+1∣xnk) ⋅ f ek(xnk) dxnk︸ ︷︷ ︸

HDF prediction

.

Thanks to the reduced dimensionality of xnk , performing this part of the prediction can be
performed much more efficiently compared to the HDF prediction of the whole state vector xk.
Furthermore, approximate prediction of the linear part is avoided, since the optimal Kalman
filter prediction step can be applied to the linear state variables after processing the nonlinear
part. Overall, this procedure, which is often referred to as Rao-Blackwellization [55, 161], leads
to more accurate and computationally tractable estimates.

For incorporating measurement values into the Rao-Blackwellization scheme, the combined
prediction and measurement update step described in Section 6.2.3 has to be applied. In doing
so, the estimation of the linear parts of the state vector additionally involves the Kalman
filter measurement update step.

6.3.3 Simulation Example

By means of the target localization and tracking scenario introduced in Example 2.1, the
estimation performance of the proposed multivariate extension of the HDF is compared with
particle filters (PF) using systematic resampling. The sampling interval T is set to be 1 s and the
diffusion strength q is set to be 0.5. The initial estimate xe0 is assumed to be Gaussian with mean
x̂e0 = [50 m, 1 m/s, 50 m, 1 m/s]T and covariance Ce

0 = diag([100 m2, 1 m2/s2, 100 m2, 1 m2/s2]).
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Figure 6.6: Tracking performance for radar target tracking with glint noise. Depending on the glint noise prob-
ability �, the average root mean square error (rmse) of (a) the position estimation and (b) the velocity estimation
are depicted. (c) The rmse of the position estimates for � = 0.2. (d) The rmse of the velocity estimates for � = 0.2.

For this simulation example, radar tracking with glint noise2 is considered. Here, the radar
sensor model is given by

ẑk =

[ √
x2
k + y2

k

arctan
(

yk

xk

)]+ vk , (6.30)

where the glint measurement noise vk is modeled by the Gaussian mixture

f vk (vk) = (1− �) ⋅ N (vk; 0,Cv,1
k ) + � ⋅ N (vk; 0,Cv,2

k ) , (6.31)

with covariances Cv,1
k = diag([0.012 m2, 12 mrad2]) and Cv,2

k = diag([0.12 m2, 102 mrad2]). The
parameter � refers to the glint noise probability. Eleven probability values are used for sim-
ulation; the probability � is taken from the set {0, 0.05, . . . , 0.5}. By increasing the glint
probability � it is possible to investigate the performance of the estimators for stronger and
more heavily tailored noise.

For the given simulation setup the following four estimators are considered:

2 For tracking with glint noise see e.g. [195].
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HDF A HDF exploiting that merely the position [xk,yk]
T of the state vector is observed in

(6.30). While 1200 Dirac delta distributions are employed for the prediction step, the number
of Dirac delta distributions is reduced to 400 for the measurement update.

HDF∗ Additionally to considering only the position during the measurement update, this
HDF further exploits the linearity of the system model. Hence, the prediction is performed
via a bank of KFs, while the measurement update of the HDF still employs 400 Dirac delta
distributions. Admittedly, the number of Gaussian mixture components cannot be longer kept
on a constant level for this particular HDF. The PGMR algorithm described in Chapter 7 is
executed after each prediction step in order to reduce the number of components below 10.

PF For comparison reasons, two PFs are used. One with 400 samples (like the HDF∗) and
one with 1200 (like the HDF).

For each probability value 50 Monte Carlo simulation runs are performed, where the target
is tracked over 30 time steps. In Figure 6.6 (a) and (b) the average rmse with respect to
the target position [xk,yk]

T and the target velocity [ẋk, ẏk]
T for all glint probabilities are

depicted. It is observed that both HDFs outperform the PFs for each probability value. The
main reason for this can be seen in Figure 6.6 (c) and (d), where the rmse of the position and
velocity estimates over all simulation runs for the glint noise probability � = 0.2 is depicted.
Compared to the HDFs, the estimates of PFs take much longer time to converge. This effect
is more severe for the PF with 400 samples. Even if both the HDF∗ and the PF with 400
samples employ the same number of components, the performance of the HDF∗ is significantly
better for three reasons. First, the Diracs of the HDF are more systematically placed. Second,
since only the position needs to be considered during measurement updates, no approximate
processing of the velocity states is required. Due to the correlation between velocity and
position, this in turn improves the estimation accuracy for both parts of the state vector. For
PFs, considering observed states only during measurement updates cannot be achieved in a
straightforward manner. Third and finally, the prediction can be performed in an optimal
fashion due the exploitation of the linearity of the system model. It is important to note, that
this exploitation does not coincide with the Rao-Blackwellization described in Section 6.3.2.
It comes naturally as the HDF processes Gaussian mixture densities. By not performing KF
prediction and employing HDF prediction instead, the number of Diracs has to be increased in
order to achieve a comparable estimation performance. To improve the performance of both
PFs, Rao-Blackwellization could be employed. But compared to the HDF∗, merely the velocity
states could be represented by means of Gaussians, while the position states still have to be
represented by particles in order to allow for efficient measurement updates.

From Figure 6.6 (a) and (b) a further observation can be made. For an increasing glint noise
probability, the tracking performance of all estimators degrades since the glint measurement
noise becomes more and more heavy tailored. Thereby, the degradation of the PF with 1200 is
not that strong compared to all other estimators. This follows from the fact, that PFs typically
favor wide likelihood functions, since more peaked likelihoods (corresponding to more accurate
sensors) force sample degeneration. Hence, for � = 0 only the first Gaussian component of the
measurement noise (6.31) is active and thus, both PFs provide poor results as the measurement
noise is low. The performance already becomes significantly better for � = 0.05, as the second
Gaussian component of the noise leads to a likelihood with larger support. The HDFs instead
behave more naturally, i.e., for the most accurate sensor, the performance is superior. For
all estimator holds that increasing the number of components/particles would attenuate the
degradation for an increasing � and thus would improve the tracking performance. However,
that would be at the expense of increased computation time.
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6.4 Contrast to Prior Work

Applying the HDF prediction and measurement update step yields a parametric and continuous
representation of the current state estimate in terms of a Gaussian mixture density. This is
worth mentioning, since the HDF estimation steps can be also interpreted as a deterministic
sampling of the prior density. Analogously to the Gaussian estimator in Section 5, the sampling
is called deterministic due to the systematic placement of the Dirac delta distributions. In the
specific case of the HDF, these distributions are always arranged as a grid over Ωk. The sampling
character of the HDF is illustrated in the following example on the basis of the prediction step.

Example 6.6: Sampling Interpretation of the HDF Prediction Step
Except for the constant factor !i, the weights !k+1,i in (6.15) coincide with the function values of
fxk (x̂i). Thus, fxk (xk) can be replaced with the (deterministic) sample representation

fxk (xk) =
L∑
i=1

!k+1,i ⋅ �(xk − x̂i) .

Using the true transition density f̃Tk (xk+1∣xk) in the Chapman-Kolmogorov equation (2.7) leads to

fpk+1(xk+1) =

∫
Rnx

f̃Tk (xk+1∣xk) ⋅ fxk (xk) dxk

=
L∑
i=1

!k+1,i

∫
Rnx

f̃Tk (xk+1∣xk) ⋅ �(xk − x̂i) dxk︸ ︷︷ ︸
=fwk (xk+1−ak(x̂i))

=
L∑
i=1

!k+1,i ⋅ N (xk+1; ŷ
i
,Cw

k ) ,

which is identical to (6.15) (for multivariate states). Thus, the HDF prediction step can be in-
terpreted as an approximation of the underlying nonlinear system as a result of approximating the
transition density. Alternatively, it can be considered as a sample approximation of the prior density.
This interpretation holds also for the measurement update step and offers a very convenient way for
implementing the HDF. ■

Random sampling based estimators like particle filters typically do not generate a continu-
ous representation of the predicted or posterior density. Since they use Monte Carlo techniques,
a sample representation is generated instead. Exceptions are the Gaussian (sum) particle fil-
ter [100, 101] and regularized particle filter [133]. Instead of resampling, these particle filters
convert the samples into a continuous density representation, for instance into a Gaussian den-
sity in case of the Gaussian particle filter. However, still random sampling is applied, i.e., the
estimation results are not deterministic and reproducible. Furthermore and in contrast to the
HDF, particle filters are often incapable of maintaining multimodality during the entire esti-
mation process. Especially due to the sample degeneration problem, it may happen that entire
modes get lost. The HDF instead allows capturing the shape of the density function and thus
information about higher-order moments more accurately.

As one of the major strength of particle filters it has been asserted that they avoid the curse
of dimensionality, i.e., their complexity does not grow exponentially with the dimension of the
state space. According to [49], this statement is wrong in general. Due to the unsystematic
(random) sample placement, most of the samples are wasted, as they are not concentrated
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on the relevant volume of the state space, whereas the volume growth exponentially with the
dimension [48].

As an alternative to random sampling, Quasi-Monte Carlo estimators use deterministically
drawn samples [136, 145]. The techniques used for generating these samples are often very
complex and thus scalability is a critical problem [139]. A likewise computationally demanding
but optimal approximation of arbitrary prior densities with deterministically drawn samples is
proposed in [164]. In contrast to the HDF, this estimator solves an optimization problem on
the prior density. Due to the optimal placement, few samples are sufficient to achieve precise
estimation results. For an improved on-line performance, a suboptimal version, where the
samples are placed in a greedy fashion, is also available [73, 97].

A further class of related nonlinear estimators are grid-based methods [102], where the
grid points, i.e., the Dirac delta distributions, represent probability regions of the continuous
state space3. This is different to the HDF, where the grid arrangement for the Dirac delta
distributions is merely used for approximating the conditional densities. Since no continuous
density representation is used in grid-based methods, the grid must be sufficiently dense to get
a good approximation of the state space. Furthermore, the discretization of the state space
must be predefined, while the grid part of the hybrid density can be determined on-line. Both
methods suffer from increasing computational costs as the dimensionality of the state space
increases. But in case of the HDF, this effect can be attenuated with the techniques proposed
in Section 6.3.2.

6.5 Summary

The hybrid density filter is based on approximating the conditional densities involved in pre-
diction and measurement update steps. A hybrid density consisting of Dirac delta distributions
and Gaussian densities is used for approximation purposes. To achieve a high quality approx-
imation of the conditional density and thus of the estimation results, the approximation is
formulated as an optimization problem. For scalar states, this optimization problem can be
solved analytically thanks to the special structure of the hybrid density, while for multivariate
states, an optimal solution is computationally intractable since no closed-form approximation
of the occurring multivariate uniform distributions exists so far. Instead, a suboptimal but
practical grid-based approximation of the uniform distributions is employed.

Given the hybrid conditional density approximation, the prediction and measurement up-
date step for the nonlinear system and sensor models can be performed in closed form. The
HDF state estimation process can also be interpreted as deterministic sampling due to the Dirac
delta distributions. For low-dimensional states, predictions and measurement updates can be
performed with low computational effort. Compared to particle filters, which utilize random
sampling, the HDF has the advantage of a lower number of required samples as well as a con-
tinuous density representation. Also, a random number generator is not required, which leads
to a simple implementation. With increasing dimensionality of the state space, the number of
required hybrid density components grows exponentially. To face this problem, methods for
improving the efficiency have been proposed, namely measurement updates for observed states
only and the integration of the well-known Rao-Blackwellization technique into the HDF.

Considering the fact that the characteristics of the nonlinear system and measurement func-
tions have no impact on the placement of the Dirac delta distributions of the hybrid density, it is
intended to investigate more elaborate distance measures, e.g., by employing a generalized ver-
sion of the Cramér-von Mises distance based on localized cumulative distribution functions [72].
This could also counter the problem of the exponential growth of the number of components.

3 If the state space is discrete and finite, grid-based methods provide optimal estimates [9].
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Furthermore, information about the prior density function, besides its support, should be in-
corporated into the conditional density approximation in order to arrange the hybrid density
components even more systematically.



CHAPTER 7

Progressive Gaussian Mixture Reduction:
A Constructive Approach

Thanks to their universal approximation property, Gaussian mixtures are a very convenient
function system for representing probability densities. Besides their usage as result of the
proposed state estimators (Gaussian mixture estimator and HDF), Gaussian mixtures are also
employed for accurately representing multimodalities in tasks like multi-target tracking [14],
density estimation [76, 142], or machine learning [44], just to name a few. However, recursive
processing of Gaussian mixtures generally leads to an exponential growth of the number of
mixture components (see for example Remark 5.1). But also the point-wise evaluation of
Gaussian mixtures with a large number of components, as required for example for the HDF,
is computationally demanding. In order to keep the computational and memory requirements
bounded, it is inevitable to approximate a Gaussian mixture by one with fewer components.

Several methods were developed in the recent years for reducing the number of Gaussian
components. Typically, the reduction is achieved by deleting components with low contribu-
tion to the overall mixture or by successively merging components with strong similarity. For
a brief introduction on state-of-the-art reduction algorithm see Section 7.4. To fully exploit
the approximation potential of reduced-order Gaussian mixtures, the progressive Gaussian mix-
ture reduction (PGMR) approach introduced in this chapter employs a principle dual to existing
algorithms. Instead of repeatedly removing mixture components, a Gaussian mixture is suc-
cessively constructed to approximate the original mixture with far less components. However,
a priori determining the optimal number of components for maintaining a specific deviation
to the original mixture is impossible. Thus, a homotopy continuation1 approach is employed,
which starts with a single Gaussian density (see Section 7.1). During the continuation towards
the original mixture, new Gaussian components are added to the approximate mixture for pro-
viding better approximation capabilities. To control this growth in components, the deviation
is constantly tracked by a squared integral distance measure and new components are only
added in regions of emerging strong deviations when necessary.

For obtaining accurate results in an efficient way, the progress of the continuation is con-
trolled by a predictor-corrector scheme (see Section 7.2). The continuation progresses faster
whenever the changes generated by the gradually incorporated original mixture are marginal.
On the other hand, strong changes slow down the progression such that accurately adapting
the approximation is possible. Furthermore, for enabling an efficient implementation of the
proposed reduction method, closed-form solutions for all necessary calculations are derived.

The fundamentals of the proposed progressive Gaussian mixture reduction algorithm were
published in [219] for univariate Gaussian mixtures. This chapter extends the results of this
paper to the multivariate case.

1 For an introduction to homotopy continuation see for example [3].
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7.1 Gaussian Mixture Reduction via Homotopy Continuation

In the following, it is assumed that the true density function of the random vector x is
represented by the Gaussian mixture

f̃(x) =
M∑
i=1

!i ⋅ N (x; x̂i,Ci) .

In typical state estimation tasks, for example by applying the Gaussian mixture estimator
introduced Section 5.5, the number of mixture components M increases exponentially over
time. Due to computational and memory limitations, this growing mixture cannot be processed
for any significant time span. Even if f̃(x) has a large number of components, the shape of
the Gaussian mixture is often not that complex, e.g., a mode of the true density is represented
by several Gaussians, but a single component would be adequate for approximating the mode.
Thus, a Gaussian mixture with a considerable smaller number of components can typically be
found by fusing locally shared information and by removing redundancy in f̃(x).

7.1.1 Problem Formulation

The goal is now to determine a reduced Gaussian mixture f(x; �) consisting of L≪M compo-

nents, that is close to the original mixture f̃(x). For representing the reduced Gaussian mixture,
a special case of a Gaussian mixture with axis-aligned Gaussian components (short: axis-aligned
Gaussian mixture) is employed. Here, the covariance matrix Cj of each Gaussian component j
is diagonal, i.e., each component is separable in every dimension (see Appendix A.1) and thus,
the reduced Gaussian mixture can be written according to

f(x; �) =
L∑
j=1

!2
j ⋅ N

(
x; x̂j,Cj

)
=

L∑
j=1

!2
j ⋅

nx∏
n=1

N
(
xn; x̂j,n, �

2
j,n

)
(7.1)

with parameter vector

� = [�T

1
, �T

2
, . . . , �T

L
]T and �T

j
= [!j, x̂

T
j , �

T
j ] .

The vector �j comprises the main diagonal elements, i.e., the standard deviations of the co-
variance matrix Cj. Please note that squared weighting coefficients !2

j are used to ensure
that f(x; �) remains a valid density function during the reduction process, i.e., the weighting
coefficients do not become negative.

Using an axis-aligned Gaussian mixture for representing the reduced mixture seems to
be disadvantageous at the first glance, since an axis-aligned Gaussian mixture has minor ap-
proximation capabilities compared to a general one. Hence, an axis-aligned reduced Gaussian
mixture typically requires more components to achieve a comparable approximation quality.
But in exchange, less parameters for a single component have to be adjusted since the covari-
ance matrices are diagonal. Furthermore, the necessary determination of the derivatives with
respect to the parameter vector � proves to be easier. Altogether, representing f(x; �) as in
(7.1) lowers the algorithmic complexity of the proposed Gaussian mixture reduction algorithm.

In order to determine the reduced Gaussian mixture, the Gaussian mixture reduction
problem is formulated as an optimization problem

�
min

= arg min
�
G
(
f̃(x), f(x; �)

)
(7.2)

w.r.t. G
(
f̃(x), f(x; �

min
)
)
≤ Gmax
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True:

Reduced:

 = 0  = 0.25  = 0.5  = 0.75

(a) (b)

 = 1

Progression with  = 0 . . . 1

G( ⋅ ) G( ⋅ ) G( ⋅ )Strong deviation Component added G( ⋅ )

Figure 7.1: Principle of the progressive Gaussian mixture reduction. The reduction starts with a single Gaussian
density for  = 0, which is progressively transformed towards the true mixture by increasing . The progression
and thus the deviation between the true and the reduced mixture is continuously tracked by means of the distance
measure G( ⋅ ). (a) Whenever the maximum approximation error Gmax is violated, as it is the case here for  = 0.5,
(b) a new components is added to the reduced mixture in order to increase the approximation capabilities. For
 = 1, the true mixture is reached and the reduction process ends up with the desired reduced Gaussian mixture with
parameter vector �

min
.

by minimizing a certain distance measure G
(
f̃(x), f(x; �)

)
, which quantifies the deviation or

the similarity between both mixtures. This in turn allows adapting the parameters in �, i.e., the
weights, means, and variances of f(x; �) in order to minimize the deviation under the constraint

that the deviation between f̃(x) and f(x; �) is less than an user-defined maximum value Gmax.
Besides defining a maximum deviation it is also possible to additionally constrain the number
of used components for f(x; �).2 Thus, the user is able to adjust the quality as well as the
computational demand of the reduction by giving a limit on the allowed deviation and/or the
number of components.

7.1.2 Progressive Processing

The optimization problem (7.2) is generally not convex, so that directly minimizing the de-
viation between both mixture densities results in getting trapped in an unappropriate local
optimum. Furthermore, the optimal number of mixture components L is not known a priori for
maintaining a deviation less than Gmax. To overcome these problems, the proposed reduction
approach makes use of the Progressive Bayes framework introduced in [71], i.e., a specific type
of homotopy continuation is applied in order to find the solution of (7.2) progressively.

In doing so, a so-called progression parameter  ∈ [0, 1] is used for parameterizing the

original Gaussian mixture f̃(x) in such a way that for  = 0 the Gaussian mixture can be
reduced directly, i.e., the exact solution of the optimization problem is known without deviation
from f̃(x). As illustrated in Figure 7.1, the effect of the original mixture is then introduced
gradually by incrementing the progression parameter. This ensures a continuous transformation
of the optimal solution of the initial optimization problem towards the desired original Gaussian
mixture f̃(x), by progressively adjusting the parameters � of f(x; �) to keep G

(
f̃(x), f(x; �)

)
at a minimum.

2 Obviously, in case of an additional component constraint, the maximum deviation is not
guaranteed to be maintained.
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7.1.3 Parameterization and Initialization

For that purpose, the parameterized Gaussian mixture f̃(x; ) is introduced according to

f̃(x; ) =  ⋅ f̃(x) + (1− ) ⋅ f̂(x) ,

which satisfies the identities

f̃(x; 0) = f̂(x) and f̃(x; 1) = f̃(x) .

Here, the density f̂(x) should be chosen in such a way that performing its reduction is straight-

forward. A very natural choice is a single Gaussian f̂(x) = N (x; x̂, C̃), whose mean x̂ and

covariance matrix C̃ correspond to the mean and covariance of the original mixture f̃(x) (see
(A.3) and (A.4), respectively). Admittedly, the covariance of an arbitrary Gaussian mixture is
not diagonal and thus, cannot be directly employed for initializing the progression. Instead,
the diagonal covariance matrix C = diag([�2

1, �
2
2, . . . , �

2
nx

]) with the variances

�2
i =

nx∑
j=1

∣c̃(i, j)∣ , (7.3)

is proposed for the initial Gaussian f̂(x), where c̃(i, j) is the element of the covariance matrix

C̃ at row i and column j. By means of the row sum criterion it can be shown, that the diagonal
covariance matrix C with elements according to (7.3) fulfills

C ર C̃ .

In a concrete manner, the covariance ellipsoid corresponding to C fully contains the ellipsoid
of C̃. Moreover, for a scalar random variable x, C coincides with C̃ and for the bivariate case
the covariance ellipse of C is the tightest possible axis-aligned ellipse.

By this choice for an initial density, covering the support of the true Gaussian mixture is
ensured. Starting the progression with this “simple” density allows directly determining the
optimal solution, i.e., f(x; �) = f̂(x) with � = [1, x̂T, �2

1, �
2
2, . . . , �

2
nx

]T for  = 0. This solution,
i.e., the parameter vector �, then tracks the original Gaussian mixture that is progressively
modified by increasing  as depicted in Figure 7.1.

As the initialization of the continuation indicates, the way the proposed mixture reduction
approach operates is dual to existing algorithms. Instead of beginning with the complete original
mixture, at first a less complex reduction or approximation task is solved. As it is illustrated in
Figure 7.1 (a)–(b) and explained in more detail in Section 7.2.2, splitting or insertion operations
are used in order to add new Gaussian components to the initial single Gaussian if required.
This ensures to achieve the maximum deviation value Gmax.

7.1.4 Distance Measure

For quantifying the deviation between f̃(x; ) and f(x; �), several measures G( ⋅ ) can be used.
For convenience, the squared integral distance measure [86]

G
(
f̃(x; ), f(x; �)

)
=

1

2

∫
Rnx

(
f̃(x; )− f(x; �)

)2

dx (7.4)

is chosen, since it can be evaluated analytically for Gaussian mixtures. However, the proposed
approach is not restricted to this specific deviation measure. For instance, the Kullback-Leibler
divergence (2.30) can also be used, especially as it is the ideal deviation measure for mixture
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reduction in a maximum likelihood sense [153, 193]. Due to the fact that it is impossible to
evaluate this measure in closed form for Gaussian mixtures, numerical integration schemes have
to be employed, which leads to increased computational costs.

In the following, G(�, ) is used as shorthand term for G
(
f̃(x; ), f(x; �)

)
.

7.1.5 Progressive Minimization

To perform the progression of  from 0 to 1, while keeping the distance measure at its minimum,
the differential relation between  and the parameter vector �, i.e., the variation of � depending
on the variation of , is required. Hence, the optimization problem (7.2) is transformed into a
system of ordinary differential equations (ODE). In order to obtain these differential equations,
the necessary condition of a minimum of G(�, ) has to be satisfied. Thus, derivatives of G(�, )
with respect to  and � have to be zero, as G(�, ) is a function over  and �. Taking the
partial derivative of G(�, ) with respect to the parameter vector � yields

∂G(�, )

∂�
= −

∫
Rnx

(
f̃(x; )− f(x; �)

)
F (x; �) dx , (7.5)

where

F (x; �) =
∂f(x; �)

∂�
.

Setting (7.5) to zero results in∫
Rnx

f̃(x; ) ⋅F (x; �) dx =

∫
Rnx

f(x; �) ⋅F (x; �) dx .

The partial derivative with respect to  gives the desired system of ordinary first-order differ-
ential equations∫

Rnx

F (x; �) ⋅ ∂f̃(x; )

∂
dx =(∫

Rnx

F (x; �) ⋅F (x; �)T dx︸ ︷︷ ︸
=:P′(�)

+

∫
Rnx

(
f(x; �)− f̃(x; )

)
⋅M(x, �) dx︸ ︷︷ ︸

=:ΔP(�,)

)
⋅
∂�

∂
,

where

M(x, �) =
∂2f(x; �)

∂� ∂�T
.

This can be written as

P(�, ) ⋅ �̇ = b(�, ) , (7.6)

where the coefficients are given by

P(�, ) = P′(�) + ΔP(�, ) , (7.7)

b(�, ) =

∫
Rnx

F (x; �) ⋅ ∂f̃(x; )

∂
dx . (7.8)
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Algorithm 5 Pseudo-code of the numerical solver for (7.6)

1:  ← 0
2: � ← �( = 0)
3: Δ ← min

4: repeat
5:  ←  + Δ
6: �̇ ← solve

(
P(�, ), b(�, )

)
7: �

tmp
← � + Δ ⋅ �̇ // Predictor

8:
[
�, , Δ

]
← Adaptation

(
�

tmp
, ,Δ,Gmax

)
// Corrector

9: until  = 1

Closed-form expressions for (7.7) and (7.8) are given in Appendix B.1 and Appendix B.2,
respectively. It is worth mentioning that the term ΔP(�, ) can be omitted. This can be
justified by the fact that ΔP(�, ) comprises second-order derivatives of the reduced mixture as
well as the difference between the reduced and the complex true mixture. Hence, the complexity
of evaluating this term is large, while one the other hand, the resulting values are negligible
compared to P′(�). As shown in [71], omitting ΔP(�, ) coincides with replacing the reduced
Gaussian mixture by its first-order Taylor-series expansion around a given nominal parameter
vector.

7.1.6 Solving the System of Ordinary Differential Equations

The system of ODEs (7.6) cannot be solved analytically in general. Thus, a numerical solution
scheme has to be used. One option is to employ well-known ODE solvers like Runge-Kutta.
However, for this specific case these methods often turned out to be numerically unstable and
the integration of new mixture components is not supported.

Instead, the numerical solver listed in Algorithm 5 is proposed. As aforementioned, the
algorithm starts with  = 0 and thus with an optimal choice of the parameter vector � (see line
1-2). During the solution process,  is gradually increased while � is simultaneously adjusted
(line 5-8). Please note that solving the ODE in line 6 can be carried out directly, as  is a
fixed value and thus, merely a system of linear equations P ⋅ �̇ = b has to be solved, e.g., by
employing LU factorization.

With the solution vector �̇ for a specific , a so-called predictor-corrector scheme can be
realized, which is quite common in homotopy continuation [3, 163]. Here, the predictor is
represented by line 7. By means of extrapolation, the predictor generates an approximate
parameter vector �

tmp
further along the solution curve of ∂2G(�, )/

(
∂�∂

)
= 0. For this

purpose, �̇ gives the direction for predicting �, while the step size Δ gives the increment in
prediction direction.

Typically, this prediction step causes an error governed by the current step size. For reduc-
ing the introduced error under the user-defined error bound Gmax, a correction or adaptation
step is applied subsequently (line 8). In this thesis, the term adaptation is used instead of cor-
rection, as not only a correction of � is performed after the prediction. In fact, new Gaussian
components are introduced by splitting existing Gaussians or by inserting new Gaussians, if
the deviation between f̃(x; ) and f(x; �) is still larger than Gmax. This procedure facilitates

adapting f(x; �) to emerging structural changes in f̃(x; ) during the progression. The methods
used for adaptation are described in detail in the following section.
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7.2 Adaptation Methods

A straightforward way to realize the adaptation is to keep the step size always at the minimum
value min. This leads to a linear increment of . But then, choosing an appropriate min is
critical, since one has to balance between a compensation of even marginal changes in f̃(x; )
and a fast progression, leading to a coarse error reduction at some parts of the progression.

7.2.1 Parameter and Step Size Adaptation

Since the distance measure has to be minimized for a specific , a Newton approach for deter-
mining the roots of (7.5) is applied [163] instead. This allows correcting � in order to compensate
the introduced error. Furthermore,  and the step size Δ are adjusted for controlling the speed
of the progression. This can be done due to the fact that a fast convergence of the Newton
approach indicates only a small error introduced by the prediction. Hence, if the variation of
the true mixture is mild, the step size can be increased for the next progression step, which
leads to an acceleration of the progression. The opposite case, where the Newton approach
does not converge, indicates a large error. Thus, the prediction step can be reverted by setting
 to its former value and the step size can be decreased. The progression slows down in cases
of strong variations and an adequate adaptation is permitted.

For obtaining this adaptation, the Newton approach

H(�
k
, ) ⋅Δ� = −

∂G(�, )

∂�

∣∣∣∣
�=�

k

= − g(�
k
, ) , (7.9)

has to be applied. A closed-form expression of the gradient g(�
k
, ) of the distance measure is

given in Appendix B.3, while the Hessian

H(�
k
, ) =

∂2G(�, )

∂� ∂�T

∣∣∣∣
�=�

k

,

is identical to the matrix P in (7.7).3 Δ� = �
k+1
− �

k
is determined by solving the system of

linear equations (7.9), which yields the recursion

�
k+1

= �
k

+ Δ� .

This recursion is initialized with �
0

= �
tmp

(obtained at line 7 of Algorithm 5). In cases where

this initial value is close to the true parameter vector, the method quickly converges, which can
be detected by Δ� → 0.

Algorithm 6 summarizes the correction method for �, , and Δ. Again, the system of linear
equations in line 3 can be solved efficiently using LU factorization. In addition to controlling
the convergence of the Newton approach, adapting � is aborted after a maximum number of
steps kmax (see line 5). The structural adaptation performed in line 8 is described in detail in
the following section.

7.2.2 Structural Adaptation

Performing the correction step does not guarantee that the maximum deviation Gmax is main-
tained. This is especially the case when new modes emerge due to gradually incorporating the
true Gaussian mixture. Here, the current number of components of the reduced mixture may

3 As motivated in Section 7.1.5, the term ΔP can be omitted here for decreasing the
computational demand.
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Algorithm 6 [�, ,Δ]← Adaptation
(
�

tmp
, ,Δ,Gmax

)
1: �

0
← �

tmp

2: repeat

3: Δ� ← solve
(
H(�

k
, ), g(�

k
, )
)

4: �
k+1
← �

k
+ Δ�

5: until k + 1 = kmax or Δ� → 0
6: if Δ� → 0 then // Newton method converged
7: Δ ← Increase(Δ) // Accelerate progression
8: � ← StructuralAdaptation(�

k+1
, Gmax)

9: else
10: � ← �

tmp

11:  ←  −Δ
12: Δ ← Decrease(Δ) // Decelerate progression
13: end if

not suffice to capture this structural change and new components have to be added to the re-
duced mixture in order to improve its approximation capabilities. Therefore, two possible ways
for adding new components are introduced in the following: component splitting and component
insertion.

Normalized Distance Measure

Independent of the adding method, at first it has to be identified whether the approximation
provided by the reduced mixture suffices or not. For enabling a scale-invariant check of the
deviation between f̃(x; ) and f(x; �), the normalized distance measure

GN(�, ) =

√√√⎷ ∫
Rnx

(
f̃(x; )− f(x; �)

)2
dx∫

Rnx f̃(x; )2 dx+
∫
Rnx f(x; �)2 dx

(7.10)

is employed. Compared to the distance (7.4), this measure is more convenient for specifying
limits on the maximum allowed deviation [71]. It ranges between zero, which is the case if

f̃(x; ) and f(x; �) are identical, and one, if both mixtures are absolutely non-overlapping.

Component Splitting

Once GN(�, ) is larger than Gmax, the progression is stopped and the number of components
is increased. A straightforward way to introduce new mixture components is to split existing
ones. In doing so, the most critical component, i.e., the component that is mainly responsible
for the deviation, has to be identified by evaluating L individual distances

Gi(�, ) =

∫
Rnx

(
f̃(x; )− f(x; �)

)2

⋅ fi(x; �
i
) dx , (7.11)

where i = 1, . . . , L and fi(x; �
i
) = !2

i ⋅ N (x; x̂i,Ci). These individual distances can be evaluated
in closed form and the component with maximum distance is selected for splitting. The distance
measure (7.11) represents a weighted version of (7.4), which favours components that are close
to regions of strong deviation between the original and reduced mixture.

Several possibilities arise for performing a split. They differ, e.g., in number of new compo-
nents or the parameters of the new components. Simply reproducing the original component



7.2. Adaptation Methods 117

is not sufficient since the symmetry has to be broken to facilitate approximating the critical
region of the true Gaussian mixture in different ways [15].

In this thesis, splitting a component into two new Gaussians is preferred, since for two
Gaussians a moment-preserving replacement with respect to mean and covariance can be easily
guaranteed [153]. Furthermore, splitting is only performed symmetrically around the mean
vector and along a principal axis of the selected Gaussian component. Especially the latter
eases splitting, because due to the used axis-aligned Gaussian the principal axes are parallel to
the axes of the state space. In doing so, the selected component !2 ⋅ N (x; x̂,C) can be replaced

by !2

2
⋅ N (x; x̂1,C1) and !2

2
⋅ N (x; x̂2,C2). Assuming that the axis or dimension n is selected

for splitting, the mean vectors x̂1 and x̂2 as well as the covariance matrices C1 and C2 coincide
with the mean vector x̂ and covariance C, respectively, except for the splitting dimension n.
For this particular dimension, the corresponding mean vector elements and covariance matrix
elements of x̂1, x̂2,C1 and C2 have to satisfy

x̂n = 1
2
⋅ x̂1,n + 1

2
⋅ x̂2,n ,

�2
n = 1

2
⋅�2

1,n + 1
2
⋅�2

2,n + 1
4
⋅ (x̂1,n − x̂2,n)2 ,

which ensures a moment-preserving split of the reduced Gaussian mixture. For all simulations
in this thesis the parameters

x̂1,n = 1
2
⋅�n + x̂n , x̂2,n = −1

2
⋅�n + x̂n , �2

1,n = �2
2,n = 3

4
⋅�2

n

are used.
Even if splitting is only performed along a principal axis, the possibilities of selecting an

appropriate axis for splitting grows with the number of dimensions of the state space. To select
an appropriate axis, the following procedure is proposed:

1. The selected Gaussian is (virtually) split along each principal axis. Thus, in total nx splits
have to be performed.

2. The individual distance (7.11) is evaluated for each of the nx Gaussian pairs that result
from step 1. For each pair, the distance values of both Gaussians are cumulated.

3. The split with the maximum (cumulative) distance value of step 2 is finally undertaken.

This procedure turned out to be a good trade-off between computational demand and identify-
ing the split that will result in an adequate covering of the region of strong deviation between
the original and reduced mixture by the added components. In doing so, the number of im-
proper splits and their required adaptation to the true mixture can be kept on a minimum
level. The drawback of this way of component splitting is that determining the principal axis
for split becomes computationally demanding for high-dimensional state spaces as the number
of virtual splits created in step 1 and evaluated in step 2 grows with the dimension of the state
space.

Component Insertion

An alternative procedure for adding new components to the reduced mixture is the insertion
of a completely new component. This procedure relies on the determination of the point of
strongest deviation between the true and the reduced mixture. By directly inserting components
at this point, the approximation capabilities of the reduced mixture are improved effectively
and thus, emerging deviations during the progression can be resolved in situ. Furthermore, the
demanding determination of the principal axis for splitting can be avoided, which makes the
insertion procedure more scalable than component splitting.
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For an effective component insertion, the so-called deviation Gaussian mixture

f̄(x) = f̃(x; )− f(x; �) (7.12)

is introduced, which consists of L + M components. Since (7.12) represents the difference
between the true and the reduced Gaussian mixture, it can be negative. Hence, f̄(x) describes
no valid probability density function.

Extrema of the deviation Gaussian mixture indicate points of strong deviation, albeit neg-
ative minima are irrelevant for insertion, since the reduced Gaussian mixture already possesses
more probability mass than the true mixture at the corresponding regions. Modes instead indi-
cate a lack of approximation capability that can be eliminated by component insertion, whereas
the highest mode is of special interest for an effective approximation error reduction.

Certainly, accurately determining all modes or even the highest one of a Gaussian mix-
ture corresponds to a demanding optimization problem, whose solution generally requires it-
erative search methods [32]. Since being sufficiently close to the highest mode is adequate for
component insertion, the high computational burden of an exact mode finding can be avoided
by a heuristic procedure. It exploits that except for some pathologic cases, the positions of the
modes almost coincide with a subset of the mean vectors of the mixture components. Hence,
evaluating the deviation Gaussian mixture (7.12) at all mean vectors of its Gaussian components
and taking the maximum value results in the point

x̂max = arg max
x̂i

{
f̄(x̂i)

}
(7.13)

which is typically very close to the highest mode of f̄(x). Here, x̂i, i = 1, . . . , L + M are the

Gaussian mean vectors of f̃(x; ) and f(x; �).
Given the point (7.13), a new Gaussian component ! ⋅ N (x; x̂max,C) can be inserted into

the reduced mixture. The remaining parameters ! and C of this Gaussian should by chosen in
such a way that the reduced mixture significantly overvalues the true mixture at the considered
region, e.g., by using small values for the elements of C. In doing so, a strong artificial error
is introduced, which forces an adaptation by the additional corrector step (see Example 7.1 on
the next page.).

Component Deletion

During the progression it also occurs that components of the reduced mixture become negligible
and thus, contribute almost nothing to the approximation of f̃(x; ). These components can be
identified by the ratio !2

i / trace (Ci) being close to zero. Deleting then reduces the complexity
of the reduced Gaussian mixture, which in turn avoids overfitting effects. Furthermore, in cases
where a maximum number of components is specified by the user, deleting components creates
space for splitting or insertion operations, especially when the current number of components
in f(x; �) is close to the maximum.

Additional Correction Step

Structural adaptations by performing splitting, insertion or deletion of mixture components im-
proves approximation capabilities and/or introduces an additional error. To adapt the param-
eters of newly added components and to reduce the introduced error, an additional correction
step is performed by reapplying the Newton approach derived in Section 7.2.1. In the following
example, the systematic differences between splitting and insertion as well as the effect of the
additional correction step is demonstrated.
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Figure 7.2: Splitting vs. insertion. (a) The true Gaussian mixture (black) and its reduced version (red) at a
particular stage of the progression. Component insertion: (b) approximate determination of the highest mode of
the deviation Gaussian mixture (red), (c) insertion of the new component (green), and (d) adaptation to the shape
of the true mixture via the additional correction step. Component splitting: (e) determination of the Gaussian
component (green) causing strong approximation errors, (f) splitting into two new Gaussians (green), and (g)
imperfect adaptation by means of the additional correction step.

Example 7.1: Splitting vs. Insertion
Consider the scenario depicted in Figure 7.2 (a), where for a particular value of  the true Gaussian
mixture is approximated by a reduced mixture with two components. Applying insertion for adding
a new component leads to the steps illustrated in Figure 7.2 (b)-(d). At first, the highest mode of
the deviation Gaussian mixture (7.12) is determined approximately. At the position of this mode
(indicated by the green stem in Figure 7.2 (b)) a new Gaussian component is added to the reduced
mixture. It can be clearly seen that the new component (green Gaussian in Figure 7.2 (c)) is quite
peaked in order that its adaptation is forced in the following correction step. Due to the precise
placement of the newly added Gaussian, the correction step converges rapidly and the strongest
deviation is corrected properly (see Figure 7.2 (d)). Furthermore, adding the new component
facilitates to represent the right mode of the true mixture by the right Gaussian component thanks
to the increased approximation capabilities.

This result is now compared with the splitting procedure. The first step here is to identify the
Gaussian that maximizes the individual distance measure (7.11). Since the left Gaussian covers
the whole support, it is mostly responsible for deviations between the true and reduced mixture.
Accordingly, it is selected for splitting. The two Gaussians resulting from the split are depicted
in Figure 7.2 (f). Even if the left of the two new Gaussians is relatively close to the region of
strongest deviation, it is not properly shaped for capturing the left mode of true mixture. Hence,
convergence of the additional correction step is much slower compared to the insertion step. More
drastically, the remaining deviation between true mixture and its reduced version is still considerable
(see Figure 7.2 (g)), if the correction is performed with the same number of steps that was necessary
after the insertion procedure for obtaining the result depicted in Figure 7.2 (d). Only by significantly
increasing the number of steps for correction, the same approximation result can be obtained.
Consequently, the computation time of the splitting-based mixture reduction is typically larger than
the computation time of the reduction based on insertion, while the approximation quality of both
techniques is almost equivalent (see also the simulation results in the following section). ■
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7.3 Simulation Results

For demonstrating the effectiveness of the proposed progressive Gaussian mixture reduction
(PGMR) algorithm, three different simulations are conducted. First, the effect of the deviation
bound Gmax on the reduction quality is highlighted. Additionally, PGMR is compared to state-
of-the-art reduction methods by means of reducing randomly generated Gaussian mixtures for
scalar and two-dimensional random variables. For improved readability, all deviation values
and bounds are multiplied by a factor 100.

7.3.1 Deviation Bound

The true Gaussian mixture f̃(x) representing the scalar random variable x consists of M =
10 components, where the single Gaussians have weighting coefficients, means, and standard
deviations according to

! ∈ {0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1} ,
x̂ ∈ {−3.5 − 3 − 1 0 0.5 2 3 3.5 5 5.5} ,
� ∈ {0.6 0.6 0.6 0.6 0.7 0.7 1 0.5 0.5 0.5} ,

is reduced by PGMR with varying deviation bound Gmax ∈ {0.5, 0.75, 2, 4}. Both techniques
for adding new components to the reduced mixtures are applied. In Table 7.1, the used number
of components L as well as the deviation between the true Gaussian mixture and its reduced
version are listed. The normalized distance measure (7.10) is used for quantifying the deviation.
It can be seen that splitting and insertion result in almost the same reduced mixtures in this
particular example.

By increasing the maximum deviation valueGmax, the number of used components decreases
as expected. This comes along with a reduced computation time since less structural adaptation
operations have to be performed for more relaxed deviation limits. In Figure 7.3, the true
Gaussian mixture (black, dashed) is depicted together with the reduced Gaussian mixture (red,
solid) for Gmax = 2. Furthermore, the individual Gaussian components of f(x; �) are also
shown. Considering the five modes of the true mixture, one might expect that using also five
mixture components would result into a precise approximation. This is almost true except for
the second mode at x ≈ 0, which cannot be fitted appropriately by a single Gaussian. Thus, a
considerable improvement of the reduction quality is gained for L = 6. At this point, spending
more components only gives marginal quality improvements.

As the last two rows in Table 7.1 indicates, the bound Gmax is always maintained. The
bound can be violated, when in addition to Gmax a limit on L is imposed. For example,
not allowing more than L = 5 for the bound Gmax = 0.5, results in a deviation GN(�, ) =
0.917 for both component adding procedures. This deviation value is indeed larger than the
bound. However, in many practical applications, keeping L below a given maximum number of
components is of paramount importance for assuring worst-case computation time. Thus, with
PGMR the user can set preferences on either a maximum deviation or a maximum number of
components.

Table 7.1: Required number of components and reduction quality for different maximum deviation values Gmax.

Gmax 0.5 0.75 2 4

Number of components (splitting & insertion) 7 6 5 4
Deviation GN(�, ) (splitting) 0.217 0.234 0.917 3.228
Deviation GN(�, ) (insertion) 0.228 0.236 0.917 3.228
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Figure 7.3: True Gaussian mixture (black, dashed) and reduced Gaussian mixture (red, solid) consisting of 5
components (red, dotted).

7.3.2 Comparison with State-of-the-art Methods

Now, the PGMR algorithm is compared with three established reduction methods. All three
algorithms employ the common greedy approach of successively merging pairs of components to
maintain the desired number of components. The first is Williams’ reduction algorithm [193],
which can be considered as global reduction approach. The second is a local reduction algorithm
proposed by M. West [188], while the method of A. Runnalls [153] represents a compromise
between local and global approaches. For a more detailed introduction to these algorithms and
their classification into local and global reduction methods see Section 7.4.

Univariate Gaussian Mixture

At first, the Gaussian mixture of a scalar random variable x is considered for comparison
purposes. The true mixture consists of M ∈ {40, 80, 120, 160, 200}, where the parameters are
drawn i.i.d. from uniform distributions over the intervals

! ∈ [0.05, 0.5] , x̂ ∈ [0, 3] , � ∈ [0.09, 0.5] .

For each number of components M , 20 Monte Carlo simulation runs are performed, where all
reduction algorithms are forced to use L = 10 or less components. For PGMR, the bound
Gmax = 1 is selected.

In Figure 7.4 (a) and (b), the average deviations and average computation times for all M
are depicted.4 Neither in deviation nor in computation time there is a significant difference
between PGMR with splitting and PGMR with insertion. For both adding methods, PGMR
provides the best average deviation for each M . This is notable, as PGMR on average uses
between six and eight components, while Williams’, West’s, and Runnalls’ algorithm always
result in reduced mixtures with 10 components. In Figure 7.4 (c), the reduction results for a
true mixture with M = 200 components are depicted. Thanks to the progressive processing,
PGMR is capable of almost exactly capturing the shape of the true mixture, while Williams’
algorithm fails in accurately approximating details of the shape as it can be clearly seen for
the second mode. In this specific example, the reduction result of Runnalls’ algorithms is
comparable to Williams’ and thus, is not depicted here for clarity reasons. The grossness of
West’s method is even more significant, as it does not incorporate any shape information when
merging components. However, in contrast to PGMR, the three state-of-the-art algorithms
preserve the mean and variance of the original mixture (see Section 7.4).

4 The computation times depend on a Matlab 7.5 implementation running on a PC with an
Intel Core2 Duo 2.4 GHz processor.
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Figure 7.4: Reduction results for univariate Gaussian mixtures over 20 Monte Carlo simulation runs. (a) Average
deviation, (b) average computation time, and (c) an exemplary 200 component Gaussian mixture and its reduced
versions.

Figure 7.4 (b) indicates that the computation time of PGMR is approximately constant
for all M , while it grows with M for the other algorithms. In case of West’s algorithm, this
growth is negligible, as the algorithm is generally computationally very efficient due to its local
reduction characteristic.

The constant computation time of PGMR originates from the different way a mixture
is reduced. Regardless of the number of components of f̃(x), PGMR always starts with a
single Gaussian. The computationally most expensive operations of PGMR are structural
adaptations, i.e., extending the number of components. However, these operations are only
performed if required and handling many components in f(x; �) is systematically avoided. On
the other side, all three state-of-the-art algorithms start the reduction with the complete original
mixture and perform a greedy search involving all remaining components for identifying the
next merging operation in each reduction step. This search basically has a quadratic complexity
in case of Williams’5 as well as Runnalls’ algorithm and a linear complexity for West’s method.

Bivariate Gaussian Mixture

In this simulation, randomly generated Gaussian mixtures representing a two-dimensional ran-
dom vector x ∈ R2 are considered. The weighting coefficients ! and the elements c of the
(non-diagonal) covariance matrices of the true mixtures are drawn from the intervals

! ∈ [0.05, 0.5] , c ∈ [0.1, 1] ,

while 25% of the mean vectors are drawn from x̂ ∈ [0, 0.75]× [0, 1.5] and the remaining mean
vectors originate from x̂ ∈ [1.5, 2]× [0, 1.5]. Due to this placement of the Gaussian components,
bimodality is forced in the true mixture. An exemplary true mixture with M = 120 components
is depicted in Figure 7.5 (a). Again, 20 Monte Carlo simulation runs are performed for each
number of components M ∈ {40, 80, 120, 160, 200}. The maximum number of components
of the reduced mixture is set to L = 10, and the maximum allowed deviation for PGMR is
Gmax = 2.

The average deviation is depicted in Figure 7.5 (b). As in the univariate case, PGMR
provides the best reduction quality, independent of the used adding technique; splitting and

5 As suggested in [193], the used implementation of Williams’ reduction method exploits
that all terms for calculating the measure (7.4) can be pre-computed and stored. Because
only a few terms change between several reduction steps, partially updating the stored
terms leads to significant computational savings.
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Figure 7.5: Reduction results for bivariate Gaussian mixtures. (a) Exemplary true Gaussian mixture with 120
components. (b) Average deviation and (c) average computation time over 20 Monte Carlo simulation runs.

insertion perform almost equivalent. The results obtained from Williams’ reduction algorithm
are close to PGMR. But again, Williams always ends up with 10 components for the reduced
mixture, while both PGMR methods merely require between seven and nine components on
average. It is further worth mentioning that PGMR performs best even though axis-aligned
mixtures are used for approximation purposes.

More severe are the differences between both PGMR methods with regard to the computa-
tion times, as shown in Figure 7.5 (c). Due to the computationally more demanding distance
measure evaluations for multivariate Gaussian mixtures, the computation time is larger for all
reduction methods compared to the univariate case. However, the characteristics of the growth
with regard to the number of components M of the true mixture are still the same, except for
PGMR with splitting. Now, the time grows linearly with M , mainly for two reasons. First,
splitting scales with the dimension of the state-space and is conceptually more complex than
performing an insertion due to the necessity of determining the principal axis for splitting.
Second, as discussed in Example 7.1, splitting typically leads to a slower convergence of the
additional correction step, which in turn results in a longer computation time. This effect is
exacerbated in case of multivariate mixtures. Since splitting is only performed along principal
axes, the newly added component in some cases may be relatively far away from the point
of strongest deviation. This in turn leads to more extensive corrections. In extreme cases,
additional splittings have to be performed, if the additional correction step cannot fully adjust
the new Gaussian towards the strongest deviation.

7.4 Contrast to Prior Work

State-of-the-art mixture reduction algorithms and PGMR differ in many aspects. In Table 7.2,
the most important ones are summarized. For a detailed discussion, a short overview of existing
reduction algorithms is given at first. Therefore, these algorithms are classified into two groups,
namely into local and global algorithms, depending on the optimization approach and the
information on the true mixture that is incorporated for reducing a Gaussian mixture.

Local Mixture Reduction

Local algorithms only consider lower-order statistics of the mixture like mean and variance
or completely disregard the overall effect on the true mixture, e.g., by evaluating only the
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Table 7.2: Comparison of classical Gaussian mixture reduction algorithms with PGMR with respect to the opti-
mization approach for approximation, reduction principle, computational complexity, user constraints, type of the
reduced mixture, and preservation of moments.

Classical approaches PGMR

Optimization mainly local global
Principle top-down bottom-up

Complexity depends on components depends mainly on shape
Constraints number of components number of components

or maximum deviation
Reduced mixture general axis-aligned

Moment-preserving yes no

similarity between components. Salmond’s joining and clustering algorithm [155, 157] as well
as West’s algorithm [188] are part of this group. These algorithms involve finding the pair
(Salmond’s joining and West’s algorithm) or the group (Salmond’s clustering algorithm) of
mixture components that are closest based on the weighted form of the Mahalanobis distance
measure [120]. These Gaussians are merged and the process is repeated until the reduced
mixture contains the desired number of components. Instead of the Mahalanobis distance
measure, the so-called iterative pairwise replacement algorithm (IPRA) [166, 174] employs a
weighted form of the Hellinger distance [19] for evaluating the similarity between components.

Global Mixture Reduction

On the other hand, the measure employed in global methods considers all available information,
i.e., shape information of the mixture, for reduction purposes. Williams’ reduction algorithm
[193] employs the squared integral measure (7.4) to evaluate at each reduction step which
particular deletion of a component or merge of a pair of components yields the smallest dis-
similarity from the true Gaussian mixture. Compared to local methods, the reduction results
of global methods are typically more accurate, at the expense of a higher computational effort
for reduction. One way to benefit from both reduction approaches is to evaluate a localized
version of a global measure as done in Runnalls’ algorithms [153], where a computationally
cheap upper bound of the Kullback-Leibler divergence (2.30) is minimized.

Reduction Principle

All classical approaches operate with the same top-down principle. They start the reduction
with the complex Gaussian mixture and reduce the number of components by successively
merging pairs or groups of Gaussians. For obtaining a specific approximation quality, merging
approaches often end up with a number of components that is still too large, as the inherent
redundancy of the original mixture is exploited only in a greedy fashion. PGMR instead
employs a principle dual to existing algorithms, where an approximate mixture is generated in
a bottom-up fashion by progressively incorporating the true Gaussian mixture. For tracking
the deviation between the true and the reduced mixture during the progression, the same
distance measure as used for Williams’ algorithm is employed. Accordingly, PGMR is also part
of the group of global reduction algorithms. But in contrast to Williams’ algorithm, which
only tries to minimize the growth of the approximation error, PGMR exploits the distance
measure for improving the approximation capabilities of the reduced mixture. Furthermore,
new components are only added when necessary in order to keep the number of components in
the reduced mixture as small as possible.
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Complexity

Due to the constructive nature of PGMR, where new components are added at points of strong
deviations, its computational complexity mainly depends on the complexity of the true mix-
ture’s shape. Hence, the more complex the shape of the true mixture is, e.g., the more modes
the mixture has, the more computationally expensive operations for structural adaptation have
to be performed in order to adapt the reduced mixture to emerging structural changes during
the progression. The number of components of the true mixture instead has only a minor effect
on the overall runtime, as demonstrated in the simulations in Section 7.3.2. This is different
from the classical approaches. Due to the successive merging of components, the shape of the
true mixture has almost no effect on the computation time.

The behavior of PGMR is particularly beneficial in scenarios, where mixtures with simple
shapes are represented by many Gaussian components. For instance, target tracking appli-
cations as considered for example in Section 5.5.3 or Section 6.3.3 typically lead to unimodal
density functions and thus cause low runtimes.

One drawback of PGMR compared to classical approaches is a stronger dependence on the
dimension of the state space. This is due to the fact that the number of parameters required
for describing the reduced mixture grows linearly with the dimension. The matrices that are
involved in performing the predictor and correction steps in turn depend quadratically on the
number of mixture parameters. This dependence is more severe for PGMR with splitting, as
shown in the simulations. Attenuating this dependence will further increase the practicability
of the PGMR approach and is part of future work.

Constraints

Classical approaches always stop the reduction process once the desired number of components
is achieved, regardless of the resulting reduced mixture is a good approximation of the true
mixture or not. This drawback is abolished by PGMR. Here, maintaining an user-defined
maximum deviation value is guaranteed during the progression. Additionally, a maximum
number of components can be defined by the user. In contrast to classical approaches, the user
can balance between reduction quality and computation time.

Reduced Mixture Type

Despite that PGMR merely employs axis-aligned Gaussians for representing the reduced mix-
ture, it is able to outperform classical reduction algorithms, which utilize general Gaussian
mixtures for approximation. But the more complex the shape of the true Gaussian mixture,
e.g., the more irregular and rough the shape is, the more the approximation quality of all reduc-
tion algorithms degrades. This loss in performance is currently more severe for PGMR, because
of the employed axis-aligned Gaussians, which offer less approximation capabilities. Hence, for
accurately representing specific regions of the true mixture, more components for the reduced
mixture are necessary as it would be the case if general Gaussian components were used. In
some pathological cases no reduction of the number of mixture components is possible. The
extension of PGMR to utilize general Gaussian mixtures for approximation is part of future
work.

Moment-preserving Reduction

Merging of Gaussians in classical reduction algorithms is always performed under the preser-
vation of the mean and covariance of the original mixture. PGMR instead does not provide
an exact preservation of these moments. However, thanks to the shape approximation, the
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deviation between the moments of the original mixture and the reduced mixture is typically
small.

7.5 Summary

To achieve the goal of replacing a complex Gaussian mixture by one consisting of a minimal
number of components with respect to a desired maximum reduction error, the classical ap-
proach of successively merging components is often inappropriate. In comparison, the novel
progressive Gaussian mixture reduction algorithm introduced in this chapter provides signifi-
cantly better reduction results. It was demonstrated that gradually incorporating the effect of
the complex true Gaussian mixture during the progression facilitates accurate approximations
as the reduced Gaussian mixture can be constantly adapted and, if required, its approximation
capability in specific regions can be improved by adding new components. Compared to local
reduction methods, the resulting reduced mixture is very close to the original since adapting the
approximation is accomplished by a global optimization. Compared to other global approaches,
redundancy in the original mixture is better exploited. Thus, the used number of components
and the computational demand is significantly smaller.

Future work is devoted to increase the practicability of PGMR. Currently, the complexity of
PGMR grows with the dimension of the state space as well as with the number of components
of the reduced mixture due to the Newton method utilized in the correction steps. Explicitly
determining the occurring matrices can for example be avoided by employing quasi-Newton
methods like BFGS (see e.g. [61]) or by employing matrix-free Newton methods like Jacobian-
free Newton-GMRES [98]. Employing these techniques would also mark an important step
towards the extension of PGMR for constructing a general instead of an axis-aligned Gaussian
mixture for reduction purposes.

Furthermore, an exact preservation of mean and covariance of the original mixture is cur-
rently not possible. It is intended to incorporate the true moments as further constraints.
By applying the Lagrangian multiplier approach, especially the mean constraint can then be
maintained during the progression.



CHAPTER 8

Conclusions and Future Work

In this thesis, various techniques for nonlinear non-Gaussian sensor management and state esti-
mation are developed in order to form a versatilely applicable probabilistic framework for sensor
management. The main challenges arise from the circumstances that both theories building
the foundation of the framework, i.e., stochastic control and Bayesian state estimation, are of
conceptual value only for the assumed properties of the considered system and sensor models.
More precisely, to maximize the utility of the given sensors and their sensing modalities, op-
timization over multiple time steps ahead needs to be performed. This requires to anticipate,
quantify, and incorporate the effect of future and thus unavailable information about sensor
measurements onto the sensing decisions, whereas the number of potential decisions growth
exponentially with the length of the time horizon. In addition, the consideration of potential
decisions repeatedly results in recursively estimating and inferring the temporal evolution of
the observed nonlinear system. Coping with these challenges necessitates the development of
systematic, accurate, and efficient approximations for feasible sensor management. Applica-
tions for the proposed framework especially arise in scenarios, where the information gathering
process needs to be controlled in order to gain accurate estimates even for hardware constrained
sensors, as it is often the case in sensor networks (processing power, energy) and for mobile
sensor platforms (maneuverability).

8.1 Summary of Contributions

As aforementioned, sensor management can be considered as extended Bayesian state estima-
tion task, where the sensors and their sensing modalities are carefully configured in order to
maximize the information about the observed object. For both aspects, sensor management
and state estimation, theoretical contributions are presented in this thesis.

Sensor Management

For sensor management purposes, two algorithms with different scope have been proposed. The
quasi-linear sensor manager realizes an open-loop model predictive control scheme and is aimed
at computationally restricted applications with mild nonlinearities. For strongly nonlinear and
non-Gaussian scenarios on the other hand, the information theoretic sensor manager calculates
the sensor configurations in a closed-loop model predictive control fashion. The theoretical
contributions for realizing both sensor management algorithms are:

∙ Conversion of the formerly nonlinear non-Gaussian sensor management problem into a
linear Gaussian one by means of statistical linearization. This kind of linearization allows
incorporating uncertainty over the system state, which is of paramount importance due to
the predictive application of the linearization for conversion.
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∙ Efficient calculation of the optimal configuration sequence for the linear Gaussian sensor
management problem by means of the novel information-based pruning algorithm. This
optimal pruning algorithm exploits the sensor information matrix for an early exclusion
of suboptimal configuration sequences from the tree search.

∙ Determination of so-called virtual measurement values for incorporating and anticipating
future measurements. On the one hand, generating few but meaningful virtual measure-
ment values reduces the computational complexity of the information theoretic sensor
manager, while on the other hand specific characteristics of the measurement density,
such as skewness or multimodality can be exploited.

∙ Backward recursion scheme employing optimal pruning for information theoretic sensor
management. The novel probabilistic branch-and-bound pruning algorithm is aware of the
probabilistic nature of the virtual measurement values.

∙ Tight and computationally cheap lower and upper bounds on the differential entropy
for Gaussian mixture random vectors. These bounds allow efficiently approximating the
mutual information, which is utilized as objective function for information theoretic sensor
management.

The effectiveness of the proposed sensor management algorithms has been demonstrated in
simulations concerning the sensor scheduling problem and the mobile sensor control problem
for target localization and tracking. Due to the canonical structure of these problems, similar
results can be expected for other sensor management problems.

State Estimation

The foundation of the proposed probabilistic sensor management framework is built by three
approximate but computationally efficient state estimation techniques: the Gaussian estima-
tor, the hybrid density filter (HDF), and the progressive Gaussian mixture reduction (PGMR)
algorithm. The main theoretical contributions concerning these estimation techniques are:

∙ Deterministic sampling of Gaussian densities under consideration of the first two moments
as well as the shape of the corresponding cumulative distribution function. This sam-
pling scheme is employed in the quasi-linear sensor management approach for statistical
linearization, whereas the number of regression points can be adapted depending on the
desired accuracy and computational complexity.

∙ Approximating the nonlinear system and sensor models by considering the corresponding
probabilistic representation in terms of conditional densities, i.e, transition density and
likelihood. For the scalar case, the optimal approximation can be obtained in closed-form,
while the multivariate case requires suboptimal approximation. The “curse of dimen-
sionality”, i.e., exponential growth with increasing dimension of the state space can be
attenuated by decomposition in linear/nonlinear states as well as by decomposition in
observed/unobserved states.

∙ Constructive (bottom-up) approach for Gaussian mixture reduction based on homotopy
continuation for an improved exploitation of redundancies in Gaussian mixtures with many
components. The continuation is controlled by a predictor-corrector scheme, where new
components are added to the reduced mixture only when necessary in order to improve
the approximation capabilities.
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The application of the state estimation techniques is not only restricted to the proposed sensor
management framework. The necessity of Bayesian state estimation arises in many practical
applications, for instance in signal processing, machine learning, or, as demonstrated in many
simulations within this thesis, in localization and tracking tasks.

8.2 Outlook to Future Work

Potential extensions to the various algorithms and approaches introduced in this thesis have
been discussed in the summary sections at the end of each chapter. In the following, some long
term developments in sensor management are identified that are worthy for further investiga-
tion.

Distributed Sensor Management

Even if not explicitly mentioned, the methods proposed in this thesis are restricted to sensor
systems, where the sensor manager is a central component, i.e., the sensor configurations are al-
ways transmitted from and all measurement values are send back to a single sink. In large-scale
multi-sensor systems such as sensor networks, it is desirable to perform sensor management in
a distributed fashion. Distributed sensor management is advantageous over a central control
and processing structure for many reasons. It allows reducing communication overheads and
improves the flexibility, reliability, and scalability of the sensor system. The main challenge here
is that determining optimal sensor configurations requires global knowledge, while the nodes
of a sensor network often only possess local knowledge. Furthermore, due to its unreliability,
the (wireless) communication channel has to be taken into account when calculating the sensor
configuration, since packets containing the configuration vector, state estimate, or measurement
values may be dropped. Only few approaches like those in [58, 122, 148] have been presented so
far that deal with this problem, where admittedly many strongly simplifying assumptions are
made. One step toward distributed sensor management could be to employ submodular objec-
tive functions [104, 192], which provide a tight bound on the estimation performance in case of
greedy/myopic sensor management. As demonstrated in [220], myopic sensor management in
turn simplifies a distributed implementation as only local knowledge is necessary.

Constrained Sensor Management

The objective functions employed in this thesis, namely covariance-based and information the-
oretic functions, are aimed in minimizing the uncertainty over the state estimate. In many
applications, the sensor system is constrained for example with respect to energy consumption
or communication radius. By extending the objective function and the optimization, trading
off estimation performance and explicitly maintaining the constraints is possible. The main
challenge herein is to still determine the optimal configuration sequence in a tractable way.
Especially with regard to a versatilely applicable management framework, the solution tech-
niques, e.g., pruning methods, further have to conserve the special structure of the given sensor
management application.

Continuous-valued Configurations

For many sensor management problems like sensor scheduling, the set of possible configurations
is discrete and finite. In case of continuous-valued configurations, employing discretization may
lead to a finite set that suffices for adapting the given sensor system. However, the obtained
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discretized set may be too large such that determining the next configuration becomes com-
putationally intractable. Instead, directly manipulating the continuous-valued configurations
could be advantageous, whereas simple enumeration as in the discrete case is now not longer
possible. One solution approach is to combine gradient descent and potential field techniques
[128, 173] with sensor management techniques as in [111, 122]. However, such an approach
suffers from neglecting long-term effects resulting in local minima, which becomes even more
severe in case of constrained sensor systems. Thus, further efforts have to be made for sensor
management with continuous configurations over long time horizons.

Management of Dynamic Sensors

In many sensor management applications, the sensors possess an internal sensor state as stated
in Section 2.1.3. Depending on the sensor dynamics affecting the sensor state, the performance
of the proposed information-based pruning algorithm degrades. But also the bounds on the
estimation performance that can be stated for myopic sensor management with submodular
objective functions are not longer valid. The problem of sensor management with dynamic
sensors becomes even more severe in cases where the sensor state is uncertain as well, i.e., evolves
according to a stochastic process. Such a situation for example arises for the mobile sensor
control problem when the position of the mobile is not known for certain. Here, extensions of
the proposed pruning algorithm and the derivation of new bounds for myopic management in
case of dynamic sensors are worth for further research.

Simultaneous Dynamic System Control and Sensor Management

Another interesting extension of the proposed sensor management framework would be to not
only configure the sensors, but also to control the dynamic behavior of the observed system.
An exemplary application for such a simultaneous dynamic system control and sensor man-
agement arises in cooperative mobile robotics [29], where a team or a swarm of mobile robots
cooperatively performs environmental exploration [151] or object transportation [83]. Here,
a robot typically has uncertain information about the positions of its team members. The
robots need to adapt their motion in order to obtain or provide valuable position information,
which is essential for accomplishing the given task. By combining the proposed framework with
the model-predictive control techniques proposed in [187], a simultaneous treatment of both
stochastic control tasks is possible. Due to the fact that additional decision layers need to be
considered, the main challenge is to achieve a computationally feasible combined manager and
controller component.



APPENDIX A

Density Function Representations

In the following, the definition and some important properties of a Gaussian density function
is given. Furthermore, two special cases, namely axis-aligned Gaussians and Dirac Delta dis-
tributions are also described. Gaussian mixtures, which are convex combinations of Gaussian
densities are subsequently introduced in Section A.2. Gaussian mixtures play an important role
for precise density function approximation and state estimation, since all estimators described
in Section 2.3 can also be applied on Gaussian mixtures by component-wise evaluation of the
corresponding estimator equations.

A.1 Gaussian Density

For a Gaussian random vector x ∈ Rn, the corresponding multivariate density function is
defined according to

f(x) = N (x; x̂,C) = 1√
∣2�C∣

e−
1
2

(x−x̂)TC−1(x−x̂) , (A.1)

with mean vector x̂ and symmetric, positive semi-definite covariance matrix C.

A.1.1 Properties

Thus, a Gaussian density is uniquely defined by its first two moments. All higher-order moments
can be calculated on basis of mean and covariance, whereby uncorrelatedness of elements of
x automatically implies stochastical independence of these elements. In case of uncorrelated
elements, the corresponding entries of the covariance matrix are zero.

Since the covariance matrix is symmetric and positive semi-definite, the amount of uncer-
tainty characterized by means of the matrix can be interpreted geometrically as covariance
ellipsoid. The exponent d = (x− x̂)TC−1(x− x̂) of (A.1), which is also called the Mahalanobis
distance [120], coincides with the general equation of an ellipsoid. The eigenvalues of C define
the length of the principal axes and the eigenvectors define the orientation of the ellipsoid. The
mean vector x̂ represents the center of the ellipsoid.

Multiplication or convolution of two Gaussian densities results again in a Gaussian density.
Specifically, multiplying the two Gaussians f1(x) = N (x; x̂1,C1) and f2(x) = N (x; x̂2,C2)
leads to

f1(x) ⋅ f2(x) = c ⋅ N (x; x̂,C) , (A.2)
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with

C = (C−1
1 + C−1

2 )−1 ,

x̂ = C ⋅ (C−1
1 x̂1 + C−1

2 x̂2) ,

c = N (x̂1; x̂2,C1 + C2) ,

which is an unnormalized Gaussian density.

A.1.2 Special Case: Axis-aligned Gaussian

If all elements xi of x are uncorrelated, i.e., the covariance matrix is a diagonal matrix according
to C = diag ([�2

1, �
2
2, . . . , �

2
n]) with �2

i = Cov{xi,xi}, the principal axes of the covariance
ellipsoid are axis-aligned. The corresponding density function can be decomposed dimension
by dimension according to

f(x) = N (x; x̂,C) = N (x1; x̂1, �
2
1) ⋅ N (x2; x̂2, �

2
2) ⋅ ⋅ ⋅ N (xn; x̂n, �

2
n) .

A.1.3 Special Case: Dirac Delta Distribution

A further interesting special case of a Gaussian density is given by the Dirac delta distribu-
tion �(x− x̂), which is the limit

�(x− x̂) = lim
∣C∣→0

N (x; x̂,C) =

{
0 , (x− x̂)T(x− x̂) ∕= 0

undefined , otherwise
.

Thus, the value of the Dirac delta distribution is everywhere zero, except at its location x̂. This
fact leads to the so-called sifting property∫

Rn

f(x) ⋅ �(x− x̂) dx = f(x̂) .

Thanks to the Dirac delta distribution, a unified treatment of discrete and continuous random
variables is possible [141].

A.2 Gaussian Mixture

For accurately representing non-Gaussian density functions like multimodal or skewed densities,
Gaussian mixtures are a popular density type. As the name implies, Gaussian mixtures are a
weighted sum of L Gaussian densities according to

f(x) =
L∑
i=1

!i ⋅ N (x; x̂i,Ci) ,

where !i are the non-negative weighting coefficients. With
∑

i !i = 1 it is ensured that the
probability mass of the Gaussian mixture is equal one.

A.2.1 Properties

Gaussian mixtures are a universal function approximator in that, given a sufficient number of
Gaussian components, they can approximate any smooth function to arbitrary accuracy [124].
If merely axis-aligned Gaussian components are used, the resulting mixture is called analo-
gously axis-aligned Gaussian mixture. This special mixture type still is a universal function
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approximator, but the approximation capabilities are reduced compared to a general Gaus-
sian mixture, which means that typically more components are necessary for obtaining are
comparable approximation quality.

Given the parameters of a Gaussian mixture, i.e., weights, mean vectors, and covariance
matrices of the Gaussian components, the mean vector and covariance matrix of the mixture
can be calculated according to

x̂ =
L∑
i=1

!i ⋅ x̂i (A.3)

and

C =
L∑
i=1

!i ⋅
(
Ci + x̂i ⋅ x̂T

i

)
− x̂ ⋅ x̂T , (A.4)

respectively.

A.2.2 Special Case: Dirac Mixture

If all mixture components of a Gaussian mixture are given by a Dirac delta distribution, the
resulting density function is called a Dirac mixture

f(x) =
L∑
i=1

!i ⋅ �(x− x̂i) .

This special case of a Gaussian mixture is also a universal function approximator. However, due
to the point location of the probability masses of the Dirac delta distributions, representing
continuous functions requires an infinite number of mixture components. Mean vector and
covariance matrix of a Dirac mixture are given by

x̂ =
L∑
i=1

!i ⋅ x̂i

and

C =
L∑
i=1

!i ⋅ x̂i ⋅ x̂T
i − x̂ ⋅ x̂T ,

respectively.





APPENDIX B

Analytic Expressions for PGMR

In this section, the analytic expressions for all relevant terms of the progressive Gaussian
mixture reduction approach are provided. These are the coefficients P(�, ) and b(�, ) of the
system of ODEs (7.6) as well as the gradient g(�, ), which is part of the predictor-corrector
scheme.

B.1 Analytical Expression for P(�, )

At first, the solution of the first summand in (7.7) is derived, which is

P′(�) =

∫
Rnx

F (x; �) ⋅F (x; �)T dx =

⎡⎢⎢⎢⎣
P(1,1) P(1,2) ⋅ ⋅ ⋅ P(1,L)

P(2,1) P(2,2) ⋅ ⋅ ⋅ P(2,L)

...
...

...
P(L,1) P(L,2) ⋅ ⋅ ⋅ P(L,L)

⎤⎥⎥⎥⎦ .

The individual (2nx + 1)× (2nx + 1) block matrices P(i,j) for i = 1, . . . , L and j = 1, . . . , L are

P(i,j) =

∫
Rnx

∂fi(x; �
i
)

∂�
i

⋅

(
∂fj(x; �

j
)

∂�
j

)T

dx

= !2
i ⋅!2

j ⋅ N
(
x̂i; x̂j,Ci + Cj

)
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4
!i ⋅!j

(
P

(i,j)
1

)T (
P

(i,j)
2

)T ⋅ ⋅ ⋅
(
P (i,j)
nx

)T

P
(j,i)
1 P

(i,j)
1 P

(i,j)
1,2 ⋅ ⋅ ⋅ P

(i,j)
1,nx

P
(j,i)
2 P

(j,i)
2,1 P

(i,j)
2

. . .
...

...
...

. . . . . . P
(i,j)
nx−1,nx

P (j,i)
nx

P
(j,i)
nx,1 ⋅ ⋅ ⋅ P

(j,i)
nx,nx−1 P

(i,j)
nx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

with �
i

= [!i, �
T
i,1
, �T

i,2
, . . . , �T

i,nx
]T, �

i,n
= [x̂i,n, �i,n]T, and fi(x; �

i
) := !2

i ⋅ N (x; x̂i,Ci). Further-

more, the matrices P(i,j) consist of the vectors

P (i,j)
n =

[
2
!i
⋅ x̂i,n−x̂j,n

�2
i,j,n

2�j,n
!i
⋅ (x̂i,n−x̂j,n)2−�2

i,j,n

�4
i,j,n

]T

,

which comprise the products of the derivative with respect to the weighting coefficient !i and
the derivatives with respect to the parameter vector �

j,n
of the j-th Gaussian component. Here,
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�2
i,j,n = �2

i,n + �2
j,n. The 2× 2 matrix

P(i,j)
n =

⎡⎣ �2
i,j,n−(x̂i,n−x̂j,n)2

�4
i,j,n

�j,n ⋅ (x̂j,n−x̂i,n) ⋅ ((x̂i,n−x̂j,n)2−3�2
i,j,n)

�6
i,j,n

�i,n ⋅ (x̂i,n−x̂j,n) ⋅ ((x̂j,n−x̂i,n)2−3�2
i,j,n)

�6
i,j,n

�i,n ⋅�j,n ⋅ ((x̂i,n−x̂j,n)4+3�2
i,j,n(�2

i,j,n−2(x̂i,n−x̂j,n)2))
�8
i,j,n

⎤⎦
comprises the products of the derivatives with respect to the parameter vector �

i,n
and the

derivatives with respect to the parameter vector �
j,n

, while the 2× 2 matrix

P(i,j)
n,m =

⎡⎣ (x̂i,n−x̂j,n) ⋅ (x̂i,m−x̂j,m)

�2
i,j,n ⋅�2

i,j,m

�j,m ⋅ (x̂i,n−x̂j,n) ⋅ (�2
i,j,m−(x̂i,m−x̂j,m)2)

�2
i,j,n ⋅�4

i,j,m

�j,n ⋅ (x̂i,m−x̂j,m) ⋅ (�2
i,j,n−(x̂i,n−x̂j,n)2)

�2
i,j,m ⋅�4

i,j,n

�i,n ⋅�j,m ⋅ (�2
i,j,n−(x̂i,n−x̂j,n)2) ⋅ (�2

i,j,m−(x̂i,m−x̂j,m)2)
�4
i,j,n ⋅�4

i,j,m

⎤⎦
comprises the derivatives with respect to the parameter vector �

i,n
and the derivatives with

respect to the parameter vector �
j,m

.

The expression for ΔP(�, ) is given by

ΔP(�, ) =

∫
Rnx

(
f(x; �)− f̃(x; )

)
⋅M(x, �) dx , (B.1)

where

M(x, �) =
∂2f(x; �)

∂� ∂�T
=

⎡⎢⎢⎢⎣
M(1) 0 ⋅ ⋅ ⋅ 0
0 M(2) 0
...

. . .
...

0 ⋅ ⋅ ⋅ 0 M(L)

⎤⎥⎥⎥⎦ ,

with (2nx + 1)× (2nx + 1) block matrices

M(i) = 2 ⋅ fi(x; �
i
) ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
!2
i

(
M

(i)
1

)T (
M

(i)
2

)T ⋅ ⋅ ⋅
(
M (i)

nx

)T

M
(i)
1 M

(i)
1 M

(i)
1,2 ⋅ ⋅ ⋅ M

(i)
1,nx

M
(i)
2 M

(i)
2,1 M

(i)
2

. . .
...

...
...

. . . . . . M
(i)
nx−1,nx

M (i)
nx

M
(i)
nx,1 ⋅ ⋅ ⋅ M

(i)
nx,nx−1 M

(i)
nx

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B.2)

where

M (i)
n =

[
xn−x̂i,n
!i�2

i,n

(xn−x̂i,n)2−�2
i,n

!i�3
i,n

]T

,

M(i)
n =

⎡⎣ (xn−x̂i,n)2−�2
i,n

2�4
i,n

(xn−x̂i,n)3−3�2
i,n(xn−x̂i,n)

2�5
i,n

(xn−x̂i,n)3−3�2
i,n(xn−x̂i,n)

2�5
i,n

(xn−x̂i,n)4−5�2
i,n(xn−x̂i,n)2+2�4

i,n

2�6
i,n

⎤⎦ ,

M(i)
n,m =

⎡⎣ xn−x̂i,n
�2
i,n

xm−x̂i,m
�2
i,m

xn−x̂i,n
�2
i,n

(xm−x̂i,m)2−�2
i,m

�3
i,m

(xn−x̂i,n)2−�2
i,n

�3
i,n

xm−x̂i,m
�2
i,m

(xn−x̂i,n)2−�2
i,n

�3
i,n

(xm−x̂i,m)2−�2
i,m

�3
i,m

⎤⎦ .

It is important to note that the matrices (B.2) are symmetric. Furthermore, solving (B.1)
corresponds to the calculation of the zeroth up to the forth moment of the Gaussian mixtures
f(x; �) ⋅ fi(x; �

i
) and f̃(x; ) ⋅ fi(x; �

i
). This can be done similarly as it shown in the following

for b(�, ).
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B.2 Analytical Expression for b(�, )

The expression for the vector

b(�, ) =

∫
Rnx

F (x; �)
∂f̃(x; )

∂
dx

consists of the vector of partial derivatives F (x; �), which comprises the elements

∂f(x; �)

∂�
i

= fi(x; �
i
) ⋅

⎡⎢⎢⎢⎣
2
!i

bi,1
...

bi,nx

⎤⎥⎥⎥⎦ ,

where

bi,n =
[
xn−x̂i,n
�2
i,n

(xn−x̂i,n)2−�2
i,n

�3
i,n

]T

.

Together with the scalar function

∂f̃(x; )

∂
= f̃(x)− f̂(x) ,

the elements of b(�, ) comprising the derivatives with respect to �
i

are given by

bi(�i, ) =

∫
Rnx

(
f̃(x)− f̂(x)

)
⋅ fi(x; �

i
) ⋅

⎡⎢⎢⎢⎣
2
!i

bi,1
...

bi,nx

⎤⎥⎥⎥⎦ dx (B.3)

=

⎡⎢⎢⎢⎢⎢⎢⎣
B(i) 0T ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0T

0 B
(i)
1 0 ⋅ ⋅ ⋅ 0

... 0 B
(i)
2

. . .
...

...
...

. . . . . . 0

0 0 ⋅ ⋅ ⋅ 0 B
(i)
nx

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:B(i)

⋅
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Eℱ̃(i){1} − Eℱ̂(i){1}

E
(i)
1

E
(i)
2
...

E
(i)
nx

⎤⎥⎥⎥⎥⎥⎦ ,

where

B(i) =
[

2
!i

0 0
]
,

B(i)
n =

⎡⎣ − x̂i,n
�2
i,n

1
�2
i,n

0
x̂2i,n−�2

i,n

�3
i,n

−2x̂i,n
�3
i,n

1
�3
i,n

⎤⎦ ,

E(i)
n =

[
Eℱ̃(i){xn} − Eℱ̂(i){xn}
Eℱ̃(i){x2

n} − Eℱ̂(i){x2
n}

]
.

Thus, b(�, ) can be efficiently calculated using matrix-vector calculus, where the vector com-

prises the zeroth up to the second moment of the densities ℱ̃ (i)(x) = f̃(x) ⋅ fi(x; �
i
) and

ℱ̂ (i)(x) = f̂(x) ⋅ fi(x; �
i
). All moments can be determined in closed form and Eℱ̃i as well

as Eℱ̂i are the corresponding expected value operators.
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B.3 Analytical Expression for g(�, )

The gradient g(�, ) of the squared integral distance measure comprises the elements

g
i
(�
i
, ) = −

∫
Rnx

(
f̃(x; )− f(x; �)

)
⋅
∂f(x; �)

∂�
i

dx , (B.4)

for i = 1, 2, . . . , L, which are quite similar to (B.3). Hence, (B.4) can also be written in
matrix-vector notation

g
i
(�
i
, ) = B(i) ⋅

⎡⎢⎢⎢⎢⎢⎣
Eℱ(i){1} − Eℱ̃(i){1}

E
(i)
1

E
(i)
2
...

E
(i)
nx

⎤⎥⎥⎥⎥⎥⎦ ,

with

E(i)
n =

[
Eℱ(i){xn} − Eℱ̃(i){xn}
Eℱ(i){x2

n} − Eℱ̃(i){x2
n}

]
and ℱ (i)(x) = f(x; �) ⋅ fi(x; �

i
), ℱ̃ (i)(x) = f̃(x; ) ⋅ fi(x; �

i
).
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bei räumlich ausgedehnten Phänomenen (Nonlinear Sensor Management for Model-based
Source Detection in Spatially Distributed Phenomena). Diploma thesis, Intelligent Sensor-
Actuator-Systems Laboratory, Universität Karlsruhe (TH), 2009.

[205] J. Meyer. Nichtlineare Sensoreinsatzplanung für Sensor-Aktor-Netzwerke (Nonlinear
Sensor Scheduling for Sensor-Actuator-Networks). Diploma thesis, Intelligent Sensor-
Actuator-Systems Laboratory, Universität Karlsruhe (TH), 2007.
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