124 research outputs found

    An ICMetrics Based Lightweight Security Architecture Using Lattice Signcryption

    Get PDF
    The advent of embedded systems has completely transformed the information landscape. With the explosive growth in the use of interactive real-time technologies, this internet landscape aims to support an even broader range of application domains. The large amount of data that is exchanged by these applications has made them an attractive target for attacks. Thus it is important to employ security mechanisms to protect these systems from attackers. A major challenge facing researchers is the resource constrained nature of these systems, which renders most of the traditional security mechanisms almost useless. In this paper we propose a lightweight ICmetrics based security architecture using lattices. The features of the proposed architecture fulfill both the requirements of security as well as energy efficiency. The proposed architecture provides authentication, confidentiality, non-repudiation and integrity of data. Using the identity information derived from ICmetrics of the device, we further construct a sign cryption scheme based on lattices that makes use of certificate less PKC to achieve the security requirements of the design. This scheme is targeted on resource constrained environments, and can be used widely in applications that require sufficient levels of security with limited resources

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    A Privacy-Preserving Secure Framework for Electric Vehicles in IoT using Matching Market and Signcryption

    Get PDF
    The present world of vehicle technology is inclined to develop Electric Vehicles (EVs) with various optimized features. These vehicles need frequent charging which takes a longer time to charge up. Therefore, scheduling of vehicles in charging stations is required. esides, the information of the EVs and its location is also stored by the charging stations and therefore creates a concern of EV privacy. Various researches are going on to solve these problems; however, an efficient privacy-preserving solution is less practiced till date. In this paper, a framework for Electric Vehicle (EV) charging is discussed. The framework uses the concept of Matching Market to identify a charging station and uses the lattice-based cryptography for secure communications. The matching market considers multiple factors to provide the best allocation of charging station and cryptography ensures security and privacy preservation. The use of lattice-based cryptographic hash SWIFFT avoids heavy computation. This usage of matching market and lattice cryptography, more specifically signcryption for EV charging framework are the highlights of the solution and add-ons to the novel features. Overall, the presented framework is efficient in terms of computation and communication cost, satisfaction ratio, slot ratio, charging latency and load balancing index. The performance metrics are compared with recent developments in this field

    Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things

    Get PDF
    Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage requirements. Additionally, these schemes are vulnerable to quantum computing attacks. Therefore, research focusing on designing an efficient post-quantum CLSC scheme is still far-reaching. In this work, we propose PQ-CLSC, a novel post-quantum CLSC scheme that ensures quantum safety for IoMT. Our proposed design facilitates secure transmission of medical data between physicians and patients, effectively validating user legitimacy and minimizing the risk of private information leakage. To achieve this, we leverage lattice sampling algorithms and hash functions to generate the particial secret key and then employ the sign-then-encrypt method to obtain the ciphertext. We also formally and prove the security of our design, including indistinguishability against chosen-ciphertext attacks (IND-CCA2) and existential unforgeability against chosen-message attacks (EU-CMA) security. Finally, through comprehensive performance evaluation, our signcryption overhead is only 30%-55% compared to prior arts, while our computation overhead is just around 45% of other existing schemes. The evaluation results demonstrate that our solution is practical and efficient

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Signcryption in a Quantum World

    Get PDF
    This work studies signcryption of classical data in the quantum setting. Essentially, we investigate the quantum security of generic constructions of signcryption schemes based on three paradigms, viz., encrypt-then-sign (EtS), sign-then-encrypt (StE) and commit-then-encrypt-and-sign (CtE&S). For doing that we define the confidentiality and authenticity of signcryption for classical data both in insider and outsider models against quantum adversaries. In the insider model, we show that the quantum variants of the classical results hold in the quantum setting. However, for arguing authenticity in outsider model of StE and CtE&S paradigms, we need to consider an intermediate setting in which the adversary is given quantum access to unsigncryption oracle but classical access to signcryption oracle. In two-user outsider model, as in the classical setting, we show that post-quantum CPA security of the base encryption scheme is amplified in the EtS paradigm if the base signature scheme satisfies a stronger definition. We prove an analogous result in the StE paradigm. Interestingly, in the multi-user setting, our results strengthen the known classical results. Furthermore, our results for the EtS and StE paradigms in the two-user outsider model also extend to the setting of authenticated encryption. Finally, we briefly discuss concrete instantiations in various paradigms utilizing some available candidates of quantum secure encryption and signature schemes

    Decentralized Accessibility of e-commerce Products through Blockchain Technology

    Get PDF
    A distributed and transparent ledger system is considered for various \textit{e}-commerce products including health medicines, electronics, security appliances, food products and many more to ensure technological and e-commerce sustainability. This solution, named as ‘PRODCHAIN’, is a generic blockchain framework with lattice-based cryptographic processes for reducing the complexity for tracing the e-commerce products. Moreover, we have introduced a rating based consensus process called Proof of Accomplishment (PoA). The solution has been analyzed and experimental studies are performed on Ethereum network. The results are discussed in terms of latency and throughput which prove the efficiency of PRODCHAIN in \textit{e}-commerce products and services.The presented solution is beneficial for improving the traceability of the products ensuring the social and financial sustainability. This work will help the researchers to gain knowledge about the blockchain implications for supply chain possibilities in future developments for society
    • …
    corecore