3,323 research outputs found

    Search for Scaling Dimensions for Random Surfaces with c=1

    Full text link
    We study numerically the fractal structure of the intrinsic geometry of random surfaces coupled to matter fields with c=1c=1. Using baby universe surgery it was possible to simulate randomly triangulated surfaces made of 260.000 triangles. Our results are consistent with the theoretical prediction dH=2+2d_H = 2+\sqrt{2} for the intrinsic Hausdorff dimension.Comment: 10 pages, (csh will uudecode and uncompress ps-file), NBI-HE-94-3

    Physical properties of Ce3-xTe4 below room temperature

    Full text link
    The physical properties of polycrystalline Ce3-xTe4 were investigated by measurements of the thermoelectric properties, Hall coefficient, heat capacity, and magnetization. The fully-filled, metallic x=0 compound displays a soft ferromagnetic transition near 4K, and analysis of the corresponding heat capacity anomaly suggests a doublet ground state for Ce^{3+}. The transition is suppressed to below 2K in the insulating x=0.33 composition, revealing that magnetic order in Ce3-xTe4 is driven by an RKKY-type interaction. The thermoelectric properties trend with composition as expected from simple electron counting, and the transport properties in Ce3Te4 are observed to be similar to those in La3Te4. Trends in the low temperature thermal conductivity data reveal that the phonons are efficiently scattered by electrons, while all compositions examined have a lattice thermal conductivity near 1.2W/m/K at 200K.Comment: Submitted to Phys. Rev.

    Magnetic field effect on Fe-induced short-range magnetic correlation and electrical conductivity in Bi1.75_{1.75}Pb0.35_{0.35}Sr1.90_{1.90}Cu0.91_{0.91}Fe0.09_{0.09}O6+y_{6+y}

    Full text link
    We report electrical resistivity measurements and neutron diffraction studies under magnetic fields of Bi1.75_{1.75}Pb0.35_{0.35}Sr1.90_{1.90}Cu0.91_{0.91}Fe0.09_{0.09}O6+y_{6+y}, in which hole carriers are overdoped. This compound shows short-range incommensurate magnetic correlation with incommensurability δ=0.21\delta=0.21, whereas a Fe-free compound shows no magnetic correlation. Resistivity shows an up turn at low temperature in the form of ln(1/T)ln(1/T) and shows no superconductivity. We observe reduction of resistivity by applying magnetic fields (i.e., a negative magnetoresistive effect) at temperatures below the onset of short-range magnetic correlation. Application of magnetic fields also suppresses the Fe induced incommensurate magnetic correlation. We compare and contrast these observations with two different models: 1) stripe order, and 2) dilute magnetic moments in a metallic alloy, with associated Kondo behavior. The latter picture appears to be more relevant to the present results.Comment: 7 pages, 5 figure

    Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions

    Get PDF
    Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n2n and noncrossing partitions of [2n+1][2n+1] with n+1n+1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.Comment: 9 pages, 5 figures, revised version, to appear in Discrete Mathematic

    Structural phase transition and dielectric relaxation in Pb(Zn1/3Nb2/3)O3 single crystals

    Get PDF
    The structure and the dielectric properties of Pb(Zn1/3Nb2/3)O3 (PZN) crystal have been investigated by means of high-resolution synchrotron x-ray diffraction (with an x-ray energy of 32 keV) and dielectric spectroscopy (in the frequency range of 100 Hz - 1 MHz). At high temperatures, the PZN crystal exhibits a cubic symmetry and polar nanoregions inherent to relaxor ferroelectrics are present, as evidenced by the single (222) Bragg peak and by the noticeable tails at the basis of the peak. At low temperatures, in addition to the well-known rhombohedral phase, another low-symmetry, probably ferroelectric, phase is found. The two phases coexist in the form of mesoscopic domains. The para- to ferroelectric phase transition is diffused and observed between 325 and 390 K, where the concentration of the low-temperature phases gradually increases and the cubic phase disappears upon cooling. However, no dielectric anomalies can be detected in the temperature range of diffuse phase transition. The temperature dependence of the dielectric constant show the maximum at higher temperature (Tm = 417 - 429 K, depending on frequency) with the typical relaxor dispersion at T < Tm and the frequency dependence of Tm fitted to the Vogel-Fulcher relation. Application of an electric field upon cooling from the cubic phase or poling the crystal in the ferroelectric phase gives rise to a sharp anomaly of the dielectric constant at T 390 K and diminishes greatly the dispersion at lower temperatures, but the dielectric relaxation process around Tm remains qualitatively unchanged. The results are discussed in the framework of the present models of relaxors and in comparison with the prototypical relaxor ferroelectric Pb(Mg1/3Nb2/3)O3.Comment: PDF file, 13 pages, 6 figures collected on pp.12-1

    The ground state of a quantum critical system

    Get PDF
    The competition between the tendency of magnetic moments to order at low temperatures, and the tendency of conduction electrons to shield these moments, can result in a phase transition that takes place at zero Kelvin, the quantum critical point (QCP). So far, the ground state of these types of systems has remained unresolved. We present neutron scattering experiments that show that the ground state of a sample representative of a class of QCP-systems is determined by the residual interactions between the conduction electrons, resulting in a state with incommensurate intermediate-range order. However, long-range order is thwarted by quantum fluctuations that locally destroy magnetic moments, leaving the system with too few moments to achieve long-range order
    corecore