2,635 research outputs found

    Simulating quantum mechanics on a quantum computer

    Get PDF
    Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrodinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac and gauge particles are discussed.Comment: 22 pages LaTeX; Expanded version of a talk given by WT at the PhysComp '96 conference, BU, Boston MA, November 1996. Minor corrections made, references adde

    Matrix product states represent ground states faithfully

    Get PDF
    We quantify how well matrix product states approximate exact ground states of 1-D quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of translational invariant systems. The results give a theoretical justification for the high accuracy of renormalization group algorithms, and justifies their use even in the case of critical systems

    FPT-algorithms for some problems related to integer programming

    Full text link
    In this paper, we present FPT-algorithms for special cases of the shortest lattice vector, integer linear programming, and simplex width computation problems, when matrices included in the problems' formulations are near square. The parameter is the maximum absolute value of rank minors of the corresponding matrices. Additionally, we present FPT-algorithms with respect to the same parameter for the problems, when the matrices have no singular rank sub-matrices.Comment: arXiv admin note: text overlap with arXiv:1710.00321 From author: some minor corrections has been don

    Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems

    Get PDF
    This article reviews recent developments in the theoretical understanding and the numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states.Comment: Review from 200

    The Color-Flavor Transformation and Lattice QCD

    Full text link
    We present the color-flavor transformation for gauge group SU(N_c) and discuss its application to lattice QCD.Comment: 6 pages, Lattice2002(theoretical), typo in Ref.[1] correcte

    Diagonalizing transfer matrices and matrix product operators: a medley of exact and computational methods

    Full text link
    Transfer matrices and matrix product operators play an ubiquitous role in the field of many body physics. This paper gives an ideosyncratic overview of applications, exact results and computational aspects of diagonalizing transfer matrices and matrix product operators. The results in this paper are a mixture of classic results, presented from the point of view of tensor networks, and of new results. Topics discussed are exact solutions of transfer matrices in equilibrium and non-equilibrium statistical physics, tensor network states, matrix product operator algebras, and numerical matrix product state methods for finding extremal eigenvectors of matrix product operators.Comment: Lecture notes from a course at Vienna Universit

    Lattice QCD at the end of 2003

    Full text link
    I review recent developments in lattice QCD. I first give an overview of its formalism, and then discuss lattice discretizations of fermions. We then turn to a description of the quenched approximation and why it is disappearing as a vehicle for QCD phenomenology. I describe recent claims for progress in simulations which include dynamical fermions and the interesting theoretical problems they raise. I conclude with brief descriptions of the calculations of matrix elements in heavy flavor systems and for kaons.Comment: Review for Int J Mod Phys A. 58 pages, latex, WSPC macros,, 22 postscript figure

    QCD dynamics in a constant chromomagnetic field

    Full text link
    We investigate the phase transition in full QCD with two flavors of staggered fermions in presence of a constant abelian chromomagnetic field. We find that the critical temperature depends on the strength of the chromomagnetic field and that the deconfined phase extends to very low temperatures for strong enough fields. As in the case of zero external field, a single transition is detected, within statistical uncertainties, where both deconfinement and chiral symmetry restoration take place. We also find that the chiral condensate increases with the strength of the chromomagnetic field.Comment: 18 pages, 8 figures, 1 tabl
    • …
    corecore