14,497 research outputs found

    Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

    Full text link
    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the model's performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.Comment: submitted to Journal of Computational Physic

    Developing A Stable Lattice Boltzmann For Computational Dynamics Applications

    Get PDF
    The lattice Boltzmann method (LBM) has been employed to investigate the temporal and spatial characteristics of complex flows. Such complex flows include turbulent flows past cylinders confined in a channel, interfacial flows of two immiscible fluids and flows driven by density stratifications. Two dimensional and three dimensional thermal lattice Boltzmann models have been developed to study non-linear dynamics of these flows. Detailed formulations of the single relaxation lattice Boltzmann method are presented. Also presented by the present author are several variations of the lattice Boltzmann method. These methods include the multi relaxation lattice Boltzmann, regularized lattice Boltzmann and thermal lattice Boltzmann. Multi relaxation time converts velocity space to moment space, and regularized lattice Boltzmann uses the non-equilibrium parts of the stress. These methods are introduced to overcome stability problem of the lattice Boltzmann method. A unique lattice Boltzmann model that combines regularized and multi-relaxation time lattice Boltzmann method is introduced here to overcome the shortcoming of the lattice Boltzmann method. It is demonstrated here that the new model is stable for high speed turbulent flows. Turbulent flow structures predicted by the proposed method agree well with those observed by the experiments and those predicted by the large eddy simulations. Spatial resolution of the turbulence resolved here is equivalent to that obtained by direct numerical simulations. A two dimensional nine velocity and a three dimensional fifteen velocity lattice Boltzmann models have been employed to study interfacial flows. Body forces and interactive forces are included in these models. Several different approaches are adopted to handle different type boundary conditions imposed on the velocity and temperature fields. The nonlinear stages of Rayleigh Taylor instabilities and droplets rising in a stagnant fluid are characterized. The developed model shows and more stable more accurate results. The thermal model was employed to study the Rayleigh-Benard convection in a square and rectangular cavity. It has been demonstrated here that the lattice Boltzmann method can be an effective computational fluid dynamics tool to tackle complex flows

    Finite Volume vs.vs. Streaming-based Lattice Boltzmann algorithm for fluid-dynamics simulations: a one-to-one accuracy and performance study

    Full text link
    A new finite volume (FV) discretisation method for the Lattice Boltzmann (LB) equation which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streamingstreaming (ST) Lattice Boltzmann equation algorithm. To our knowledge such a systematic comparison has never been previously reported. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the first successful simulation of high-Rayleigh number convective flow performed by a Lattice Boltzmann FV based algorithm with wall grid refinement.Comment: 15 pages, 14 figures (discussion changes, improved figure readability

    Fluctuating lattice Boltzmann

    Full text link
    The lattice Boltzmann algorithm efficiently simulates the Navier Stokes equation of isothermal fluid flow, but ignores thermal fluctuations of the fluid, important in mesoscopic flows. We show how to adapt the algorithm to include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at lattice level: this gives correct fluctuations for mass and momentum densities, and for stresses, at all wavevectors kk. Unlike previous work, which recovers FDT only as k→0k\to 0, our algorithm offers full statistical mechanical consistency in mesoscale simulations of, e.g., fluctuating colloidal hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter

    Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    Get PDF
    Well designed lattice-Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large scale three-dimensional lattice-Boltzmann simulation of binary immiscible fluid flows through a porous medium derived from digitised x-ray microtomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering and we describe our implementation of steering within the lattice-Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large scale simulations benefit from the new concept of capability computing, designed to prioritise the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of compute, visualisation and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice-Boltzmann methods in this context.Comment: 17 pages, 6 figures, accepted for publication in Phil.Trans.R.Soc.Lond.

    Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation

    Get PDF
    We present a further theoretical extension to the kinetic theory based formulation of the lattice Boltzmann method of Shan et al (2006). In addition to the higher order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a new regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the non-equilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to the third order hydrodynamic moments. Numerical evidences demonstrate that the extended model overcomes some major defects existed in the conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn

    Lattice Boltzmann Approach to High-Speed Compressible Flows

    Full text link
    We present an improved lattice Boltzmann model for high-speed compressible flows. The model is composed of a discrete-velocity model by Kataoka and Tsutahara [Phys. Rev. E \textbf{69}, 056702 (2004)] and an appropriate finite-difference scheme combined with an additional dissipation term. With the dissipation term parameters in the model can be flexibly chosen so that the von Neumann stability condition is satisfied. The influence of the various model parameters on the numerical stability is analyzed and some reference values of parameter are suggested. The new scheme works for both subsonic and supersonic flows with a Mach number up to 30 (or higher), which is validated by well-known benchmark tests. Simulations on Riemann problems with very high ratios (1000:11000:1) of pressure and density also show good accuracy and stability. Successful recovering of regular and double Mach shock reflections shows the potential application of the lattice Boltzmann model to fluid systems where non-equilibrium processes are intrinsic. The new scheme for stability can be easily extended to other lattice Boltzmann models.Comment: Figs.11 and 12 in JPEG format. Int. J. Mod. Phys. C (to appear

    PENGARUH MODEL PEMBELAJARAN GENERATIF TERHADAP PENINGKATAN PEMAHAMAN KONSEP FISIKA \SISWA SMP NEGERI I7 KOTA BENGKULU

    Get PDF
    Multi-GPU implementations of the Lattice Boltzmann method are of practical interest as they allow the study of turbulent flows on large-scale simulations at high Reynolds numbers. Although programming GPUs, and in general power-efficient accelerators, typically guarantees high performances, the lack of portability in their low-level programming models implies significant efforts for maintainability and porting of applications. Directive-based models such as OpenACC look promising in tackling these aspects. In this work we will evaluate the performances of a Multi-GPU implementation of the Lattice Boltzmann method accelerated with OpenACC. The implementation will allow for multi-node simulations of fluid flows in complex geometries, also supporting heterogeneous clusters for which the load balancing problem is investigated
    • …
    corecore