13,635 research outputs found

    InSb charge coupled infrared imaging device: The 20 element linear imager

    Get PDF
    The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram

    Row-switched states in two-dimensional underdamped Josephson junction arrays

    Full text link
    When magnetic flux moves across layered or granular superconductor structures, the passage of vortices can take place along channels which develop finite voltage, while the rest of the material remains in the zero-voltage state. We present analytical studies of an example of such mixed dynamics: the row-switched (RS) states in underdamped two-dimensional Josephson arrays, driven by a uniform DC current under external magnetic field but neglecting self-fields. The governing equations are cast into a compact differential-algebraic system which describes the dynamics of an assembly of Josephson oscillators coupled through the mesh current. We carry out a formal perturbation expansion, and obtain the DC and AC spatial distributions of the junction phases and induced circulating currents. We also estimate the interval of the driving current in which a given RS state is stable. All these analytical predictions compare well with our numerics. We then combine these results to deduce the parameter region (in the damping coefficient versus magnetic field plane) where RS states can exist.Comment: latex, 48 pages, 15 figs using psfi

    High Conductance Ratio in Molecular Optical Switching of Functionalized Nanoparticle Self-Assembled Nanodevices

    Full text link
    Self-assembled functionalized nano particles are at the focus of a number of potential applications, in particular for molecular scale electronics devices. Here we perform experiments of self-assembly of 10 nm Au nano particles (NPs), functionalized by a dense layer of azobenzene-bithiophene (AzBT) molecules, with the aim of building a light-switchable device with memristive properties. We fabricate planar nanodevices consisting of NP self-assembled network (NPSANs) contacted by nanoelectrodes separated by interelectrode gaps ranging from 30 to 100 nm. We demonstrate the light-induced reversible switching of the electrical conductance in these AzBT NPSANs with a record on/off conductance ratio up to 620, an average value of ca. 30 and with 85% of the devices having a ratio above 10. Molecular dynamics simulation of the structure and dynamics of the interface between molecular monolayers chemisorbed on the nano particle surface are performed and compared to the experimental findings. The properties of the contact interface are shown to be strongly correlated to the molecular conformation which in the case of AzBT molecules, can reversibly switched between a cis and a trans form by means of light irradiations of well-defined wavelength. Molecular dynamics simulations provide a microscopic explanation for the experimental observation of the reduction of the on/off current ratio between the two isomers, compared to experiments performed on flat self-assembled monolayers contacted by a conducting cAFM tip.Comment: pdf files : publication and supporting informatio

    Power Amplification and Coherent Combination Techniques for Terahertz Quantum Cascade Lasers

    Get PDF
    Power amplification and coherent combination are important ways to improve the output power and beam quality of single‐mode terahertz quantum cascade lasers (THz QCLs). Up to date, the tapered waveguide is the most convenient way to amplify the power of THz QCLs. The self‐focusing effect in tapered THz QCLs induces non‐monotonic behaviours of the peak power and far‐field beam divergence, which lead to the existence of optimal structural parameters. The surface and lateral grating techniques have also been employed in tapered THz QCLs to further improve the spectral purity. For coherent combinations, the progress of facet‐emitting phase‐locked arrays of THz QCLs is still limited due to both the lack of the understanding of dynamics of coupled QCLs and the difficulties in designing high‐performance coupled waveguides. We will briefly review the developments of coherent arrays of THz QCLs and present a design of monolithic QCL arrays with common coupled cavity to achieve the optical mutual injection, which may provide a new way for coherent combination of THz QCLs

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    Confinement Effects on the Crystalline Features of Poly(9,9-dioctylfluorene)

    Get PDF
    Typical device architectures in polymer-based optoelectronic devices, such as field effect transistors organic light emitting diodes and photovoltaic cells include sub-100 nm semiconducting polymer thin-film active layers, whose microstructure is likely to be subject to finite-size effects. The aim of this study was to investigate effect of the two-dimensional spatial confinement on the internal structure of the semiconducting polymer poly(9,9-dioctylfluorene) (PFO). PFO melts were confined inside the cylindrical nanopores of anodic aluminium oxide (AAO) templates and crystallized via two crystallization strategies, namely, in the presence or in the absence of a surface bulk reservoir located at the template surface. We show that highly textured semiconducting nanowires with tuneable crystal orientation can be thus produced. Moreover, our results indicate that employing the appropriate crystallization conditions extended-chain crystals can be formed in confinement. The results presented here demonstrate the simple fabrication and crystal engineering of ordered arrays of PFO nanowires; a system with potential applications in devices where anisotropic optical properties are required, such as polarized electroluminescence, waveguiding, optical switching, lasing, etc
    • …
    corecore