42,340 research outputs found

    Topic-enhanced Models for Speech Recognition and Retrieval

    Get PDF
    This thesis aims to examine ways in which topical information can be used to improve recognition and retrieval of spoken documents. We consider the interrelated concepts of locality, repetition, and `subject of discourse' in the context of speech processing applications: speech recognition, speech retrieval, and topic identification of speech. This work demonstrates how supervised and unsupervised models of topics, applicable to any language, can improve accuracy in accessing spoken content. This work looks at the complementary aspects of topic information in lexical content in terms of local context - locality or repetition of word usage - and broad context - the typical `subject matter' definition of a topic. By augmenting speech processing language models with topic information we can demonstrate consistent improvements in performance in a number of metrics. We add locality to bags-of-words topic identification models, we quantify the relationship between topic information and keyword retrieval, and we consider word repetition both in terms of keyword based retrieval and language modeling. Lastly, we combine these concepts and develop joint models of local and broad context via latent topic models. We present a latent topic model framework that treats documents as arising from an underlying topic sequence combined with a cache-based repetition model. We analyze our proposed model both for its ability to capture word repetition via the cache and for its suitability as a language model for speech recognition and retrieval. We show this model, augmented with the cache, captures intuitive repetition behavior across languages and exhibits lower perplexity than regular LDA on held out data in multiple languages. Lastly, we show that our joint model improves speech retrieval performance beyond N-grams or latent topics alone, when applied to a term detection task in all languages considered

    Inference and Evaluation of the Multinomial Mixture Model for Text Clustering

    Full text link
    In this article, we investigate the use of a probabilistic model for unsupervised clustering in text collections. Unsupervised clustering has become a basic module for many intelligent text processing applications, such as information retrieval, text classification or information extraction. The model considered in this contribution consists of a mixture of multinomial distributions over the word counts, each component corresponding to a different theme. We present and contrast various estimation procedures, which apply both in supervised and unsupervised contexts. In supervised learning, this work suggests a criterion for evaluating the posterior odds of new documents which is more statistically sound than the "naive Bayes" approach. In an unsupervised context, we propose measures to set up a systematic evaluation framework and start with examining the Expectation-Maximization (EM) algorithm as the basic tool for inference. We discuss the importance of initialization and the influence of other features such as the smoothing strategy or the size of the vocabulary, thereby illustrating the difficulties incurred by the high dimensionality of the parameter space. We also propose a heuristic algorithm based on iterative EM with vocabulary reduction to solve this problem. Using the fact that the latent variables can be analytically integrated out, we finally show that Gibbs sampling algorithm is tractable and compares favorably to the basic expectation maximization approach

    Structural Regularities in Text-based Entity Vector Spaces

    Get PDF
    Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity: experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.Comment: ICTIR2017. Proceedings of the 3rd ACM International Conference on the Theory of Information Retrieval. 201

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Query Expansion with Locally-Trained Word Embeddings

    Full text link
    Continuous space word embeddings have received a great deal of attention in the natural language processing and machine learning communities for their ability to model term similarity and other relationships. We study the use of term relatedness in the context of query expansion for ad hoc information retrieval. We demonstrate that word embeddings such as word2vec and GloVe, when trained globally, underperform corpus and query specific embeddings for retrieval tasks. These results suggest that other tasks benefiting from global embeddings may also benefit from local embeddings

    Neural Vector Spaces for Unsupervised Information Retrieval

    Get PDF
    We propose the Neural Vector Space Model (NVSM), a method that learns representations of documents in an unsupervised manner for news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents from scratch using gradient descent and rank documents according to their similarity with query representations that are composed from word representations. We show that NVSM performs better at document ranking than existing latent semantic vector space methods. The addition of NVSM to a mixture of lexical language models and a state-of-the-art baseline vector space model yields a statistically significant increase in retrieval effectiveness. Consequently, NVSM adds a complementary relevance signal. Next to semantic matching, we find that NVSM performs well in cases where lexical matching is needed. NVSM learns a notion of term specificity directly from the document collection without feature engineering. We also show that NVSM learns regularities related to Luhn significance. Finally, we give advice on how to deploy NVSM in situations where model selection (e.g., cross-validation) is infeasible. We find that an unsupervised ensemble of multiple models trained with different hyperparameter values performs better than a single cross-validated model. Therefore, NVSM can safely be used for ranking documents without supervised relevance judgments.Comment: TOIS 201

    Ordering-sensitive and Semantic-aware Topic Modeling

    Full text link
    Topic modeling of textual corpora is an important and challenging problem. In most previous work, the "bag-of-words" assumption is usually made which ignores the ordering of words. This assumption simplifies the computation, but it unrealistically loses the ordering information and the semantic of words in the context. In this paper, we present a Gaussian Mixture Neural Topic Model (GMNTM) which incorporates both the ordering of words and the semantic meaning of sentences into topic modeling. Specifically, we represent each topic as a cluster of multi-dimensional vectors and embed the corpus into a collection of vectors generated by the Gaussian mixture model. Each word is affected not only by its topic, but also by the embedding vector of its surrounding words and the context. The Gaussian mixture components and the topic of documents, sentences and words can be learnt jointly. Extensive experiments show that our model can learn better topics and more accurate word distributions for each topic. Quantitatively, comparing to state-of-the-art topic modeling approaches, GMNTM obtains significantly better performance in terms of perplexity, retrieval accuracy and classification accuracy.Comment: To appear in proceedings of AAAI 201
    corecore