707 research outputs found

    Parallel Modular Scheduler Design for Clos Switches in Optical Data Center Networks

    Get PDF
    As data centers enter the exascale computing era, the traffic exchanged between internal network nodes, increases exponentially. Optical networking is an attractive solution to deliver the high capacity, low latency, and scalable interconnection needed. Among other switching methods, packet switching is particularly interesting as it can be widely deployed in the network to handle rapidly-changing traffic of arbitrary size. Nanosecond-reconfigurable photonic integrated switch fabrics, built as multi-stage architectures such as the Clos network, are key enablers to scalable packet switching. However, the accompanying control plane needs to also operate on packet timescales. Designing a central scheduler, to control an optical packet switch in nanoseconds, presents a challenge especially as the switch size increases. To this end, we present a highly-parallel, modular scheduler design for Clos switches along with a proposed routing scheme to enable nanosecond scalable scheduling. We synthesize our scheduler as an application-specific integrated circuit (ASIC) and demonstrate scaling to a 256 Ă— 256 size with an ultra-low scheduling delay of only 6.0 ns. In a cycle-accurate rack-scale network emulation, for this switch size, we show a minimum end-to-end latency of 30.8 ns and maintain nanosecond average latency up to 80% of input traffic load. We achieve zero packet loss and short-tailed packet latency distributions for all traffic loads and switch sizes. Our work is compared to state-of-the-art optical switches, in terms of scheduling delay, packet latency, and switch throughput

    Segment Switching: A New Switching Strategy for Optical HPC Networks

    Full text link
    [EN] Photonics are becoming realistic technologies for implementing interconnection networks in near future Exascale supercomputer systems. Photonics present key features to design high-performance and scalable supercomputer networks, such as higher bandwidth and lower latencies than their electronic supercomputer networks counterparts. Some research work is focused on conventional network topologies built with photonic technologies, with the aim of taking advantage of photonic characteristics. Nevertheless, these approaches fail in that they keep low the network utilization. We looked into this downside and we found that circuit switching was the main performance limitation. In this article we propose a new switching mechanism, called Segment Switching, to address this constraint and improve the network utilization. Segment Switching splits the circuit in segments of the whole path, and uses buffering on selected nodes on the network. Experimental results show that the devised approach signicantly outperforms photonic circuit switching in conventional torus and fat tree networks by 70% and 90%, respectively.This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades and in part by the European ERDF under Grant RTI2018-098156-B-C51.Duro, J.; Petit Martí, SV.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2021). Segment Switching: A New Switching Strategy for Optical HPC Networks. IEEE Access. 9:43095-43106. https://doi.org/10.1109/ACCESS.2021.3058135S4309543106

    Optical packet transmission in 42.6 Gbit/s wavelength-division-multiplexed clockwork-routed networks

    Get PDF
    The use of amplitude-modulated phase-shift-keyed (AM-PSK) optical data transmission is investigated in a sequence of concatenated links in a wavelength-division-multiplexed clockwork-routed network. The narrower channel spacing made possible by using AM-PSK format allows the network to contain a greater number of network nodes. Full differential precoding at the packet source reduces the amount of high-speed electronics required in the network and also offers simplified header recognition and time-to-live mechanisms

    Speeding up liquid crystal SLMs using overdrive with phase change reduction

    Get PDF
    Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from two mutually compatible approaches. The first technique involves the idea of overdrive, that is the calculation of intermediate patterns to speed up the transition to the target phase pattern. The second concerns optimization of the target pattern to reduce the required phase change applied to each pixel, which in addition leads to a substantial reduction of variations in the intensity of the diffracted light during the transition. When these methods are applied together, we observe transition times for the diffracted light fields of about 1 ms, which represents up to a tenfold improvement over current approaches. We experimentally demonstrate the improvements of the approach for applications such as holographic image projection, beam steering and switching, and real-time control loops

    Optical packet switching using multi-wavelength labels

    Get PDF
    • …
    corecore