
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Parallel Modular Scheduler Design for
Clos Switches in Optical Data Centre Networks

Paris Andreades, Student Member, IEEE, and Georgios Zervas, Member, IEEE

Abstract—As data centers enter the exascale computing era
their internal traffic, exchanged between network nodes, in-
creases exponentially. Optical networking is an attractive solution
to deliver the high capacity, low latency and scalable interconnec-
tion needed. Amongst other switching methods, packet switching
is particularly interesting as it can be widely deployed in the
network to handle rapidly-changing traffic of arbitrary size.
Nanosecond-reconfigurable photonic integrated switch fabrics,
built as multi-stage architectures such as the Clos network,
are key enablers to scalable packet switching. However, the
accompanying control plane needs to also operate on packet
timescales. Designing a central scheduler, to control an optical
packet switch in nanoseconds, presents a challenge especially as
the switch size increases. To this end, we present a highly-parallel,
modular scheduler design for Clos switches along with a proposed
routing scheme to enable nanosecond scalable scheduling. We
implement our scheduler as an application-specific integrated
circuit (ASIC) and demonstrate scaling to a 256 x 256 size with
an ultra-low scheduling delay of only 6.0 ns. In a cycle-accurate
rack-scale network emulation, for this switch size, we show a
minimum end-to-end latency of 32.0 ns and maintain nanosecond
average latency up to 80% of input traffic load. We achieve zero
packet loss and short-tailed packet latency distributions for all
traffic loads and switch sizes.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

THE global traffic within data centres is estimated to
reach 14.7 zettabytes per year by 2021, driven by

technology trends such as cloud computing and data centre
virtualization [1]. Big data processing, workload migration,
storage replication and retrieving data residing on multiple
hosts are all examples of tasks that require data exchange
between data centre machines [1]–[3]. The growth of this
so called East-West traffic places stringent requirements on
the network latency and bandwidth, causing a shift from the
traditional hierarchical tree to the flatter leaf-spine network
topology [4], [5], shown in Fig. 1. Optical fibre is typically
installed between the leaf and spine layers to establish low loss
and high bandwidth point-to-point connections. Nonetheless,
the switches themselves are still electronic, limiting further
performance scaling. Commercial electronic switches have a
delay on the order of 200 ns [6] and limited capacity due to

This work was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/R035342/1 and in part by the
EU Horizon 2020 programme (Industrial Leadership section) under Grant
687632.

Paris Andreades and Georgios Zervas are with the Electronic and Electrical
Engineering Department, University College London (UCL), London, WC1E
7JE, UK (e-mail: paris.andreades.09@ucl.ac.uk, g.zervas@ucl.ac.uk).

Manuscript received Month dd, yyyy; revised Month dd, yyyy.

the number of high-speed pins available on the switch chip
or the number of connectors fitting on a rack unit front panel
[7]. These limitations can be addressed by optical switching
reconfigurable in nanoseconds with orders of magnitude higher
capacity, using wavelength-division multiplexing (WDM).

Optical switches built as micro-electro-mechanical systems
(MEMS) have been widely proposed for data centre networks.
Notable examples include the RotorNet [8], c-Through [9],
Helios [10], Proteus [11] and Mordia [12] prototypes. How-
ever, because they are reconfigurable in milliseconds, they
are used for circuit switching at the higher network layers
where there is a larger traffic volume or in networks with
slowly changing traffic. Hence, they are intended to be used
alongside an electronic packet-switched network which would
handle any bursty and rapidly-changing traffic. Moreover, their
control plane needs to perform traffic demand estimation prior
to circuit allocation to increase utilization [12], which could
incur hundreds of milliseconds additional delay.

Optical packet switching has also been proposed based on
nanosecond-reconfigurable photonic integrated architectures
built using micro-ring resonators [13], [14], semiconductor
optical amplifiers (SOAs) [15], [16], Mach-Zehnder interfer-
ometers (MZIs) [17] or a combination of these technologies
[18]–[20]. Such switches could be deployed at any network
layer without any limitation on the traffic size and stability.
However, designing a switch control plane that operates on
packet timescales, as the switch size scales, still remains a
challenge in optical packet switch design. The Data Vortex
[21], SPINet [22], OSMOSIS [23], the OPSquare switch as
well as the work in [24], [25], all target scalable nanosecond
switch control. In all cases, fast output-port arbitration for
switch scheduling is key in implementing low-latency control.

In previous work [26], we experimentally demonstrated a
nanosecond control plane on field-programmable gate array
(FPGA) boards. It enabled optical packet switching with a
minimum 75 ns end-to-end latency in a 32-port SOA-crossbar
system, for top-of-rack (ToR) application. In [27] a new
output-port arbitration circuit for the switch scheduler was
presented, doubling the switch size for the same scheduling
delay. In [28], [29] we designed schedulers for optical switches
built in a Clos network topology [30], as shown in Fig. 1,
which is practical for photonic integration [31]. Also, this
modular switch architecture enables scaling to large sizes
while maintaining a low scheduling delay.

This work expands on [29] by implementing the central Clos
switch scheduler on hardware. Moreover, the scheduler was re-
designed as a parallel and modular hardware structure to allow
for clock speed optimization. The scheduler module designs

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

SPINE

LEAF

SOA

O/E E/O
n x m

NODES

SOA

O/E E/O 0

SOA

O/E E/O

SOA

O/E E/O 1

SOA

O/E E/O

SOA

O/E E/O r-1

0

r x r
NODES

0

m x n
NODES

1 1

r-1m-1

ToR

SERVERS

BUFFER

SCHEDULER

Fig. 1. A leaf-spine data centre with the proposed optical top-of-rack (ToR) Clos switch. Conversion from optical-to-electrical (O/E) and electrical-to-optical
(E/O) enables electronic buffering at the switch inputs, when switch path contention occurs. The electronic scheduler processes switch path requests from the
network interfaces at the servers and at the switch buffers to reconfigure the optical switch in nanoseconds.

are presented and discussed in detail and are individually
synthesized as application-specific integrated circuits (ASICs)
in a 45 nm CMOS process. The results verify scheduling
a 256 × 256 switch in 6.0 ns and identify the critical path
module, which determines the scheduler minimum clock pe-
riod. That module is then implemented on a Xilinx Virtex-7
XC7V690T FPGA board to compare our work with some of
the fastest switch designs in the literature. The switch latency
and throughput performance are evaluated in a cycle-accurate
emulation of our proposed system concept.

II. RELATED WORK

In this section we look at different notable scheduling
approaches to optical packet switch control from various
research labs in the field. The switch architecture is important
as it could simplify scheduling and reduce its impact on control
delay but at the same time it should not increase the data
plane complexity, hindering switch implementation. In gen-
eral, scheduling can be executed centrally or in a distributed
fashion, with the former usually considered to be of high
complexity and incurring a considerable control plane delay.
In this work, we aim to show otherwise. Table I compares the
scheduling delay in different optical packet switches reported
in the literature.

The Data Vortex [21], [32] and SPINet [22], [33] designs
distribute scheduling to the 2×2 modules of an N×N banyan
network, which scales by cascading log2N stages. Scheduling
per module is executed in 10.0 ns but cascading them in
many stages increases total control delay and limits the switch
throughput at large sizes.

The OPSquare wavelength-routed switch [34]–[36] is also
modular and scales by stacking modules in a 2-stage Spanke
architecture and by increasing the wavelength channels. It
avoids arbitration for the output modules by using wavelength
conversion. The arbitration time for the input modules depends
on the number of wavelengths routed, bringing the total

scheduling delay to 25 ns, independent of switch size. How-
ever, wavelength conversion and the high optical components
count increase the implementation complexity and cost.

All aforementioned designs use in-band request schemes
which have scheduling overheads for optical filtering, O/E
conversion and request detection, in addition to arbitration.
The design by Proietti et al. [24] avoids this by using optical
instead of electronic scheduling. The switch is based on
an N × N input-buffered arrayed waveguide grating router
(AWGR) and scaling is determined by the highest port-count
supported by the AWGR technology. Scheduling is optical and
distributed to the output ports, where reflective semiconductor
optical amplification (RSOA) is used for nanosecond arbitra-
tion, independent of N . However, scheduling is dominated by
laser tuning time (8 ns), switch round-trip time (5 ns) and grant
detection time (4 ns) at the input port. Also, arbitration fairness
is degraded, especially as N grows, compared to electronic
round-robin schemes.

The central schedulers in the OSMOSIS prototype [23]
and in the work by Cerutti et al. [25] use parallel iterative
algorithms to improve throughput in an N × N crossbar
switch at the cost of high scheduler complexity and long
delays. The scheduler design in our previous work [27], for
crossbar switches, trades off throughput for ultra-low delay;
reconfiguring a 64× 64 crossbar in 18.8 ns. Nevertheless, an
N × N crossbar is not practical for implementation at large
sizes, due to the N2 switch elements required to built it.

All designs that issue an acknowledgement (ACK) from the
switch back to the packet source, whether in an optical or
electrical form, incur control overheads for ACK transport,
detection and processing at the source, in addition to schedul-
ing.

This work aims at a nanosecond-reconfigurable switch de-
sign that scales both in the data plane and control plane. It
is based on a 3-stage Clos architecture and a novel routing
scheme for simplified nanosecond scheduling and practical

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE I
WORK COMPARISON - SCHEDULING DELAY

Switch Size
Switch Design 16x16 64x64 256x256 Architecture Method Request ACK

This Work (ASIC) 3.3 ns 4.2 ns 6.0 ns Clos Central Out-of-band No

Data Vortex/SPINet [32], [33] ≈10.0 ns Banyan Distributed In-band Yes

Proietti et al. [24] 17.0 ns AWGR Distributed In-band Yes

This Work (FPGA) 8.7 ns 13.5 ns 21.0 ns Clos Central Out-of-band No

Andreades et al. [27] 7.0 ns 18.8 ns - Crossbar Central Out-of-band No

OPSquare Switch [34] 25.0 ns Spanke Distributed In-band Yes

OSMOSIS [23] - 51.2 ns - Crossbar Central Out-of-band Yes

Cerutti et al. [25] 1 µs - - Crossbar Central Out-of-band No

PACKET
CONTROL

REQUEST
CONTROL

λ1

λ2

λk

PACKET

t

REQUEST/
FIFO FULL

RX

x N

SCHEDULER TO
/F

R
O

M
 S

P
IN

E
SW

IT
CH

FR
O

M
 S

ER
V

ER
TO

 S
ER

V
ER

TX

N x N
SWITCH

FIFO BUFFER

OPTICAL GATE ELECTRICAL DATA

CONTROLOPTICAL DATA

VOQs

Fig. 2. System concept. Server-side “send and forget” network interfaces and
optical top-of-rack (ToR) switch with input electronic buffers to avoid packet
loss. Every transmitted packet is divided into k wavelengths to further reduce
latency. The ToR scheduler reconfigures the switch in nanoseconds.

switch implementation. We can schedule a 256 × 256 Clos
switch in just 6.0 ns in an ASIC implementation or in 21.0 ns
in an FPGA implementation. The implementation results
are presented in section V. Out-of-band electrical requests,
processed by a central electronic scheduler, and speculative
packet transmission eliminate other control overheads besides
scheduling, as discussed in the next section.

III. SYSTEM CONCEPT

The proposed system concept is shown in Fig. 2. The
N × N optical top-of-rack (ToR) switch interconnects N
servers between themselves and to the spine switch. Internally,
it is implemented as as Clos network. The server-side network
interfaces implement a “send and forget” scheme whereby
packets are transmitted speculatively without a guaranteed path
through the switch, reducing in this way the control latency.
Hence, the optical Clos switch implements electronic buffering
at each input port to avoid packet loss for any failed path
speculations, when at least two network interfaces contend for
a switch path. The electronic scheduler processes path requests
to allocate switch paths, resolves contention where necessary
and reconfigures the optical switch to schedule traffic across it.
In the next paragraphs the flow control is described in detail.

At every server network interface, the packets are initially
buffered in a first-in, first-out (FIFO) policy. The request

control reads the destination of the head-of-line (HOL) packet
and issues a switch path request to the scheduler.

Once the request is sent, the packet control holds onto the
HOL packet for a configurable number of hardware clock
cycles before forwarding it to the transceiver for transmis-
sion. This allows for the scheduler to processes the request
and reconfigure the switch, before the packet arrives there.
Nanosecond scheduler delay, tscheduler, is crucial for packet
switching. This delay is fixed, dependent on the scheduler
design, and the main focus of this work is to optimize the
design for ultra-low delay (< 10 ns), as the switch size scales.

Unlike circuit-switched systems, where a packet is buffered
at the source for possible retransmission until a path ACK
(grant) is received, here every packet is forwarded to the
transceiver speculatively, without a scheduler grant. Compared
to the related work, this reduces the control delay by eliminat-
ing the overheads for grant transport from the switch back to
the server network interface and then for synchronizing and
processing it there. To avoid packet drop, in case of failed
speculation, buffering is used at each switch input port.

At the transceiver, every packet is divided into k seg-
ments, each serialized at a fixed data rate onto a specific
wavelength using, for example, a dedicated silicon photonic
transceiver [37] integrated onto the network interface chip.
Using wavelength-division multiplexing, the segments are
transmitted as one unit in a wavelength-parallel packet struc-
ture to the switch input port, as shown in Fig. 2. This method,
known as wavelength striping, increases the input port capacity
(no. of wavelengths × data rate) and consequently reduces
the packet (de)serialization delay (packet size ÷ input port
capacity). More importantly, by dynamically reconfiguring the
number of wavelength channels bonded, based on the packet
size, the system can support a low (de)serialization delay for
variable-size packets.

The resulting wavelength-striped packet is transmitted on
the WDM link to the switch input port, as shown in Fig. 2.
In case of no switch path contention, hence no failed specu-
lation, the wavelength-striped packet cuts through the already
reconfigured switch and is received at the destination with the
minimum end-to-end latency. Otherwise, the packet is stored
at the switch input port.

At every switch input port, buffering is implemented as N
parallel FIFO queues, one for each output port, also known

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

as virtual output queues (VOQs). Compared to using a single
queue, the VOQ arrangement avoids the case where the HOL
packet, while waiting to be switched to its destination, blocks
the preceding packets in the queue even though they may
be destined elsewhere. Thereby, throughput is improved and
buffering delay is reduced, at the cost of increased scheduling
algorithm complexity. Optical to electrical (O/E) and electrical
to optical (E/O) conversions are required when a packet is
stored or released from a VOQ.

The central scheduler therefore receives two sets of path
requests; one from the network interfaces at the servers, in
response to new packets, and one from the network interfaces
at the switch input ports (not shown in the diagram), in
response to switch VOQ packets. Then, it arbitrates access
to switch paths, on round-robin basis, in parallel for the two
sets and reconfigures the switch accordingly, including the
VOQ control signals for storing and releasing packets. Priority
is always given to VOQ requests for strict in-order packet
delivery and low average latency.

As shown in Fig. 2, a “FIFO full” signal is asserted when a
switch VOQ is occupied beyond a threshold value, to notify the
corresponding server network interface to pause transmission
(packets and requests). This provides control backpressure and
enables managing a small VOQ size at the switch. For every
switch input port there is an N -bit wide “FIFO full” bus,
one bit for every VOQ, transmitted back to the server and
overall this is the only control signaling from the switch to the
servers. The VOQ threshold value depends on the propagation
delay (tpropagation) between the switch and servers (round-
trip) and also the scheduler delay (tscheduler) during which
the server packets are buffered. The threshold value is given
by the following equation and determines the minimum VOQ
size required to avoid packet loss up to 100% of traffic load:

Threshold = tscheduler + 2tpropagation (1)

In summary, the control plane latency is reduced by: (a) sched-
uler design, (b) speculative transmission, (c) switch topology
and (d) switch routing. The average end-to-end latency is
further reduced by having: (a) wavelength-striped packets and
(b) virtual output queuing (VOQ) at the switch inputs. The
focus of this work is the scheduler design, optimized for clock
speed and scalability.

IV. SCHEDULER DESIGN

The switch architecture or topology as well as the routing
scheme directly affect the scheduler design and therefore the
scheduling delay, tscheduler. In this work we design the sched-
uler for a Clos network [30] used as the switch architecture
and apply a fixed-path routing scheme, to reduce the scheduler
delay and also simplify its design.

A Clos network is built using strictly non-blocking switch-
ing modules arranged in a multi-stage topology. A 3-stage
Clos network is characterized by the triple (m,n, r), where m
is the number of central modules (CMs), n is the number of
input (output) ports on each input (output) module and r is the
number of input modules (IMs) and output modules (OMs),
as shown in Fig. 3. In an N×N Clos switch, N = n×r. The

n x m

Input Modules

r x r

Central Modules

m x n

Output Modules

n

n

0

1

r-1

0

1

m-1

0

1

r-1

Fig. 3. An (m,n,r) Clos network built with strictly non-blocking modules.
The proposed routing scheme, for m = n = r Clos networks, assigns fixed
paths to avoid contention at the central modules, simplifying the scheduler
design and reducing its delay.

case where m = n = r =
√
N , is attractive for photonic

integration [31] and it gives a re-arrangeably non-blocking
network, given an appropriate routing algorithm is used. More
importantly, the modular structure of Clos networks enables
reducing the scheduler delay because only

√
N -bit arbitration

circuitry would be needed per module, for distributed path
allocation.

Any multi-stage architecture, such as the Clos network,
requires a routing algorithm. In the Clos network there are m
paths from any input port, i, to any output port, j. The looping
algorithm [38] can be used for Clos networks with m = n; it
iterates the routing matrix, re-arranging current entries to add
new routes, without blocking others. Iterating would cause a
long scheduling delay, limiting scalability.

In this design, the routing algorithm assigns fixed paths to
minimize the routing overhead. Furthermore, it completely
eliminates contention at the central modules, as shown in
Fig. 3. Since there is no need to arbitrate for any of the central
modules, the scheduler design is simplified, less hardware
resources are required and delay is further reduced. The trade
off is that the architecture becomes blocking; at every IM at
most one input port can be allocated the route to an OM, even
if different output ports on that OM are requested. Hence, the
switch throughput will saturate at a lower input traffic load
compared to using the looping algorithm, for a given switch
size. Switch average throughput measurements are presented
in section VI.

The fixed path assignment could also be used to simplify the
switch design. Since there is no switching activity at the central
modules, these can be removed resulting in a 33% reduction
in cross-points and 50% reduction in waveguides, improving
signal integrity and reducing the power requirement. This
makes the switch more practical to implement as a photonic-
integrated circuit.

Figure 3 shows how the routing algorithm assigns the first
path (CM 0), at every IM. More specifically, at every IM,
the first path/output port leads to a different OM to avoid

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

OM

Allocator

(1)

OM

Allocator

(r-1)

OP

Allocator

(0)

OP

Allocator

(1)

OP

Allocator

(r-1)

OM

Allocator

(0)

S
W

IT
C

H
 C

O
N

F
IG

U
R

A
T

IO
N

Input

Modules

Output

Modules

Fig. 4. Central Clos switch scheduler implemented in a planar and modular
fashion. Planes operate independently and in parallel to allocate paths based
on output module (OM) and output port (OP) arbitration for the Clos input
and output modules. The switch configuration module reconfigures the switch
based on the path allocation results from both planes.

contention at CM 0. This is the case for the remaining paths
assigned. At any given IM, the path assignment to the OMs
is a circular shift by one position to the left, with respect to
the previous IM. It is calculated based on the input port (i)
and destination output port (j) associated with every packet,
according to the following equation:

p(i, j) = (bi/nc+ bj/rc) mod m (2)

where 0 ≤ i, j ≤ N − 1.
Since there can be no contention at the central modules,

path allocation is implemented as output port arbitration for
every input and output module. This translates to allocating
OMs to the IM input ports and then allocating OM output
ports to the IMs.

The central scheduler is implemented in a modular planar
approach as illustrated in Fig. 4. This allowed optimisation for
clock speed. There are two parallel path-allocation planes, one
responsible for processing new packet (server) requests and
one for processing VOQ packet (switch) requests. On each
plane, there are r allocation modules for the Clos IMs and
another r allocation modules for the Clos OMs, arranged in
two ranks and interconnected in a full mesh topology. The
switch configuration module processes the allocation results
from both planes to produce the configuration control signals
for the Clos input and output modules. Every allocation
module or allocator, irrespective of rank and plane, makes
decisions based on a group of round-robin arbiters, where
every arbiter is designed as outlined in [39]. In the next
sections, we present the output module (OM) allocator design
for each plane, the output port (OP) allocator design common
to both planes and the switch (re)configuration design.

A. Output Module Allocation for New Packets

The allocator design for an n × r IM, for new packet
requests, is shown in Fig. 5. For every new packet arriving
at an input port, there is a switch output port request based
on the packet’s destination. The circuit processes every request

/
Arbiter

0

Arbiter

1

Arbiter

r-1

/
n

Input Port

Selection

/
n

/
n

/
n

/
n

/
n

x
 r

x
 r

log2(N)+1

/
n

Gj

Gi

log2(N)+1

/

x
 n

N

/

x
 nRS

R

A B

R
e

q
u

e
s
t

L
o

g
ic

G
ra

n
t

L
o

g
ic

Fig. 5. Output module allocator design for new packet requests. The critical
path in the design is shown in red. Tags A and B are for cross-reference with
the example in Fig. 6.

0 0 1 0

0 0 0 0

0 0 1 0

0 1 0 0

Output

Module

0 0 1 0

0 0 0 0

0 0 0 0

0 1 0 0

Output

Module

Gj

O
u
tp

u
t

M
o
d
u
le 0 0 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 0

Output

Port

Gi

O
u
tp

u
t

M
o
d
u
le 0 0 0

1 7 1

2 4 1

3 0 0

Input

Port

v

RS

In
p
u
t
P

o
rt

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

R

In
p
u
t

P
o
rt

4 10 1

5 4 1

6 8 1

7 5 1

Output

Port

v

A B

12840
Output Port

0
1

2
3

OM
0

4
5

6
7

OM
1

OM
2 10

11

9
8

Fig. 6. Example request processing for new packets by the output module
allocator for the 2nd input module in a (4,4,4) Clos switch. Binary matrices
are tagged for cross-reference with the digital design in Fig. 5.

and attempts to match each input port to the OM on which the
requested output port physically resides. There are two sets of
input requests to the circuit: (a) n requests for the new packets,
in matrix R, and (b) n requests for VOQ packets at the IM
input ports, in matrix RS . The VOQ requests are high-priority
and are used here only to filter out new packet requests that
they are contending against for IM input ports. This maintains
strict in-order packet delivery. For the filtered out requests, the
corresponding packets arriving at the switch are stored in the
appropriate VOQs.

Every request in R is a structure with two fields; the switch
destination port, represented by log2N bits, and a valid bit.
Every request in RS is an N -bit vector, where every bit
asserted represents a request for the output port that the VOQ
buffers packets.

The request logic checks RS to determine whether a new
packet contends with a VOQ packet for an IM input port,
in which case the new packet request is dropped. Then, it
generates a request in a format that the subsequent arbiter
logic can process; based on a new packet’s destination port an
n-bit request for the destination OM is generated, where each
bit asserted is an IM input port requesting that OM. There are
r arbiters, each allocating an OM to at most one of n requests,
based on the round-robin principle. Each arbiter outputs a one-
hot n-bit grant indicating the winning IM input port.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

/

RS

Arbiter

1

Arbiter

n-1

Arbiter

1

Arbiter

r-1

Arbiter

0

R
e

q
u

e
s
t

L
o

g
ic Arbiter

1

Arbiter

r-1

/
r

OM

Selection

Input Port

Selection

/
n

/
n

/
n

Output Port

Selection

G
ra

n
t

L
o

g
ic

/
n

/
n

/
n

/
n

/
n

/
n

/
n

/
n

/
r

/
r

/

x
 r

x
 r

log2(N)+1

/
n

Gj

Gi

/
N

/
N

/
N

R
e

q
u

e
s
t

L
o

g
ic

N

/
N

/
N

x
 n

Arbiter

0

Arbiter

0

A B C D E

Fig. 7. Output module allocator design for switch VOQ packet requests. The critical path in the design is shown in red. Tags A-E are for cross-reference
with the example in Fig. 8.

RS

In
p

u
t

P
o

rt

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

In
p
u

t
P

o
rt

4 0 0 0 0

5 0 1 0 1

6 1 0 0 0

7 0 1 1 0

Output

Module

O
u

tp
u
t

M
o
d

u
le 0 0 1 0 0

1 1 0 0 1

2 0 0 0 0

3 0 0 0 0

Output

Port

Gi

O
u

tp
u
t

M
o

d
u

le 0 6 1

1 5 1

2 0 0

3 0 0

Input

Port

v

Gj

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

Output

Port

0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 0

Output

Module

0 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

Output

Module

12840
Output Port

EDCBA

0
1

2
3

OM
0

4
5

6
7

OM
1

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

Output

Port

Fig. 8. Example request processing for switch VOQ packets by the output
module allocator for the 2nd input module in a (4,4,4) Clos switch. Binary
matrices are tagged for cross-reference with the digital design in Fig. 7.

The grant logic generates the circuit’s output matrices, Gi

and Gj , based on the arbiter grants. Each matrix has at most
r grants, one for every Clos OM. Every grant in Gi is a
structure with an input-port field of log2N bits and a valid
bit, to indicate the switch input port granted that OM. Every
Gj grant is a one-hot n-bit vector and the bit asserted, if any,
indicates the granted output port on that OM. Every valid grant
pair, one from Gi and one from Gj , forms a request that the
dedicated output port (OP) allocator on the same plane will
process next, as illustrated in Fig. 4.

Figure 6 shows an example of the circuit functionality for a
(4, 4, 4) Clos, for a given R and RS . The requests processed
in the example are for the second input module (IM 1) whose
input ports are in the range 4 to 7. The request logic is shown
generating a binary matrix containing the arbiter requests,
ignoring input port 5’s request as it contends with a VOQ
request for the same input and output ports. Next, every arbiter
resolves any OM contention by operating across a matrix
column, selecting only one input port for that OM. The output
matrices Gi and Gj are created based on the arbitration results.

B. Output Module Allocation for Switch VOQ Packets

In an n×r IM, due to VOQ buffering, there could be up to
N switch output port requests per input port, at the same time.
For every input port, the OM allocator grants at most one of
r OMs, for a selected output port. This design is only used in
the scheduler plane responsible for VOQ request processing,
as illustrated in Fig. 4. As shown in Fig. 7, the design is

divided in two pipeline stages to increase the maximum clock
frequency achievable.

Every input request in RS is an N -bit vector. This is the
same input matrix in the allocator for new packet requests
described above. In the first pipeline stage, the request logic
generates the arbiter input requests; n r-bit vectors in which
every bit asserted is a request for an OM.

Next, input-first separable allocation is performed to match
output modules with the local input ports. Separable allocation
is performed as two sets of arbitration; one across the input
ports and one across the output modules. This is implemented
as two separate arbiter ranks. The first rank has n r-bit arbiters
to select one OM for every input port. The second rank has r
n-bit arbiters to select one input port for every OM.

The iSLIP method [40], for round-robin separable alloca-
tion, is used to increase the number of grants. This is done
by controlling the arbiter priority in the first rank so that it
is less likely different arbiters select the same output module,
causing fewer conflicts in the second arbiter rank. Although
multiple iterations can be performed, to further increase the
number of grants and therefore the switch throughput, only a
single pass (1-SLIP) is executed to minimize the total circuit
delay. To implement iSLIP, the priority of a first-rank arbiter is
updated only if its grant output has also won arbitration in the
second arbiter rank. However, this creates a feedback which
forms the critical path in the design, as discussed in section V.
Any first-rank arbiter receives r feedback signals in total, one
from each second-rank arbiter, but only the feedback between
the first two arbiters is shown in in Fig. 7, for diagram clarity.

In the case of switch VOQ packets, since there can be
more than one output port request per OM, an additional
round of arbitration is needed to select one, after an input port
has been granted an OM. This is implemented in the second
pipeline stage. Based on the OM allocation grants from the
first pipeline stage, the request logic creates n-bit requests,
for every granted OM, and the following arbiters select one.
Effectively the two allocation rounds operate in a master-slave
fashion divided in two pipeline stages.

In the same way as in the allocator for new packet re-
quests, the grant logic generates two matrices, Gi and Gj ,
each holding a grant for every Clos output module that the
corresponding output port (OP) allocator will process.

An example of the circuit functionality is shown in Fig. 8.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

//

Arbiter

0

Arbiter

1

Arbiter

n-1

IM

Selection

G
ra

n
t

L
o

g
ic

/
log2(N)+1

O
M

S
ta

te

n

/
n

/
r/

r
/
r

/
r

/
r

/
r

/
r

O
P

S
ta

te

/
r

/
n

x N

SOM

SOP

Gx rx r

log2(N)+1

/

/

/

x r

n

n

n

R
e

q
u

e
s
t

L
o

g
ic

IP

L
o

g
ic

Gi

Gj

A

B C

Fig. 9. Output port allocator design. The same design is used for new packet
requests and for switch VOQ packet requests. The critical path in the design
is shown in red. Tags A-C are for cross-reference with the example in Fig. 10.

Gi

O
M

In
p
u
t

P
o
rt

12 1 3

In
p
u
t

M
o
d
u
le

2 1 0

5 1 1

10 1 2

Switch

In. Port

v

Gj

O
M

In
p
u
t
P

o
rt

1 0 0 0 3

In
p
u
t M

o
d
u
le

0 1 0 0 0

1 0 0 0 1

0 0 1 0 2

4 5 6 7

Output

Port

In
p
u
t
M

o
d
u
le 0 0 0 1 0

1 0 1 0 0

2 0 0 1 0

3 1 0 0 0

OM

Input Port

In
p
u
t
M

o
d
u
le 0 0 1 0 0

1 1 0 0 0

2 0 0 1 0

3 1 0 0 0

4 5 6 7

Output

Port

SOM

In
p
u
t
M

o
d
u
le 0 1

1 1

2 1

3 0

SOP

O
u
tp

u
t

P
o
rt 4 1

5 1

6 1

7 0

A

B

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0

4 5 6 7

Output

Port

C

G

0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 v

0 0 5 0 0 4 0 0 0 0 6 0 0 0 0 0

O
u
tp

u
t

P
o
rt

12840

Switch Input Port

Fig. 10. Example request processing by the output port allocator for the
2nd output module in a (4,4,4) Clos switch. Binary matrices are tagged for
cross-reference with the digital design in Fig. 9.

It extends on the previous example in Fig. 6 showing how
the RS matrix is processed for the same input module. First,
the request logic creates the input port-OM binary matrix.
Next, during separable allocation, the first arbiter rank operates
across the matrix rows to select an OM for every input port
and then the second arbiter rank operates across the columns
to select one input port for every OM. The Gi matrix is created
based on the allocation results, indicating input ports 5 and 6
have been granted output modules 1 and 0 respectively. An
additional allocation round is executed before Gj is created to
select one output port per granted OM. For input port 5, the
first port on OM 1 (output port 4) is selected.

C. Output Port Allocation

The output port (OP) allocator design for an r × n OM is
shown in Fig. 9. The circuit receives one Gi grant and one Gj

grant from every OM allocator on the same plane, to form an
IM request for a local output port. It then attempts to grant
every local output port to at most one input module. The same
design is used in both scheduler planes shown in Fig. 4.

The input port (IP) logic, for every valid Gi grant, reads
the switch input port and locates it on the associated IM.
It generates r n-bit vectors, one for every IM, and the bit

asserted is the input port that has a request for this OM. This
information enables the grant logic to group its output signals
per IM.

The request logic uses Gi and Gj to create a binary matrix
containing the arbiter requests. The n× r matrix indicates the
output port every IM is requesting. Next, the arbiters select
one OM output port for every IM, resolving any output port
contention between IMs.

Once an arbiter grants an output port to an IM, the grant
logic then matches it to the input port on that IM. This is done
by pairing the outputs of the IP logic with the corresponding
arbiter grants. Also, the OM output port is translated into a
switch output port j, where 0 ≤ j ≤ N − 1. There are N
output grants in G, one for each input port, grouped into IMs
and every grant is a structure with a valid bit and an output
port field of log2N bits.

The logic for the output module (OM) state creates an r-
bit vector SOM based on the arbiter grants to mark every IM
granted an output port. The logic for the output port (OP) state
creates an n-bit vector SOP to mark every granted output port.
Both SOM and SOP will be used in the switch configuration
circuit to filter out new packet grants contending with VOQ
packet grants for an output module or an output port.

Figure 10 illustrates an example of the circuit’s functionality
for OM 1, interfacing with the OM allocators for switch VOQ
packets. This includes the Gi grant and Gj grant from IM 1
to OM 1, shown in Fig. 8, which collectively form a request
for output port 4 from input port 5. The input port logic first
creates a binary matrix to indicate the input port on every IM
that has a request for this output module. Next, the request
logic creates the arbitration binary matrix and every arbiter
operates across a matrix column selecting at most one IM
for every output port. Based on the arbitration results, the G
matrix holds the input-output port matches and the SOM and
SOP vectors indicate the winning IMs and allocated ports. In
this example, input ports 2, 5 and 10 have been granted output
ports 5, 4 and 6, respectively.

D. Switch Configuration
The switch configuration circuit generates the input and

output module reconfiguration signals, CIM and COM , which
switch on the appropriate optical gates based on the routing
scheme. It also generates the write-enable (CWE) and read-
enable (CRE) signals to store and release packets at the VOQs.
The design is shown in Fig. 11, using only the OP allocator
outputs from the two planes, as shown in Fig. 4. The states of
the output ports and output modules are only taken from the
OP allocators in the VOQ plane to filter out paths allocated
in the other plane, as explained below. We use G and GS to
distinguish the allocator grant matrices from each plane.

The grant matrix GS contains the OP allocator grants in
the VOQ plane and it is distributed to all logic blocks in
this circuit. It is used solely in the read-enable block and in
one of the IM and OM configuration blocks, to produce a
switch configuration in response to VOQ requests only. In the
remaining blocks, together with SOM and SOP , it is used to
filter G which is then used to produce a switch configuration
in response to new packet requests.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

/
log2(n)+1

x N

/
log2(n)+1

x N

C
o

m
b

in
e

r

/

x N

log2(n)+1

x N

/
log2(r)+1

x N

/
log2(r)+1

x N

/

x N

log2(r)+1

x N

/

x N

/

x N

/

x r

/

x r

IM

CNFG

IM

CNFG

OM

CNFG

Read-

Enable

Grant

Logic

OM

CNFG

log2(N)+1

log2(N)+1

r

n

x N

x N

log2(N)+1

GS

G

SOM

SOP

COM

CIM

CWE

CRE

/

log2(N)+1
/

C
o

m
b

in
e

r

Fig. 11. Switch configuration circuit. Blue-coded logic blocks are for VOQ
requests and otherwise for new requests. The critical path in the design is
shown in red.

The read-enable logic transfers GS directly to the output
register for the VOQ read-enable signals in CRE . In total there
are N signals, one for every switch input port, where each
signal is a structure with a valid bit and log2(N) bits to address
each VOQ. A valid read-enable signal releases a packet from
the corresponding switch VOQ at an input port.

The IM and OM configuration logic blocks for VOQ re-
quests, shown in blue color in Fig. 11, generate a configuration
signal for every valid grant in GS . An IM configuration signal
uses log2(n) bits to identify one out of n optical gates on an
IM output port to turn on. Similarly, an OM configuration
signal uses log2(r) bits to identify one out of r optical gates
on an OM output port to turn on.

At the grant logic, every valid grant in G is passed to the
output only if: (a) no GS grant is valid for that IM input port,
(b) the destination OM is free for that IM, according to SOM

and (c) the destination output port j is free, according to SOP .
This 3-condition filter gives priority to VOQ packets. Any
grant passing through the filter corresponds to a new packet
being switched with the minimum latency. The outputs are
inverted and registered to produce the write-enable signals in
CWE , where a valid signal stores a new packet in the switch
VOQ addressed by log2(N) bits.

The IM and OM configuration logic for new packets gener-
ates a configuration signal for every valid grant in G, given that
grant also passes through the same 3-condition filter used in
the grant logic. The IM configuration signals for new packets
and VOQ packets are then combined together into a single set
of N signals before they are registered out as CIM . In the
same way, the output OM configuration, COM , is generated
by combining the configuration signals for new packets and
switch VOQ packets.

TABLE II
MINIMUM CLOCK PERIOD FOR ASIC SYNTHESIS

Switch Size
Hardware Module 16x16 64x64 256x256

Output Module Allocator 0.8 ns 1.1 ns 1.5 ns

Output Module Allocator (iSLIP) 1.1 ns 1.4 ns 2.0 ns

Output Port Allocator 0.8 ns 1.1 ns 1.5 ns

Switch Configuration 0.5 ns 0.8 ns 1.1 ns

V. SCHEDULER IMPLEMENTATION RESULTS

In this section we discuss the implementation of the mod-
ular scheduler design on hardware. More specifically, every
hardware module described in the previous section has been
implemented separately as an application-specific integrated
circuit (ASIC), in a 45 nm CMOS process. The critical path
in each module is identified and measured to determine the
minimum clock period that the scheduler, as a whole unit,
can achieve. The modules are also implemented on a Virtex-
7 XC7V690T FPGA board to investigate how the scheduler
prototype compares to our previous work and to related work
in the literature. Carry-look-ahead was used for the round-
robin arbiters in the allocator modules for the 64-port and 256-
port scheduler, both in the FPGA and ASIC implementation.

A. Application-Specific Integrated Circuit (ASIC)

The critical path, for every scheduler component, is shown
in its circuit diagram in section IV. Table II lists the corre-
sponding minimum clock period for the ASIC implementation.
The longest critical path is in the output module allocator
for switch VOQ packets. It falls in the first pipeline stage
responsible for the iSLIP allocation. It extends from the
request register through a cascade of two iSLIP arbiters and
then back to the priority register of the first arbiter, as shown
in Fig. 7. This sets the minimum clock period, Tscheduler, for
the entire scheduler at 2 ns for a 256× 256 Clos switch.

According to Table II, the increase in minimum clock
period, as the switch quadruples in size, is sublinear for all
scheduler modules, demonstrating a scalable scheduler design.
The OM allocator for new packets and the OP allocator use
same size arbiters, request and grant logic, hence the critical
path is of the same length. Moreover, there is only a small
difference in minimum clock period between the different
scheduler components, for the same switch size, indicating
an overall pipelining balance in the scheduler design. As we
reported in [29], the entire scheduler can be implemented as
a 3-stage pipelined circuit, in which case its total delay, for a
256×256 switch, would be tscheduler = 3×Tscheduler = 6 ns.
In a synchronous rack-scale (2 m) system, the total control
plane delay would be less than 20 ns, including request
generation (2 ns), propagation to scheduler (10 ns), scheduling
(6 ns) and SOA-based switch reconfiguration (0.115 ns [41]).

B. Field-Programmable Gate Array (FPGA)

The iSLIP output module allocator was implemented on
the Xilinx Virtex-7 XC7V690T FPGA board to compare the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE III
MINIMUM CLOCK PERIOD FOR FPGA IMPLEMENTATION

Switch Size
Allocation Design 16x16 32x32 64x64 256x256

OM Allocator (iSLIP) 2.9 ns - 4.5 ns 7.0 ns

Andreades et. al [28] - 5.4 ns - -

scheduler delay to ASIC implementation, previous work and
also to related work in the field. The critical path in the
allocator is the same as in the ASIC implementation.

Table III lists the minimum clock period for different
switch sizes. As the switch quadruples in size, the minimum
clock period again shows a sublinear increase, which verifies
scheduler scalability. Compared to the ASIC OM allocator in
Table II, the scheduler would run 2.6 to 3.5 times slower
on the FPGA board as the switch radix is increased from
16 to 256, respectively. However, against the Clos scheduler
design in previous work [28], a switch twice the size can
now be scheduled 16.7% faster. This is due to distributed
path allocation and routing scheme. The total scheduler delay,
compared to ASIC implementation and other related work, is
listed in Table I in section II.

VI. NETWORK EMULATION RESULTS

A network emulator was built to evaluate the switch per-
formance under the control of the scheduler in our system
concept, described in section III. The emulator was developed
in SystemVerilog, a hardware description language (HDL) for
digital design and hardware implementation, and ran in Mentor
Graphics ModelSim. Using an HDL emulator allows for cycle-
accurate measurements. The emulator consists of N packet
sources, the network model and the packet sink, arranged as
shown in the block diagram in Fig. 12.

Each packet source injects traffic with a uniform random
packet inter-arrival and the injection probability is set by a
universal load parameter. The packets are timestamped in the
clock cycle they are generated. Also, the packet destinations
(switch output ports) are random and uniformly distributed.

The network model implements an N ×N optical switch,
the switch scheduler, N server network interfaces each with
a single FIFO queue and another N network interfaces for
the switch input ports each with N FIFO virtual output
queues (VOQs). Every packet source feeds one server network
interface. The packet sink receives all output packets from the
switch instance, adds a second timestamp to each packet and
performs all necessary measurements.

The emulation captures the end-to-end latency in our system
concept, shown in Fig. 2. It includes control plane overheads
for request control (TTX), transport (tpropagation) and schedul-
ing (tscheduler) as well as data plane overheads for packet
buffering, transport (tpropagation), de-serialization (tserial) and
switch reconfiguration (tswitch).

The emulation parameters are listed in Table IV. The
(m,n, r) Clos configurations considered for the switch ar-
chitecture are the (4,4,4), (8,8,8) and (16,16,16) for sizes
16× 16, 64× 64 and 256× 256. Built using SOA technology,

N x N Network

Data Plane

Control Plane

Switch Scheduler

Packet Sink

Packet SourceTraffic
Gen

TX
Count

Time
Stamp

RX
Count

P
er

fo
rm

an
ce

C
al

cu
la

ti
o

n

Path
Allocation

Switch
Configuration

Request Control

Packet Control

Congestion Control

Request Transport Delay

Switch Configuration Delay

Buffering Delay

Packet Serialization Delay

Time
Stamp

x N

Packet Transport Delay

Fig. 12. The network emulation setup.

TABLE IV
NETWORK EMULATION PARAMETERS

Parameter Value

Measurements Duration 20 µs

Switch Size - N 16, 64, 256

Tscheduler (ASIC) 1.1 ns, 1.4 ns, 2.0 ns

TTX Tscheduler

tswitch (SOA Rise Time) 0.115 ns

tserial (k× 100 Gb/s) Tscheduler - tswitch

tpropagation (2 m) 10 ns

the reconfiguration time, tswitch, can be as low as 115 ps
[41]. The clock period, TTX , at which the packet sources
and server network interfaces are running, is equal to the
scheduler clock period, Tscheduler, for a synchronous system.
The packets are assumed to be wavelength-striped across k
wavelengths each running at 100 Gb/s, with a de-serialization
latency, tserial ≤ Tscheduler − tswitch. The propagation delay
(tpropagation) is set to 10 ns to model a rack-scale system with
2 m link distances.

Figure 13 shows the average end-to-end latency against the
input traffic load, as a percentage of capacity, for different
size Clos switches and ASIC scheduler. At low loads, the
average end-to-end latency for each switch size converges
to the minimum value; it consists of 1 TTX buffer control
delay at the packet source and server network interface, re-
quest propagation (tpropagation) to the scheduler, 3 Tscheduler

scheduling, switch reconfiguration (tswitch), packet propa-
gation (tpropagation) to the receiver and finally packet de-
serialization (tserial) at the receiver. The minimum latency
is longer for larger switches, due to longer Tscheduler, and is
given by the following equation:

t = 2TTX +2tpropagation+ tscheduler + tswitch+ tserial (3)

where tscheduler = 3 × Tscheduler. For the 256-port switch,
t = 32.0 ns out of which 20 ns is due to 2×10 m propagation.
Clock and data recovery (CDR) at the receiver is excluded but

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 10 20 30 40 50 60 70 80 90 100

Input Traffic Load (% Capacity)

10
1

10
2

10
3

10
4

A
v
e
ra

g
e
 E

n
d

-t
o

-E
n

d
 L

a
te

n
c
y
 (

n
s
)

16x16

64x64

256x256

Fig. 13. Average end-to-end latency vs. input traffic load, for different size
Clos switches. Results are based on scheduler implementation on 45 nm
CMOS ASIC. The network emulation assumes uniform random traffic and
wavelength-striped packets of at most 1 clock cycle duration. A 2 m fibre
distance to and from the switch is assumed to model rack-scale switching.

0 10 20 30 40 50 60 70 80 90 100

(a)

0

4

8

0 10 20 30 40 50 60 70 80 90 100

(b)

0

4

8

L
o

g
2
V

O
Q

 S
iz

e
 (

P
a
c
k
e
t

E
n

tr
ie

s
)

0 10 20 30 40 50 60 70 80 90 100

(c)
Input Traffic Load (% Capacity)

0

4

8

Fig. 14. Minimum switch VOQ size vs. input traffic load, for (a) 16 x 16, (b)
64 x 64 and (c) 256 x 256 Clos switch sizes. Results are based on scheduler
implementation on 45 nm CMOS ASIC. The network emulation assumes
uniform random traffic and wavelength-striped packets of at most 1 clock
cycle duration.

the overhead will not be significant, given the sub-nanosecond
CDR time reported in [42].

For all switch sizes, as the traffic load is increased, the
contention probability in the Clos switch increases and more
packets are buffered at the switch, which in turn increases
the packet average queuing delay and hence the end-to-
end latency. Also, for a given traffic load, the contention
probability is higher for larger switches, resulting in longer
latency, which is more pronounced at higher traffic loads. For
example, for latency less than 100 ns, larger switches need to
be operated at a lower traffic load. Nevertheless, the decrease is
only 5% per 4× increase in switch size, indicating scalability.

Next we examine the buffering resources required for the la-
tency performance in Fig. 13. For the server network interface
a small 4-packet buffer is enough to support input traffic at
100% of capacity, irrespective of switch size. This is attributed
to speculative transmission due to which a packet experiences
a fixed delay of 4 clock cycles in total; 1 clock cycle to be
registered and 3 more until the pipelined scheduler processes
the request (tscheduler = 3× Tscheduler).

On the other hand, the switch VOQ size required varies
with the input traffic load and switch size. Figure 14 shows the
minimum VOQ size in packet entries, required at the switch
to avoid packet loss, as a function of the input traffic load. As
expected, the size requirement increases with increasing load
due to higher contention and therefore more packets would
need to be buffered at the switch. At high loads, the size per
VOQ decreases with the switch size because the probability of
a destination occurring is lower, under uniform random traffic.
For the 256 x 256 switch, the minimum VOQ size at 100%
load is 32 packets, which translates to 512 KB per switch input
port for 64 B packets. Using control backpressure for buffering
management, a small 8-packet VOQ would suffice for all
switch sizes and traffic loads, in this rack-scale emulation,
at the cost of a larger buffer at the server network interface.

The cumulative distribution of the packet end-to-end latency
for different size Clos switches, at 25%, 50% and 75% input
traffic loads, is shown in Fig. 15. These are the distributions
from which the mean/average latency values are calculated
and plotted in Fig. 13. At 25% of the input traffic capacity,
more than 20% of the packets are received with the minimum
latency. At higher loads, in addition to path contention with
other servers, new packets experience an increased contention
with the packets already buffered at the switch VOQs, which
have a higher priority. This trades off the minimum latency
packet proportion with reduced average latency at higher loads,
as shown in Fig. 13, and also maintains a strict in-order packet
delivery. The insets in Fig. 15 focus on the distribution tails,
accounting for 99% to 100% of the received packets. The tails
have a latency range of less than an order of magnitude for
all switch sizes even at a 75% input traffic load.

The average latency for the 256×256 switch, for the FPGA-
based scheduler, is shown in Fig. 16. It is calculated based
on the Tscheduler value listed in Table III. Compared to our
previous 32×32 switch design [28], sub-microsecond latency
is now achieved up to a 65% load; a 30% gain for a switch size
eight times larger. Moreover, at 65% input traffic load, there
is now an order of magnitude decrease in average latency.
The performance improvement is due to: (a) distributed path
allocation, (b) fixed and reduced-conflict routing scheme and
(c) virtual output queuing at the switch inputs.

Figure 17 shows the switch average throughput, measured
in packets per clock cycle, against the input traffic load. At
100% input traffic load, an N ×N switch receives N packets
per clock cycle. The average throughput is expressed as a
percentage of output capacity (= N) to examine the perfor-
mance as the switch size is increased. The results show that the
switch average throughput saturates at 60% of the input traffic
capacity. The capacity in our system can be very high due
to the wavelength-striped transmission format. Furthermore,
there is a very small penalty in throughput performance
every time the switch quadruples in size, demonstrating good
scalability. In comparison to the 32 × 32 switch in previous
work, the current design increases the saturation throughput
by 28% and that for a 256× 256 switch.

The scheduler fairness, in terms of switch output port
allocation to the input ports, may be assessed by measuring the
average latency variation at the flow-level. A packet flow refers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a
)

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
il

it
y

16x16

64x64

256x256

0 50 100
0.99

1

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b
)

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
il

it
y

0 500 1000 1500
0.99

1

10
1

10
2

10
3

10
4

Packet End-to-End Latency (ns)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c
)

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
il

it
y

0 4000 8000
0.99

1

Fig. 15. Cumulative distribution of the packet end-to-end latency at (a) 25%,
(b) 50% and (c) 75% input traffic loads, for different size Clos switches.
Results are based on scheduler implementation on 45 nm CMOS ASIC. The
network emulation assumes uniform random traffic and wavelength-striped
packets of at most 1 clock cycle duration. A 2 m fibre distance to and from
the switch is assumed to model rack-scale switching.

to packets from one switch input port to the same output port.
Therefore, in an N ×N switch, there are N flows per output
port. Figure 18 shows the standard deviation of the N flow
average latencies, for each output port, at different input traffic
loads. The standard deviation is shown increasing with switch
size and traffic load, indicating a decrease in fairness. Although
round-robin arbitration is fair locally, at the system level the
scheduler is less fair. In general, there is an inherent fairness
penalty in distributed arbitration scheduling, where resource
access is decided for only a subset of requests. Furthermore,
parallel-plane path allocation for new packets and higher-
priority VOQ packets drops an increasing proportion of new
packet grants with traffic load, trading off fairness for strict

0 10 20 30 40 50 60 70 80 90 100

Input Traffic Load (% Capacity)

10
1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 E

n
d

-t
o

-E
n

d
 L

a
te

n
c
y
 (

n
s
)

32x32, ECOC'17

256x256

Fig. 16. Average end-to-end latency vs. input traffic load, for different Clos
switch schedulers. Results are based on scheduler implementation on the
Virtex-7 XC7V690T FPGA board. The network emulation assumes uniform
random traffic and wavelength-striped packets of at most 1 clock cycle
duration. A 2 m fibre distance to and from the switch is assumed to model
rack-scale switching.

0 10 20 30 40 50 60 70 80 90 100

Input Traffic Load (% Capacity)

0

10

20

30

40

50

60

70

80

90

100

S
w

it
c
h

 A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
(%

 C
a

p
a
c

it
y

)

16x16

64x64

256x256

32x32, ECOC'17

Fig. 17. Switch average throughput vs. input traffic load, for different size
Clos switches. Throughput is measured as the total number of packets per
clock cycle across all output ports. Point-to-point connections are used as a
throughput reference in a system with no contention.

in-order delivery and low average latency.

VII. CONCLUSION

We presented a highly-parallel and modular scheduler de-
sign for optical Clos switches which are practical for scalable
photonic-integrated packet switching. A novel fixed path allo-
cation scheme was used to completely eliminate contention at
the Clos central modules. For the input and output modules,
allocation is distributed to dedicated scheduler modules to
resolve any contention. The design for each scheduler hard-
ware module has been optimized for clock speed, using a
parallel and pipelined implementation, and was presented and
discussed in detail.

Each hardware module in the scheduler was synthesized
as an ASIC in a 45 nm CMOS process. The implementa-
tion results show that each module’s minimum clock period
scales sublinearly with the switch size, verifying scalability.
Furthermore, for a 256 × 256 Clos switch, the minimum
clock period for the entire scheduler unit is 2.0 ns, limited
by iSLIP allocation for the Clos input modules. This results

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 32 64 96 128 160 192 224 256

Output Port
(a)

10
-1

10
0

10
1

10
2

10
3

16x16

64x64

256x256

0 32 64 96 128 160 192 224 256

Output Port
(b)

10
-1

10
0

10
1

10
2

10
3

Standard Deviation of Average Flow Latency

0 32 64 96 128 160 192 224 256

Output Port
(c)

10
-1

10
0

10
1

10
2

10
3

Fig. 18. Standard deviation of the average flow latency per output port at (a) 25%, (b) 50% and (c) 75% input traffic loads, for different size Clos switches.
Results are based on scheduler implementation on 45 nm CMOS ASIC. The network emulation assumes uniform random traffic and wavelength-striped
packets of at most 1 clock cycle duration. A 2 m fibre distance to and from the switch is assumed to model rack-scale switching.

in a total scheduling delay of only 6.0 ns, in a 3-stage pipelined
implementation of the scheduler, outperforming the fastest
designs in the literature for the switch sizes considered here.

A cycle-accurate rack-scale emulation of our switch system
concept was developed to measure the Clos switch perfor-
mance under uniform random traffic. Based on the ASIC
implementation results, the minimum end-to-end latency for a
256×256 size is 32.0 ns, out of which only 6.0 ns are attributed
to central scheduling. For this switch size, the average end-to-
end latency remains on nanosecond time scales up to 80% of
input traffic load. The distribution of the packet latency shows
a short tail for all switch sizes examined, within an order of
magnitude from the 99th percentile, even at a 75% load.

For implementation on the Xilinx Virtex-7 XC7V690T
FPGA board, the 256-port switch average latency performance
remains on nanosecond timescale up to a 65% traffic load.
Compared to a 32-port Clos switch in previous work, this is a
30% load improvement for a switch size eight times larger. The
performance gain is due to routing scheme, distributed path
allocation and virtual output queuing (VOQ) at the switch.

The switch achieves zero packet loss for all sizes up to
100% of input traffic load. This is enabled by VOQ buffering
at the switch input ports. For the 256-port switch, the VOQ
size requirement is 32 packets to avoid packet loss at full
port capacity, but can be as short as 8 packets long if control
backpressure from the switch to the servers is applied.

The average throughput was also measured for all switch
sizes and compared to previous work. The results showed that
the switch saturates near 60% of port capacity with a very
small penalty as the switch scales in size. For all sizes, the
switch maintains the peak throughput beyond saturation as the
load is increased, indicating that the switch is stable. Moreover,
compared to the 32-port Clos switch in previous work, the
throughput has now doubled for a switch size 8 times larger.

In distributed arbitration scheduling, resource allocation
fairness is degraded as decisions are based only on a subset
of requests. In this work, scheduler fairness was assessed
by examining the packet flow average latency from different
switch input ports to the same output port. Our results showed
a switch size and traffic load dependency on the fairness
degradation. Future work will investigate scheduler design
techniques to mitigate this.

ACKNOWLEDGMENT

This work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) under Grant
EP/R035342/1 and in part by the EU Horizon 2020 programme
(Industrial Leadership section) under Grant 687632.

REFERENCES

[1] Cisco Systems, Inc., “Cisco Global Cloud Index: Forecast and Method-
ology, 2016 - 2021,” Cisco Systems, Inc., White Paper, 2018.

[2] G. Lee, Cloud Networking: Understanding Cloud-based Data Center
Networks. Morgan Kaufmann, 2014.

[3] P. Goransson and C. Black, Software Defined Networks: A Comprehen-
sive Approach. Morgan Kaufmann, 2014.

[4] N. Chrysos, F. Neeser, M. Gusat, C. Minkenberg, W. Denzel, C. Basso,
M. Rudquist, K. M. Valk, and B. Vanderpool, “Large switches or
blocking multi-stage networks? An evaluation of routing strategies for
datacenter fabrics,” Computer Networks, vol. 91, pp. 316 – 328, 2015.

[5] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in IEEE Hot Interconnects (HOTI), August 2013,
pp. 71–74.

[6] Cisco Systems, Inc., “Cisco Nexus 3548 Switch Performance Valida-
tion,” Cisco Systems, Inc., White Paper, December 2012.

[7] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfigurable
network systems and software-defined networking,” Proceedings of the
IEEE, vol. 103, no. 7, pp. 1102–1124, July 2015.

[8] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “RotorNet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: ACM, 2017, pp. 267–280.

[9] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E.
Ng, M. Kozuch, and M. Ryan, “c-Through: Part-time optics in data
centers,” in Proceedings of the ACM SIGCOMM 2010 Conference, ser.
SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 327–338.

[10] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid electri-
cal/optical switch architecture for modular data centers,” in Proceedings
of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New
York, NY, USA: ACM, 2010, pp. 339–350.

[11] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: A
topology malleable data center network,” in ACM SIGCOMM Workshop
on Hot Topics in Networks (HotNets), ser. HotNets-IX. New York, NY,
USA: ACM, 2010, pp. 1–6.

[12] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proceedings of the ACM
SIGCOMM 2013 Conference, ser. SIGCOMM ’13. New York, NY,
USA: ACM, 2013, pp. 447–458.

[13] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey,
M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-
blocking microring-based optical switch,” Photonics Research, vol. 7,
no. 2, pp. 155–161, February 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[14] P. DasMahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Optical
crosspoint matrix using broadband resonant switches,” IEEE Journal of
Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 1–10, July
2014.

[15] N. Calabretta, W. Miao, K. Mekonnen, K. Prifti, and K. Williams,
“Monolithically integrated WDM cross-connect switch for high-
performance optical data center networks,” in Optical Fiber Commu-
nications Conference and Exhibition (OFC), March 2017.

[16] Q. Cheng, A. Wonfor, J. Wei, R. V. Penty, and I. H. White, “Low-
energy, high-performance lossless 8x8 SOA switch,” in Optical Fiber
Communications Conference and Exhibition (OFC), March 2015.

[17] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W.
Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz,
C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov,
“Monolithic silicon integration of scaled photonic switch fabrics, CMOS
logic, and device driver circuits,” Journal of Lightwave Technology,
vol. 32, no. 4, pp. 743–751, February 2014.

[18] N. Dupuis, F. Doany, R. A. Budd, L. Schares, C. W. Baks, D. M.
Kuchta, T. Hirokawa, and B. G. Lee, “A nonblocking 4x4 Mach-Zehnder
switch with integrated gain and nanosecond-scale reconfiguration time,”
in Optical Fiber Communication Conference (OFC), 2019.

[19] M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid
MZI-SOA InGaAs/InP photonic integrated switches,” IEEE Journal of
Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1–8, January
2018.

[20] Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16x16 silicon op-
tical switch based on dual-ring-assisted Mach-Zehnder interferometers,”
Journal of Lightwave Technology, vol. 36, no. 2, pp. 225–232, January
2018.

[21] Q. Yang, K. Bergman, G. D. Hughes, and F. G. Johnson, “WDM
packet routing for high-capacity data networks,” Journal of Lightwave
Technology, vol. 19, no. 10, pp. 1420–1426, October 2001.

[22] A. Shacham and K. Bergman, “Building ultralow-latency interconnec-
tion networks using photonic integration,” IEEE Micro, vol. 27, no. 4,
pp. 6–20, July 2007.

[23] R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, and R. Grzybowski,
“Viable opto-electronic HPC interconnect fabrics,” in ACM/IEEE Super-
computing Conference, Nov 2005.

[24] R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella,
“Scalable and distributed contention resolution in AWGR-based data
center switches using RSOA-based optical mutual exclusion,” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 19, no. 2, pp.
3 600 111–3 600 111, March 2013.

[25] I. Cerutti, J. A. Corvera, S. M. Dumlao, R. Reyes, P. Castoldi, and
N. Andriolli, “Simulation and FPGA-based implementation of iterative
parallel schedulers for optical interconnection networks,” Journal of
Optical Communications and Networking, vol. 9, no. 4, pp. C76–C87,
April 2017.

[26] P. Andreades, Y. Wang, J. Shen, S. Liu, and P. M. Watts, “Experimental
demonstration of 75 ns end-to-end latency in an optical top-of-rack
switch,” in Optical Fiber Communications Conference and Exhibition
(OFC), March 2015.

[27] P. Andreades, K. Clark, P. M. Watts, and G. Zervas, “Experimental
demonstration of an ultra-low latency control plane for optical packet
switching in data center networks,” Optical Switching and Networking,
vol. 32, pp. 51–60, November 2019.

[28] P. Andreades and P. M. Watts, “Low latency parallel schedulers for
photonic integrated optical switch architectures in data centre networks,”
in European Conference on Optical Communication (ECOC), September
2017.

[29] P. Andreades and G. Zervas, “Parallel distributed schedulers for scalable
photonic integrated packet switching,” in Photonics in Switching and
Computing (PSC), September 2018.

[30] C. Clos, “A study of non-blocking switching networks,” The Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, March 1953.

[31] I. H. White, E. T. Aw, K. A. Williams, H. Wang, A. Wonfor, and R. V.
Penty, “Scalable optical switches for computing applications [Invited],”
Journal of Optical Networking, vol. 8, no. 2, pp. 215–224, Feb 2009.

[32] A. Shacham, B. A. Small, O. Liboiron-Ladouceur, J. P. Mack, and
K. Bergman, “An ultra-low latency routing node for optical packet
interconnection networks,” in IEEE Lasers and Electro-Optics Society
(LEOS), vol. 2, November 2004, pp. 565–566.

[33] A. Shacham, B. G. Lee, and K. Bergman, “A wide-band nonblocking
2x2 switching node for a SPINet network,” IEEE Photonics Technology
Letters, vol. 17, no. 12, pp. 2742–2744, December 2005.

[34] J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Cal-
abretta, “Low latency and large port count optical packet switch with

highly distributed control,” in Optical Fiber Communication Conference
and Exposition and the National Fiber Optic Engineers Conference
(OFC/NFOEC), March 2012.

[35] F. Yan, W. Miao, O. Raz, and N. Calabretta, “OPSquare: A flat DCN
architecture based on flow-controlled optical packet switches,” Journal
of Optical Communications and Networking, vol. 9, no. 4, pp. 291–303,
April 2017.

[36] W. Miao, J. Luo, S. Di Lucente, H. Dorren, and N. Calabretta, “Novel flat
datacenter network architecture based on scalable and flow-controlled
optical switch system,” Optics Express, vol. 22, no. 3, pp. 2465–2472,
February 2014.

[37] X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo,
I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet,
A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam,
E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy,
“Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and
receiver,” Optics Express, vol. 19, no. 6, pp. 5172–5186, March 2011.

[38] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[39] P. Gupta and N. McKeown, “Designing and implementing a fast crossbar
scheduler,” IEEE Micro, vol. 19, no. 1, pp. 20–28, January 1999.

[40] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188–201, April 1999.

[41] R. C. Figueiredo, N. S. Ribeiro, A. M. O. Ribeiro, C. M. Gallep,
and E. Conforti, “Hundred-picoseconds electro-optical switching with
semiconductor optical amplifiers using multi-impulse step injection
current,” Journal of Lightwave Technology, vol. 33, no. 1, pp. 69–77,
January 2015.

[42] K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller,
K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, G. Zervas,
P. Costa, and Z. Liu, “Sub-nanosecond clock and data recovery in an
optically-switched data centre network,” in European Conference on
Optical Communication (ECOC), September 2018.

