2,966 research outputs found

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Investigation of advanced navigation and guidance system concepts for all-weather rotorcraft operations

    Get PDF
    Results are presented of a survey conducted of active helicopter operators to determine the extent to which they wish to operate in IMC conditions, the visibility limits under which they would operate, the revenue benefits to be gained, and the percent of aircraft cost they would pay for such increased capability. Candidate systems were examined for capability to meet the requirements of a mission model constructed to represent the modes of flight normally encountered in low visibility conditions. Recommendations are made for development of high resolution radar, simulation of the control display system for steep approaches, and for development of an obstacle sensing system for detecting wires. A cost feasibility analysis is included

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Vehicle Sensing and Communications using LED Headlights to Enhance the Performance of Intelligent Transportation Systems: Proof of Concept, Implementation, and Applications

    Get PDF
    This project investigates the use of vehicle light-emitting diode (LED) headlamp devices for improving the accuracy and reliability of traffic (sensing and communication) data measurements required for developing effective intelligent transportation systems (ITS) technologies and solutions. Vehicular communication and sensing technologies are mainly based on conventional radio frequency (RF) or laser technologies. These systems suffer from several issues such as RF interference and poor performance in scenarios where the incidence angle between the speed detector and the vehicle is rapidly varying. Introducing a new sensing technology will add diversity to these systems and enhance the reliability of the real-time data. In this project, we proposed and investigated a novel speed estimation sensing system named “Visible Light Detection and Ranging (ViLDAR)” (patent pending). ViLDAR utilizes visible light-sensing technology to measure the variation of the vehicle’s headlamp light intensity to estimate the vehicle speed. Similarly, visible light sensing technology is used for data communication purposes, where the vehicle headlamp is utilized for wireless data transmission purposes. This project outlines the ViLDAR system simulations, implementation including hardware and software components, experimental evaluation in both laboratory and outdoor environments. The experimental measurement settings of the ViLDAR experiments are detailed. Encouraging results for both sensing and communication scenarios are obtained. The outcome of this proof-of-concept study both in the laboratory and outdoor validates the merit of the proposed technology in speed estimation (sensing) and data communication. The outcomes of this project will inspire a wide and diverse range of researchers, scientists and practitioners from the ITS community to explore this new and exciting technology. This project built initial steps in exploring this new sensing and communication modality using vehicle headlamps, leaving open a wide field for exploration and novel research

    Vehicle Sensing and Communications using LED Headlights to Enhance the Performance of Intelligent Transportation Systems: Proof of Concept, Implementation, and Applications

    Get PDF
    This project investigates the use of vehicle light-emitting diode (LED) headlamp devices for improving the accuracy and reliability of traffic (sensing and communication) data measurements required for developing effective intelligent transportation systems (ITS) technologies and solutions. Vehicular communication and sensing technologies are mainly based on conventional radio frequency (RF) or laser technologies. These systems suffer from several issues such as RF interference and poor performance in scenarios where the incidence angle between the speed detector and the vehicle is rapidly varying. Introducing a new sensing technology will add diversity to these systems and enhance the reliability of the real-time data. In this project, we proposed and investigated a novel speed estimation sensing system named “Visible Light Detection and Ranging (ViLDAR)” (patent pending). ViLDAR utilizes visible light-sensing technology to measure the variation of the vehicle’s headlamp light intensity to estimate the vehicle speed. Similarly, visible light sensing technology is used for data communication purposes, where the vehicle headlamp is utilized for wireless data transmission purposes. This project outlines the ViLDAR system simulations, implementation including hardware and software components, experimental evaluation in both laboratory and outdoor environments. The experimental measurement settings of the ViLDAR experiments are detailed. Encouraging results for both sensing and communication scenarios are obtained. The outcome of this proof-of-concept study both in the laboratory and outdoor validates the merit of the proposed technology in speed estimation (sensing) and data communication. The outcomes of this project will inspire a wide and diverse range of researchers, scientists and practitioners from the ITS community to explore this new and exciting technology. This project built initial steps in exploring this new sensing and communication modality using vehicle headlamps, leaving open a wide field for exploration and novel research

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced
    • …
    corecore