6,143 research outputs found

    A new long-step interior point algorithm for linear programming based on the algebraic equivalent transformation

    Get PDF
    In this paper, we investigate a new primal-dual long-step interior point algorithm for linear optimization. Based on the step-size, interior point algorithms can be divided into two main groups, short-step and long-step methods. In practice, long-step variants perform better, but usually, a better theoretical complexity can be achieved for the short-step methods. One of the exceptions is the large-update algorithm of Ai and Zhang. The new wide neighbourhood and the main characteristics of the presented algorithm are based on their approach. In addition, we use the algebraic equivalent transformation technique by Darvay to determine the search directions of the method

    Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming

    Get PDF
    In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields a (practical) long-step algorithm. Both algorithms allow for the Newton equation system to be solved inexactly. For both algorithms we will provide conditions for the level of error acceptable in the Newton equation and establish the worst-case complexity results

    A Generalized Direction in Interior Point Method for Monotone Linear Complementarity Problems

    No full text
    International audienceIn this paper, we present a new interior point method with full Newton step for monotone linear complementarity problems. The specificity of our method is to compute the Newton step using a modified system similar to that introduced by Darvay in 2003. We prove that this new method possesses the best known upper bound complexity for these methods. Moreover, we extend results known in the literature since we consider a general family of smooth concave functions in the Newton system instead of the square root. Some computational results are included to illustrate the validity of the proposed algorithm

    Predictor-corrector interior-point algorithm for sufficient linear complementarity problems based on a new type of algebraic equivalent transformation technique

    Get PDF
    We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear complementarity problem (LCP) with P_* (Îș)-matrices. The introduced IPA uses a new type of algebraic equivalent transformation (AET) on the centering equations of the system defining the central path. The new technique was introduced by Darvay et al. [21] for linear optimization. The search direction discussed in this paper can be derived from positive-asymptotic kernel function using the function φ(t)=t^2 in the new type of AET. We prove that the IPA has O(1+4Îș)√n log⁡〖(3nÎŒ^0)/Δ〗 iteration complexity, where Îș is an upper bound of the handicap of the input matrix. To the best of our knowledge, this is the first PC IPA for P_* (Îș)-LCPs which is based on this search direction

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≄1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    • 

    corecore