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Abstract

We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear
complementarity problem (LCP) with P∗(κ)-matrices. The introduced IPA uses a new type of
algebraic equivalent transformation (AET) on the centering equations of the system defining the
central path. The new technique was introduced by Darvay et al. [21] for linear optimization.
The search direction discussed in this paper can be derived from positive-asymptotic kernel
function using the function ϕ(t) = t2 in the new type of AET. We prove that the IPA has

O
(

(1 + 4κ)
√
n log 3nµ0

4ε

)
iteration complexity, where κ is an upper bound of the handicap of the

input matrix. To the best of our knowledge, this is the first PC IPA for P∗(κ)-LCPs which is
based on this search direction.

Keywords: Predictor-corrector interior-point algorithm, P∗(κ)-linear complementarity
problem, new search direction, polynomial iteration complexity
2000 MSC: 90C51, 90C33
JEL codes: C61

1. Introduction

The linear complementarity problem (LCP ) is a well-known problem which includes linear
programming (LP) and linearly constrained (convex) quadratic programming problem (QP),
as special cases. Many classical applications of LCPs can be found in different fields, such as
optimization theory, game theory, economics, engineering, etc. [25, 8]. For example, bimatrix
games can be transformed into LCPs under specific assumptions [40]. Kojima and Saigal [38]
used the degree theory in order to study LCPs. Furthermore, the Arrow-Debreu competitive
market equilibrium problem with linear and Leontief utility functions can be also given as LCP
[68].

More recent work of Brás et al. [6] connected the copositivity testing of matrices and
solvability of special LCPs. Darvay et al. [18] published a PC IPA for sufficient LCPs using
the function ϕ̄(t) = t −

√
t for AET, but tested numerically their algorithm beyond the class

of sufficient matrices, too. Numerical results produced by the developed PC IPA for testing
copositivity of matrices using LCPs were very promising.
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Sloan and Sloan [56] showed that solvability of LCPs related to quitting games ensures the
existence of different ε-equilibrium solutions. There is no reported computational study on this
type of application of LCPs, yet.

In the LCP we want to find vectors x, s ∈ Rn, that satisfy the constraints

−Mx + s = q, xs = 0, x, s ≥ 0, (LCP )

where M ∈ Rn×n and q ∈ Rn. The following notations are used to denote the feasible region,
the interior and the solutions set of LCP:

F := {(x, s) ∈ Rn⊕ × Rn⊕ : −Mx + s = q},
F+ := {(x, s) ∈ Rn+ × Rn+ : −Mx + s = q}, and F∗ := {(x, s) ∈ F : xs = 0}.

We denoted by Rn⊕ the n-dimentional nonnegative orthant and by Rn+ the positive orthant,
respectively. The most important basic results related to LCPs are summarized in the books of
Cottle et al. [8] and Kojima et al. [37].

There are several methods for solving LCPs with different matrices, such as simplex [10, 64,
65, 67], criss-cross [11, 12, 26, 27, 24] or other pivot [39, 63] algorithms. However, the IPAs for
solving LCPs received more attention in last decades [37]. It should be mentioned that LCPs
belong to the class of NP-complete problems [7]. In spite of this fact, due to the results of Kojima
et al. [37], if we suppose that the problem’s matrix has P∗(κ)-property, the IPAs solving these
kind of LCPs usually have polynomial complexity in the handicap of the problem’s matrix, the
size of the problem and the bitsize of the data. Beside this, Väliaho [61] showed that the class of
P∗-matrices is equivalent to the class of sufficient matrices given by Cottle et al. [9]. Potra and
Liu [50] proposed an IPA for sufficient LCPs which uses a wide neighbourhood of the central
path and the algorithm does not depend on the handicap of the problem. There are several
known IPAs not depending on the handicap of the sufficient matrix, such as the IPAs given by
Potra and Sheng [52], Potra and Liu [50], Illés and Nagy [31], Liu and Potra [42] and Lešaja
and Potra [55]. The IPAs for solving sufficient LCPs have been also extended to general LCPs
[33, 34]. Illés et al. [33, 32] generalized large-update, affine scaling and PC IPAs for solving
LCPs with general matrices.

The PC IPAs perform a predictor and one or more corrector steps in a main iteration. The
aim of the predictor step is to reach optimality, hence after an affine-scaling step a certain
amount of deviation from the central path is allowed. The goal of the corrector step is to return
in the neighbourhood of the central path. The PC IPAs turned out to be efficient in practice.
The first PC IPA for LO was given by Mehrotra [44] and Sonnevend et al. [57]. Potra and
Sheng [51, 52] defined PC IPAs for sufficient LCPs. Mizuno, Todd and Ye [46] gave the first
PC IPA for LO which uses only one corrector step in a main iteration and these IPAs were
named Mizuno-Todd-Ye (MTY) type PC IPAs. Miao [45] extended the MTY IPA given by [46]
to P∗(κ)-LCPs. Following this result, several MTY type PC IPAs have been proposed among
others by Illés and M. Nagy [31], Kheirfam [35] and Darvay et al. [18]. In [18] the authors gave
a unified framework to determine the Newton systems and scaled systems in case of PC IPAs
using the AET technique.

Barrier functions are oftenly used for the determination of the search directions in case of
IPAs. By considering self-regular kernel functions, Peng, Roos and Terlaky [48] reduced the
theoretical complexity of large-update IPAs. Later on, Lešaja and Roos [41] provided a unified
analysis of IPAs for P∗(κ)-LCPs that are based on eligible kernel functions. In 2005, Darvay
proposed the AET technique for defining search directions in case of IPAs for LO [13, 14]. He
applied a continuously differentiable, invertible, monotone increasing function ϕ̄ : (ξ2,∞)→ R,
where 0 ≤ ξ < 1, on the nonlinear equation of the central path problem. The majority of
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the published IPAs for sufficient LCPs does not use any transformation of the central path,
which means that these IPAs use the identity map in the AET technique in order to define
the search directions. Darvay [13, 14, 15] used the square root function in the AET technique
for LO. In 2016, Darvay et al. [19] introduced an IPA for LO based on the direction using the
function ϕ̄(t) = t−

√
t. In her PhD thesis, Rigó [54] presented several IPAs that use the function

ϕ̄(t) = t −
√
t in the AET technique. Recently, Kheirfam and Haghighi [36] have proposed an

IPA for P∗(κ)-LCPs which uses the function ϕ̄(t) =
√
t

2(1+
√
t)

in the AET technique. Haddou

et al. [29] have recently introduced a family of smooth concave functions which leads to IPAs
with the best known iteration bound. The AET technique has been also extended to LCPs
[1, 3, 4, 35, 43].

Zhang and Xu [69] used the equivalent form v2 = v of the centering equation, where

v =
√

xs
µ , µ > 0. They considered the xs = µv transformation. Darvay and Takács [21]

introduced a new method for determining class of search directions using a new type of AET
of the centering equations. They modified the nonlinear equation v2 = v by applying compo-
nentwisely a continuously differentiable function ϕ : (ξ2,∞) → R, 0 ≤ ξ < 1 to the both sides
of this equation. The properties of this function ϕ will be presented in Subsection 2.3. The
relationship between the functions ϕ and ϕ̄ will be discussed later as a novelty of this paper. In
[21] the authors considered the function ϕ(t) = t2 in order to determine the new search direc-
tions. Zhang et al. [70] extended the feasible IPA given in [21] to P∗(κ)-LCPs. Furthermore,
Takács and Darvay [58] generalized the approach for determining search directions proposed
in [21] to SO and they showed that the corresponding kernel function is a positive-asymptotic
kernel function. The positive-asymptotic kernel function was introduced by Darvay and Takács
[20] and differs from the class of kernel functions introduced by Bai et al. [5].

In this paper we introduce a new PC IPA for solving P∗(κ)-LCPs which uses the new type of
AET given in [21] for LO. The proposed IPA applies the function ϕ(t) = t2 on the modified non-
linear equation v2 = v in order to obtain the search directions. In this sense, the corresponding
kernel function is a positive-asymptotic kernel function. Similar to [18] we present the method
for determining the Newton systems and scaled systems in case of PC IPAs using this new type
of AET. We also present the complexity analysis of the proposed PC IPA. Due to the used
search direction we have to ensure during the whole process of the IPA that the components of

the vector v are greater than
√

2
2 , which makes the analysis more difficult. In spite of this fact,

we show that the introduced IPA has O
(

(1 + 4κ)
√
n log 3nµ0

4ε

)
iteration complexity, where κ is

the upper bound on the handicap of matrix M , µ0 is the starting, average complementarity gap
and ε is the final displacement from the complementarity gap, respectively. This is the first PC
IPA for solving P∗(κ)-LCPs which uses the function ϕ(t) = t2 in the new type of AET.

The paper is organized as follows. In Section 2 we give some basic concepts and useful
results about the P∗(κ)-LCPs and P∗(κ)-matrices. Furthermore, in Subsection 2.3, depending
on the representation of the nonlinear equation of the central path, a new way of applying the
AET is discussed and compared to the earlier used AET technique. The usual, but important,
scaling technique is discussed together with the unique solvability of the Newton-system, as
well. In Subsection 2.5 different types of kernel functions are presented and compared. From
our discussion, it is clear that to the function ϕ(t) = t2 used in the new type of AET corresponds
a kernel function which is positive-asymptotic kernel function. In Section 3, the new PC IPA is
presented. While, Section 4 contains the complexity analysis of the introduced PC IPA with the
new search directions. In Section 5 numerical computations are presented and compared to the
computational performance of an earlier introduced PC IPA [18] that used different function ϕ
in the AET. In Section 6 some concluding remarks are enumerated.
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2. Linear complementarity problems with P∗(κ)-matrices

In this section we summarize important definitions and results related to LCPs with sufficient
matrices. Furthermore, we introduce the AET of the central path. Following the steps of Darvay
et al. [21], first we derive a known, equivalent description of the central path and then we apply
the AET approach, see Subsection 2.3. The first observation is related to the fact that the same
search directions can be obtained in different ways. Another interesting fact is the connection
between different AET functions, equivalent forms of the central path and some kernel functions.

2.1. Sufficient matrices

Kojima et al. [37] presented the notion of P∗(κ)-matrices, which is a generalization of
positive semidefinite matrices. We call a problem P∗(κ)-LCP if the problem’s matrix of (LCP )
is P∗(κ)-matrix, i.e.

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn, (1)

where

I+(x) = {1 ≤ i ≤ n : xi(Mx)i > 0} and I−(x) = {1 ≤ i ≤ n : xi(Mx)i < 0}

and κ ≥ 0 is a nonnegative real number. We will assume throughout the paper that F+ 6= ∅,
there is an initial point (x0, s0) ∈ F+ and M is a P∗(κ)-matrix.

We use P∗ to denote the set of all P∗(κ)-matrices for all κ ≥ 0. In [9] Cottle et al. gave the
definition of column sufficient, row sufficient and sufficient matrices, respectively. In this sense,
a matrix is sufficient if it is both column and row sufficient. Kojima et al. [37] showed that
a P∗-matrix is column sufficient and Guu and Cottle [28] proved that it is row sufficient, too.
This means, that each P∗-matrix is sufficient. Furthermore, Väliaho [61] showed that the class
of P∗-matrices is equivalent to the class of sufficient matrices.

The handicap of M [61] is the smallest value of κ̂(M) ≥ 0 such that M is P∗(κ̂(M))-matrix.
Väliaho [61] also proved that a matrix M is P∗ if and only if the handicap κ̂(M) of M is finite.

Note that the worst-case iteration complexity of the IPAs for LCP depends on the upper
bound of the handicap of the matrix M . Väliaho [60] gave an algorithm which decides whether
a matrix M is sufficient or not. Furthermore, Väliaho [62] conjectured that the handicap of a
matrix M is a continuous function of the elements of M and he proposed an algorithm which
gives the handicap of a sufficient matrix. Tseng [59] proved that deciding whether a square
matrix with rational entries is a column sufficient matrix leads to a co-NP-complete problem.
Hence, given a square matrix M we can not decide in polynomial time whether M ∈ P∗(κ). De
Klerk and E.-Nagy [23] showed that the handicap of a P∗(κ)-matrix may be exponential in its
bit size. This means that if the handicap of the matrix is exponentially large in the size and bit
size of the problem, then the known complexity bounds of IPAs may not be polynomial in the
input size of the LCP.

2.2. Central path of sufficient LCPs

The central path problem for (LCP ) is:

−Mx + s = q, x, s > 0, xs = µ e, (2)

where e denotes the n-dimensional vector of ones and µ > 0. Kojima et al. [37] showed that the
sequence {(x(µ), s(µ)) | µ > 0} of solutions lying on the central path parameterised by µ > 0
approach a solution (x, s) of the (LCP ).
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T. Illés, C. Roos, and T. Terlaky gave an elementary constructive proof for the existence and
uniqueness of the central path for sufficient LCPs in an unpublished manuscript in 1997. The
constructive proof of Illés et al. appears in Theorem 3.6 in the PhD thesis of M. E.-Nagy [47].

Similarly to [21], we use x, s > 0 and µ > 0, hence we obtain:

x s = µ e⇔ x s

µ
= e⇔

√
x s

µ
= e⇔ x s

µ
=

√
xs

µ
.

Now the central path problem for (LCP) can be equivalently stated as

−Mx + s = q, x, s > 0,
x s

µ
=

√
xs

µ
. (3)

Different forms of the central path problem (2) and (3) will be used later in the AET context.

Kojima et al. proved an important result in Lemma 4.1 of [37], which plays important role
in the solvability of the Newton system. An important corollary of Lemma 4.1 presented in [37]
is the following.

Corollary 2.1. Let M ∈ Rn×n be a P∗(κ)-matrix, x, s ∈ Rn+. Then, for all aϕ ∈ Rn the system

−M∆x + ∆s = 0

S∆x +X∆s = aϕ (4)

has a unique solution (∆x,∆s), where X and S are the diagonal matrices obtained from the
vectors x and s.

2.3. Algebraic equivalent transformation (AET) of the central path

The goal of the AET technique introduced by Darvay [13, 14] is to represent the central
path in a different way and to derive Newton-system from these representations depending on
the continuously differentiable, invertible, monotone increasing function ϕ̄ : (ξ2,∞)→ R, where
0 ≤ ξ < 1.

Now, we can apply the AET to the central path problem in the form (2) or (3). In case of
applying the AET method to (2), we obtain the following form of the central path

−Mx + s = q, x, s > 0, ϕ̄

(
x s

µ

)
= ϕ̄(e). (5)

However, if the AET is applied to (3) using the continuously differentiable function ϕ : (ξ2,∞)→
R, where 0 ≤ ξ < 1, then we get

−Mx + s = q, x, s > 0, ϕ

(
x s

µ

)
= ϕ

(√
x s

µ

)
. (6)

The following interesting question arises: if we use different transformed forms of the central
path (say (5) or (6)), is it necessary to use some extra criterion on functions ϕ? An answer
regarding this question will be given at the end of this subsection.

An interesting observation is the connection between systems (5) and (6). For this, let
ϕ̄ : (ξ2,∞)→ R

ϕ̄(t) = ϕ(t)− ϕ(
√
t). (7)

This leads to

ϕ̄

(
x s

µ

)
= ϕ

(
x s

µ

)
− ϕ

(√
x s

µ

)
. (8)
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Hence, we have

ϕ̄

(
x s

µ

)
= ϕ̄(e)⇔ ϕ

(
x s

µ

)
− ϕ

(√
x s

µ

)
= ϕ(e)− ϕ(

√
e)⇔ ϕ

(
x s

µ

)
= ϕ

(√
x s

µ

)
.

Majority of the published IPAs using the AET, derives the Newton-system from (5), while
only few, like Darvay and Takács [21], and Zhang et al. [70] applies the AET to (6). We follow
the second approach to derive the corresponding Newton-system.

For an (x, s) ∈ F+ our aim is to find search directions ∆x and ∆s such that

−M(x + ∆x) + (s + ∆s) = q,

ϕ

(
xs

µ
+

x∆s + s∆x + ∆x∆s

µ

)
= ϕ

(√
xs

µ
+

x∆s + s∆x + ∆x∆s

µ

)
,

We neglect the quadratic terms and apply Taylor’s theorem to the function ϕ̄(t) = ϕ(t) −
ϕ(
√
t). Hence, after some calculations we obtain (4) with

aϕ = µ
−ϕ

(
xs
µ

)
+ ϕ

(√
xs
µ

)
ϕ′
(
xs
µ

)
− 1

2
√

xs
µ

ϕ′
(√

xs
µ

) . (9)

Now, from the denominator of the obtained fractional expression, it is clear that we need extra
assumption on the function ϕ, namely

2 t ϕ′(t2)− ϕ′(t) > 0, (10)

for all t > ξ, with 0 ≤ ξ < 1.

Lemma 2.2. Let ϕ̄ : (ξ2,∞) → R as given in (7). Then, ϕ̄ : (ξ2,∞) → R is monotone
increasing if and only if condition (10) is satisfied for the function ϕ.

Proof. Using (7) we have ϕ̄′(t) = ϕ′(t)− 1
2
√
t
ϕ′(
√
t). Hence,

ϕ̄′(t) > 0, ∀t > ξ2 if and only if ϕ′(t)− 1

2
√
t
ϕ′(
√
t) > 0, ∀t > ξ2. (11)

Considering change of variable u :=
√
t in the second part of (11) we obtain condition (10).

Depending on the used functions ϕ we can have different vectors aϕ. In [18] and [54] the
authors presented the functions ϕ̄ already used in the literature in case of IPAs in order to derive
complexity results for different class of optimization problems, including LO and sufficient LCPs,
as well.

Now, if a function ϕ satisfying condition (10) is applied to (6), then using (7) and Lemma 2.2
we immediately obtain an IPA with ϕ̄ applied to (5). However, if a function ϕ̄ satifying ϕ̄′(t) > 0
is applied to (5) and we derive an IPA, we do not have guarantee that a correponding function ϕ
exists, due to the fact that the connection between ϕ̄ and ϕ is given as a functional equation (7).
Thus, we do not have in this case immediately another description of the IPA. In other words,
we should consider the following question: can we find a corresponding function ϕ : (ξ2,∞)→ R
for a given ϕ̄ : (ξ2,∞) → R, 0 ≤ ξ < 1? To answer this, we give counterexamples. Using the
definition of the function ϕ̄ given in (7), we have limt→0 ϕ̄(t) = ϕ̄(1) = 0. However, the functions
ϕ̄ are monotone increasing. Hence, all the functions ϕ̄ that are defined on the whole interval
(0,∞), i.e. ξ = 0, are counterexamples. However, it would be interesting to define a class of
monotone increasing functions ϕ̄ for which we can assign corresponding functions ϕ. For this, we
should solve the functional equation ϕ(t)− ϕ(

√
t) = ϕ̄(t) for a given function ϕ̄ : (ξ2,∞)→ R.

This leads to further research topics.
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2.4. Scaling

Let us consider

v =

√
x s

µ
, d =

√
x

s
, dx =

d−1 ∆x
√
µ

=
v ∆x

x
, ds =

d ∆s
√
µ

=
v ∆s

s
. (12)

From (12) we obtain

∆x =
x dx
v

and ∆s =
s ds
v
.

Hence, if we substitute these in the second equation of system (4) we get

x s dx
v

+
x s ds

v
= µ

2v
(
ϕ(v)− ϕ(v2)

)
2vϕ′(v2)− ϕ′(v)

. (13)

The transformed Newton system (4) with aϕ, see (9), obtained from (6) by applying the AET

and then scaling it, leads to the following form of the scaled Newton-system:

− M̄dx + ds = 0,

dx + ds = pϕ, (14)

where M̄ = DMD, D = diag(d) and

pϕ =
2
(
ϕ(v)− ϕ(v2)

)
2 vϕ′(v2)− ϕ′(v)

. (15)

From Theorem 3.5 proposed in [37] and Corollary 2.1 it can be proved that system (14) has
unique solution.

It should be mentioned that if we use the function ϕ :
(

1
2 ,∞

)
→ R, ϕ(t) = t, which satisfies

condition (10), then we have

pϕ =
2v − 2v2

2v − e
. (16)

Interestingly enough that exactly the same pϕ vector can be derived if the AET is applied to
(5) with function ϕ̄(t) = t−

√
t. For details see papers [19, 16] for LO and [17, 18] for sufficient

LCPs. This can be proved by using (7), because in this case we have ϕ̄(t) = ϕ(t)−ϕ(
√
t) = t−

√
t.

Furthermore, if we apply the AET to system (6) using the function ϕ(t) = t2, then we obtain the
same system as if we apply ϕ̄(t) = ϕ(t)−ϕ(

√
t) = t2− t to system (5). It should be mentioned,

that this function has not been used in the literature in the AET technique. Hence, the function
ϕ(t) = t2 used in the AET approach and applied to (6) leads to novel search directions discussed
in this paper.

2.5. Search directions based on kernel functions

Peng et al. [48] introduced the class of self-regular barrier functions and defined large-update
IPAs for solving LO problems. In [54] the author presented different types of kernel functions
that are used in the determination of the search directions.

Definition 2.1. (Bai et al. [5]) A function ψ : R+ → R⊕ is called kernel function if it is twice
continuously differentiable and if the following conditions hold:

7



i. ψ(1) = ψ′(1) = 0;

ii. ψ′′(t) > 0, for all t > 0;

iii. limt↓0 ψ(t) = limt→∞ ψ(t) =∞.

Note that if condition iii. of Definition 2.1 is satisfied, then some authors call the function ψ
coercive kernel funcion [66]. Moreover, some authors also consider other conditions for defining
a class of kernel functions [41]. A barrier function Ψ : Rn+ → R can be constructed as Ψ(v) =∑n

i=1 ψ(vi), where v ∈ Rn+. Peng et al. [48] considered a modification of the third equation of
system (14):

dx + ds = −∇Ψ(v).

The search directions for sufficient LCPs using self-regular IPAs are determined as the unique
solutions of the system

−M̄dx + ds = 0,

dx + ds = −∇Ψ(v). (17)

In [20, 53] the authors introduced the notion of the positive-asymptotic kernel function and
its associated barrier for SO problems. It is clear that the concept of positive-asymptotic kernel
function can be used for LCPs, as well, see [54].

Definition 2.2. (Darvay and Takács [20]) Let 0 ≤ ξ < 1 and D = (ξ,+∞) be an open interval.
A function ψ : D → [0,+∞) is called ξ-asymptotic kernel function if it is twice continuously
differentiable and if the following conditions hold:

i. ψ(1) = ψ′(1) = 0;

ii. ψ′′(t) > 0, for all t > ξ;

iii. limt↓ξ ψ(t) = limt→∞ ψ(t) =∞.

Note that if ξ = 0 then the notion of ξ-asymptotic kernel function coincides with the concept of
kernel function.

Definition 2.3. (Darvay and Takács [20]) A function is a positive-asymptotic kernel function
iff it is ξ-asymptotic and 0 < ξ < 1.

From the second equations of systems (14) and (17), we have

dx + ds = −∇Ψ(v) = pϕ =
2
(
ϕ(v)− ϕ(v2)

)
2 vϕ′(v2)− ϕ′(v)

, (18)

Using (18) and Ψ(v) =
∑n

i=1 ψ(vi) we can associate a corresponding kernel function, see [21],
to several functions ϕ appeared in the new type of AET specified in (6) as:

ψ(t) =

∫ t

1

2ϕ(η2)− 2ϕ(η)

2ηϕ′(η2)− ϕ′(η)
dη.

If we use ϕ(t) = t2 we get the following kernel function:

ψ :

(√
2

2
,∞

)
→ R⊕, ψ(t) =

t2 − 1

4
− log(2t2 − 1)

8
.
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Note that this function is positive-asymptotic kernel function, with ξ =
√

2
2 . It should be

mentioned that in [54] a more detailed description is given related to the relationship between
the approach based on kernel functions and on the classical AET characterized by system (5).

In the following subsection we give a general method of determining the scaled predictor and
scaled corrector systems in case of PC IPAs using this new type of AET.

2.6. Search directions in case of PC IPAs

Darvay et al. [18] gave a general framework to determine the scaled systems in case of
PC IPAs for sufficient LCPs. Following the steps of their method, we give firstly the scaled
corrector system, which coincides with system (14). This system has the unique solution: dcx =

(I + M̄)−1pϕ, dcs = M̄(I + M̄)−1pϕ. From ∆cx = xdcx
v and ∆cs = s dcs

v we can calculate search
directions ∆cx and ∆cs. The difference between this method and the one presented in [18] is
that we have different value of the vector pϕ due to the used function ϕ(t) = t2 in the AET
technique. In the transformed Newton system (4) we decompose aϕ given in (9) in the following
way [18]:

aϕ = f(x, s, µ) + g(x, s), (19)

where f : Rn+ × Rn+ × R⊕ → Rn with f(x, s, 0) = 0 and g : Rn+ × Rn+ → Rn. We set µ = 0 in
(19), because we would like to make as greedy predictor step as possible. From [18] we obtain

−M̄dx + ds = 0,

dx + ds =
vg(x, s)

xs
, (20)

where M̄ = DMD. The unique solution of system (20) is dpx = (I + M̄)−1 vg(x,s)
xs and dps =

M̄(I + M̄)−1 vg(x,s)
xs . The difference between this approach and the one given in [18] lies in the

different value of the vector aϕ and of g(x, s). From ∆px = xdpx
v and ∆ps = s dps

v the ∆px and
∆ps search directions can be easily calculated. It should be mentioned that the decomposition
(19) is not trivial and we have no guarantee that such decomposition exists for all functions ϕ
suitable for AET.

3. New PC IPA for P∗(κ)-LCPs based on a new search direction

In this section we introduce a PC IPA using the AET technique presented in Subsection 2.3.
We deal with the function ϕ :

(
1
2 ,∞

)
→ R, ϕ(t) = t2, so we obtain

pϕ =
v − v3

2v2 − e
. (21)

It should be mentioned that the condition 2tϕ′(t2) − ϕ′(t) > 0,∀t > ξ is satisfied in this case,

where ξ =
√

2
2 . Let us define the centrality measure δ : Rn+ × Rn+ × R+ → R ∪ {∞} as

δ(x, s, µ) := δ(v) :=
‖pϕ‖

2
=

1

2

∥∥∥∥ v − v3

2v2 − e

∥∥∥∥ . (22)

Beside this, we give the τ -neighbourhood of a fixed point of the central path as

N2(τ, µ) := {(x, s) ∈ F+ : δ(x, s, µ) ≤ τ} =

{
(x, s) ∈ F+ :

1

2

∥∥∥∥ v − v3

2v2 − e

∥∥∥∥ ≤ τ} , (23)

where τ is a threshold parameter and µ > 0 is fixed.
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First, we need to find the decomposition of aϕ as it is given in (19):

aϕ =
µx s

2 (2 x s− µ e)
− x s

2
,

hence f(x, s, µ) = µx s
2 (2x s−µ e) , which satisfies the condition f(x, s, 0) = 0 and g(x, s) = −x s

2 . In

this case, the transformed Newton system (4) with (9) is the following:

−M∆x + ∆s = 0,

S∆x +X∆s =
µx s

2 (2 x s− µ e)
− x s

2
. (24)

Note that some IPAs use firstly corrector steps and after that predictor step, see Potra [49].
Our algorithm also performs firstly a corrector step if the initial interior point is not well centered
and after that a predictor one. The PC IPA starts with (x, s) ∈ N2(τ, µ), which holds in case of
(x0, s0), because δ(x0, s0, µ) ≤ τ . In a corrector step we obtain dcx and dcs by solving

− M̄dcx + dcs = 0,

dcx + dcs =
v − v3

2v2 − e
, (25)

where we used the scaling notations considered in Section 2.4, M̄ = DMD and D = diag(d).
From Theorem 3.5 given in [37] and Corollary 2.1 it can be proved that system (25) has unique
solution:

dcx = (I + M̄)−1 v − v3

2v2 − e
, dcs = M̄(I + M̄)−1 v − v3

2v2 − e
.

Algorithm 3.1 : PC IPA for sufficient LCPs based on a new type of AET

Let ε > 0 be the accuracy parameter, 0 < θ < 1 the update parameter and τ the proximity
parameter. Furthermore, a known upper bound κ of the handicap κ̂(M) is given. Assume that

for (x0, s0) the
(
x0
)T

s0 = nµ0, µ0 > 0 holds such that δ(x0, s0, µ0) ≤ τ and x0s0

µ0
> 1

2e.
begin

k := 0;

while
(
xk
)T

sk > ε do begin

(corrector step)
compute (∆cxk,∆csk) from system (25) using (26);
let (xc)k := xk + ∆cxk and (sc)k := sk + ∆csk;

(predictor step)
compute (∆pxk,∆psk) from system (27) using (29);
let (xp)k := (xc)k + θ∆pxk and (sp)k := (sc)k + θ∆psk;

(update of the parameters and the iterates)
(µp)k =

(
1− θ

2

)
µk;

xk+1 := (xp)k , sk+1 := (sp)k , µk+1 := (µp)k ;
k:=k+1;

end
end.
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From

∆cx =
x dcx
v

and ∆cs =
s dcs
v

(26)

the ∆cx and ∆cs search directions can be easily obtained. Let

xc = x + ∆cx, sc = s + ∆cs.

Consider the following notations:

vc =

√
xcsc

µ
, dc =

√
xc

sc
, D+ = diag(dc), M̄+ = D+MD+.

Then, the scaled predictor system is

− M̄+dpx + dps = 0,

dpx + dps = −vc

2
, (27)

which has the solution

dpx = −(I + M̄+)−1 vc

2
, dps = −M̄+(I + M̄+)−1 vc

2
. (28)

Then, using

∆px =
xc

vc
dpx and ∆ps =

sc

vc
dps, (29)

the search directions ∆px and ∆ps can be easily calculated. The point after a predictor step is

xp = xc + θ∆px, sp = sc + θ∆ps, µp =

(
1− θ

2

)
µ,

where θ ∈ (0, 1) is the update parameter.

4. Analysis of the PC IPA

In the first part of the analysis we deal with the corrector step. Consider the following wide
neighbourhood

D(β, µ) = {(x, s) ∈ F+ : xs ≥ βµe},

where 0 < β < 1 and µ > 0. In this way, Algorithm 3.1 works in a neighbourhood which is
obtained by the intersection of N2(τ, µ) given in (23) and D

(
1
2 , µ
)
.

4.1. The corrector step

The corrector part of the proposed PC IPA is similar to the classical small-update IPAs.
Therefore, the results of M. Zhang et. al [70] can be used to analyse the corrector steps of the
proposed PC IPA. In the next theorem the strict feasibility of the full-Newton IPA is proved,

where vc =
√

xcsc

µ .

Theorem 4.1. (Theorem 1 in [21], and Lemma 3 in [70]) Let δ := δ(x, s, µ) < 1√
1+4κ

and

v >
√

2
2 e. Then, we have (xc, sc) ∈ F+ and vc ≥

√
1− (1 + 4κ)δ2 e. Moreover, if we choose

δ := δ(x, s, µ) < 1√
2(1+4κ)

, then we have vc >
√

2
2 e.

11



Theorem 4.1 shows that after the corrector step (xc, sc) ∈ D
(

1
2 , µ
)

holds. The next lemma
shows the quadratic convergence of the corrector step.

Lemma 4.2. (Theorem 2 in [70]) Let δ := δ(x, s, µ) < 1√
2(1+4κ)

and v >
√

2
2 e. Then,

δ(xc, sc, µ) ≤ 5(1 + 4κ)δ2

1− 2(1 + 4κ)δ2

√
1− (1 + 4κ)δ2.

Corollary 4.3. Let δ := δ(x, s, µ) ≤ 1
2
√

1+4κ
and v >

√
2

2 e. Then, δc ≤ 10(1 + 4κ)δ2.

Proof. From δ(x, s, µ) < 1
2
√

1+4κ
we have

1− 2(1 + 4κ)δ2 ≥ 1

2
.

Using this, Lemma 4.2 and
√

1− (1 + 4κ)δ2 ≤ 1 we obtain

δ(xc, sc, µ) ≤ 5(1 + 4κ)δ2

1− 2(1 + 4κ)δ2
≤ 10(1 + 4κ)δ2,

which yields the result.

Next lemma provides an upper bound for the duality gap after a full-Newton step.

Lemma 4.4. (Lemma 4 in [70]) Let δ := δ(x, s, µ) given as in (22). Then,

(xc)T sc < µ(n+ 9δ2).

4.2. Technical lemmas

In this subsection we present important results that will be used in the next part of the
analysis. We assume that M is a P∗(κ)-matrix for a given κ ≥ κ̂(M) ≥ 0. From −M∆px+∆ps =
0, we have

(1 + 4κ)
∑
i∈I+

∆pxi∆
psi +

∑
i∈I−

∆pxi∆
psi ≥ 0, (30)

where I+ = {i : ∆pxi∆
psi > 0} and I− = {i : ∆pxi∆

psi < 0}. Using (12) we obtain dpxd
p
s =

∆px∆ps
µ . Hence, (30) can be written as

(1 + 4κ)
∑
i∈I+

dpxid
p
si +

∑
i∈I−

dpxid
p
si ≥ 0. (31)

The following lemma is similar to that of Lemma 1 in the paper of Kheirfam [35] and Lemma
5.3 in [18]. However, we use another type of AET tranformation and different function ϕ.

Lemma 4.5. Let δc = δ(xc, sc, µ) = 1
2

∥∥∥vc−(vc)3

2(vc)2−e

∥∥∥ . Then, the following inequality holds

‖dpxdps‖ <
n(2 + κ)(1 + 4δc)2

4

12



Proof. Using the second equation of the scaled predictor system (27) we obtain

∑
i∈I+

dpxid
p
si ≤

1

4
‖dpx + dps‖2 =

‖vc‖2

16
.

Using the proof of Lemma 5.3 given in [18] and from the relation (31) we have

‖vc‖2

4
≥ ‖dpx‖2 + ‖dps‖2 − 8κ

∑
i∈I+

dpxid
p
si ≥ ‖d

p
x‖2 + ‖dps‖2 −

1

2
κ‖vc‖2. (32)

Hence, ‖dpx‖2 + ‖dps‖2 ≤
(

1
4 + 1

2κ
)
‖vc‖2 <

(
1 + 1

2κ
)
‖vc‖2. Similar to the proof of Lemma 5.3

of [18], we give an upper bound for ‖vc‖. Consider the notation σc = ‖e − vc‖, which is the
centrality measure used in [14, 35]. Using the relation (5.6) given in [18] we have

‖vc‖ ≤
√
n(σc + 1). (33)

Moreover,

δc =
1

2

∥∥∥∥vc − (vc) 3

2(vc)2 − e

∥∥∥∥ =
1

2

∥∥∥∥vc(e + vc)

2(vc)2 − e
(e− vc)

∥∥∥∥ > 1

4
‖e− vc‖ =

σc

4
, (34)

where we used that the function h̄(t) = t2+t
2t2−1

> 1
2 , for t >

√
2

2 . Hence, we have σc < 4δc. Using
(33) and (34) we get

‖vc‖ <
√
n(1 + 4δc). (35)

Thus,

‖dpxdps‖ ≤ ‖dpx‖‖dps‖ ≤
1

2

(
‖dpx‖2 + ‖dps‖2

)
≤ 1

2

(
1 +

1

2
κ

)
‖vc‖2 < n(2 + κ)(1 + 4δc)2

4
,

which proves the lemma.

Consider
qv = dcx − dcs. (36)

Then, we have

dcx =
pϕ + qv

2
, dcs =

pϕ − qv
2

and dcxd
c
s =

p2
ϕ − q2

v

4
. (37)

We give an upper bound for the norm of qv depending on the centrality measure. The proof
technique is similar to the one given in [2] for P∗(κ)-LCPs over Cartesian product of symmetric
cones.

Lemma 4.6. (c.f. Lemma 5.4 in [18] and Lemma 5.1 in [2]) The following inequality holds:

‖qv‖ ≤ 2
√

1 + 4κ δ2,

where δ = δ(x, s, µ) is the proximity measure given in (22).

The next subsection contains the analysis of the predictor step.
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4.3. The predictor step

Lemma 4.7 gives a sufficient condition for the strict feasibility of the predictor step.

Lemma 4.7. Let (xc, sc) > 0, 0 < θ < 1 and µ > 0 such that δc := δ(xc, sc, µ) < 1
4 . Consider

xp = xc + θ∆px and sp = sc + θ∆ps. Let

z(δc, θ, n) := (1− 4δc)2 − n(2 + κ)θ2(1 + 4δc)2

2(2− θ)
.

If z(δc, θ, n) > 0, then xp > 0 and sp > 0.

Proof. Let us consider xp(α) = xc + α θ ∆px and sp(α) = sc + α θ ∆ps, for 0 ≤ α ≤ 1. Then,
xp(α) = xc

vc (vc + α θ dpx) and sp(α) = sc

vc (vc + α θ dps). Using relation (5.17) given in [18] and
from the second equation of system (27) we obtain:

xp(α)sp(α) = µ
(

(vc)2 + αθvc(dpx + dps) + α2 θ2 dpxd
p
s

)
= µ

((
1− 1

2
αθ

)
(vc)2 + α2 θ2 dpxd

p
s

)
. (38)

Hence, we obtain

min

(
xp(α)sp(α)

µ
(
1− αθ

2

) ) = min

(
(vc)2 +

α2θ2

1− αθ
2

dpxd
p
s

)
≥ min

(
(vc)2

)
− 2α2θ2

2− αθ
‖dpxdps‖∞.

We have 1− σc ≤ vci ≤ 1 + σc, ∀i = 1, . . . , n. Using these bounds, (34) and δc < 1
4 we have

min (vc)2 ≥ (1− σc)2 ≥ (1− 4δc)2. (39)

We will use that the real valued function f(α) = 2α2θ2

2−αθ is strictly increasing for 0 ≤ α ≤ 1 and
each fixed 0 < θ < 1. Moreover, from Lemma 4.5 and (39) we obtain

min

(
xp(α)sp(α)

µ
(
1− αθ

2

) ) ≥ (1− 4δc)2 − 2n(2 + κ)θ2(1 + 4δc)2

4(2− θ)
= z(δc, θ, n) > 0. (40)

Hence, we have xp(α)sp(α) > 0 for 0 ≤ α ≤ 1. Therefore, xp(α) and sp(α) do not change sign
on 0 ≤ α ≤ 1. Using xp(0) = xc > 0 and sp(0) = sc > 0, we obtain xp(1) = xp > 0 and
sp(1) = sp > 0, which yields the result.

Let us introduce

vp =

√
xpsp

µp
,

where µp =
(
1− θ

2

)
µ. If we substitute α = 1 in (38) and (40) we have

(vp)2 = (vc)2 +
2θ2

2− θ
dpxd

p
s and min (vp)2 ≥ z(δc, θ, n) > 0. (41)

The next lemma analyses the effect of a predictor step and the update of µ on the proximity
measure.
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Lemma 4.8. Let δc := δ(xc, sc, µ) < 1
4 , µp =

(
1− θ

2

)
µ, where 0 < θ < 1, z(δc, θ, n) > 1

2 and
consider δ := δ(x, s, µ) given in (22). The iterates after a predictor step are denoted as xp and

sp. Then, we have vp >
√

2
2 e and

δp := δ(xp, sp, µp) ≤
√
z(δc, θ, n)

(
10(1 + 4κ)δ2 + (1− 4δc)2 − z(δc, θ, n)

)
)

4z(δc, θ, n)− 2
.

Proof. Using z(δc, θ, n) > 1
2 > 0, from Lemma 4.7 we get xp > 0 and sp > 0, thus the predictor

step is strictly feasible. From (41) we obtain

min (vp) ≥
√
z(δc, θ, n) >

√
2

2
,

which yields the first part of the result. Beside this,

δp :=
1

2

∥∥∥∥∥vp − (vp)3

2 (vp)2 − e

∥∥∥∥∥ =
1

2

∥∥∥∥∥∥
vp
(
e− (vp)2

)
2 (vp)2 − e

∥∥∥∥∥∥ . (42)

Consider h :
(√

2
2 ,∞

)
→ R, h(t) = t

2t2−1
, which is a decreasing function with respect to t. Using

this, (41) and (42) we get

δp ≤ min (vp)

4 min (vp)2 − 2

∥∥∥e− (vp)2
∥∥∥ ≤ √

z(δc, θ, n)

4z(δc, θ, n)− 2

∥∥∥∥e− (vc)2 − 2θ2

2− θ
dpxd

p
s

∥∥∥∥
≤

√
z(δc, θ, n)

4z(δc, θ, n)− 2

(∥∥∥e− (vc)2
∥∥∥+

2θ2

2− θ
‖dpxdps‖

)
. (43)

Using the proof of Lemma 2 given in [21] we obtain the following upper bound for
∥∥∥e− (vc)2

∥∥∥:

∥∥∥e− (vc)2
∥∥∥ ≤

∥∥∥∥q2
v

4

∥∥∥∥+

∥∥∥∥∥9v2 − 4e

v2
·
p2
ϕ

4

∥∥∥∥∥
(44)

Hence, using (44) and Lemma 4.6 we may write

∥∥∥e− (vc)2
∥∥∥ ≤

∥∥∥∥q2
v

4

∥∥∥∥+

∥∥∥∥∥9v2 − 4e

v2
·
p2
ϕ

4

∥∥∥∥∥
<
‖qv‖2

4
+ 9
‖pϕ‖2

4
= (1 + 4κ)δ4 + 9δ2 ≤ 10(1 + 4κ)δ2. (45)

Using (43), (45), Lemma 4.5 and the definition of the function z we get:

δp ≤
√
z(δc, θ, n)

4z(δc, θ, n)− 2

(∥∥∥e− (vc)2
∥∥∥+

2θ2

2− θ
‖dpxdps‖

)
≥

√
z(δc, θ, n)

(
10(1 + 4κ)δ2 + (1− 4δc)2 − z(δc, θ, n)

)
)

4z(δc, θ, n)− 2
, (46)

which proves the second statement of the lemma.
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It should be mentioned that in Lemma 4.8 the condition z(δc, θ, n) > 1
2 should hold, because

due to the used function ϕ(t) = t2 in the new type of AET technique for the determination of
the search directions, we have to ensure that in each iteration of the algorithm, the components

of the vector v are greater than
√

2
2 . Moreover, from Lemma 4.8 follows that (xp, sp) ∈ D

(
1
2 , µ

p
)
.

Lemma 4.9. Let δ ≤ 1
16(1+4κ) . Then, we have δc < 1

4 .

Proof. Using 1
16(1+4κ) ≤

1
2
√

1+4κ
, by applying Corollary 4.3 and from κ ≥ 0 we have

δc ≤ 10(1 + 4κ)δ2 ≤ 10

256(1 + 4κ)
<

1

4
,

which proves the lemma.

In the following lemma we give an upper bound for the duality gap after a main iteration.

Lemma 4.10. Let 0 < θ < 1. If δ ≤ 1
16(1+4κ) , xp and sp are the iterates obtained after the

predictor step of the algorithm, then

(xp)T sp ≤
(

1− θ

2
+
θ2

8

)
(xc)T sc <

3nµp

2(2− θ)
.

Proof. Using (38) with α = 1 and the definition of vp we have

(xp)T sp = µpeT (vp)2 = µeT
((

1− θ

2

)
(vc)2 + θ2dpxd

p
s

)
=

(
1− θ

2

)
(xc)T sc + µθ2 (dpx)T dps. (47)

We multiply the second equation of (27) by (dpx)
T

and by (dps)
T

, respectively. After that, we
sum the obtained two equations, hence

(dpx)T dps =
(xc)T sc

8µ
− ‖d

p
x‖2 + ‖dps‖2

2
≤ (xc)T sc

8µ
. (48)

Using (47) and (48) we get

(xp)T sp ≤
(

1− θ

2
+
θ2

8

)
(xc)T sc.

If 0 < θ < 1, then

1− θ

2
+
θ2

8
< 1. (49)

Furhermore, if δ ≤ 1
16(1+4κ) and n ≥ 1, then

δ2 ≤ n

256(1 + 4κ)2
.

Using this, µp =
(
1− θ

2

)
µ, (49) and Lemma 4.4 we have

(xp)T sp ≤
(

1− θ

2
+
θ2

8

)
(xc)T sc < (xc)T sc < µ(n+ 9δ2)

<
µp

1− θ
2

(
n+

9n

256(1 + 4κ)2

)
<

2µpn

2− θ

(
1 +

9

256

)
=

265nµp

256(2− θ)
<

3nµp

2(2− θ)
,

which yields the result.
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4.4. Determination of the values of the proximity and update parameters

We choose the values of the parameters τ and θ in such a way that after a corrector and
a predictor step, the proximity measure will not exceed the proximity parameter. Let (x, s) ∈
N2(τ, µ). Using Lemma 4.2, after a corrector step we have

δc := δ(xc, sc, µ) ≤ 5(1 + 4κ)δ2

1− 2(1 + 4κ)δ2

√
1− (1 + 4κ)δ2,

which is monotonically increasing with respect to δ, where δ < 1√
2(1+4κ)

. In this way,

δc ≤ 5(1 + 4κ)τ2

1− 2(1 + 4κ)τ2

√
1− (1 + 4κ)τ2 =: ω(τ).

From δ ≤ 1
16(1+4κ) and using Lemma 4.9 we have δc < 1

4 . Using Lemma 4.8, after a predictor
step and a µ-update we have

δp := δ(xp, sp, µp) ≤
√
z(δc, θ, n)

(
10(1 + 4κ)δ2 + (1− 4δc)2 − z(δc, θ, n)

)
)

4z(δc, θ, n)− 2
,

where δ := δ(x, s, µ) is the proximity measure given in (22). The function z(δc, θ, n) is decreasing
with respect to δc. Thus, z(δc, θ, n) ≥ z(ω(τ), θ, n). In Lemma 4.8 we have seen that the function

h(t) = t
2t2−1

, t >
√

2
2 is decreasing with respect to t, hence

h(
√
z(δc, θ, n)) ≤ h(

√
z(ω(τ), θ, n)).

Note that (1− 4δc)2− z(δc, θ, n) = 2n(2+κ) θ2 (1+4δc)2

4(2−θ) is increasing with respect to δc. Using this

and δ < τ , δc < ω(τ), we obtain√
z(δc, θ, n)

(
10(1 + 4κ)δ2 + (1− 4δc)2 − z(δc, θ, n)

)
4z(δc, θ, n)− 2

≤
√
z(ω(τ)), θ, n)

(
10(1 + 4κ)τ2 + (1− 4ω(τ))2 − z(ω(τ), θ, n)

)
4z(ω(τ), θ, n)− 2

. (50)

Our aim is to to keep δp ≤ τ . For this, it suffices that√
z(ω(τ)), θ, n)

(
10(1 + 4κ)τ2 + (1− 4ω(τ))2 − z(ω(τ), θ, n)

)
4z(ω(τ), θ, n)− 2

≤ τ.

Setting τ = 1
16(1+4κ) and θ = 1

4(1+4κ)
√
n

, the above inequality holds. Thus, x, s > 0 and

δ(x, s, µ) ≤ 1
16(1+4κ) <

1√
2(1+4κ)

are maintained during the algorithm. This means that the

proposed IPA is well-defined. Furthermore, we have

z(δc, θ, n) = (1− 4δc)2 − 2n(2 + κ)θ2(1 + 4δc)2

4(2− θ)

≥ (1− 4ω(τ))2 − 2n(2 + κ)θ2(1 + 4ω(τ))2

4(2− θ)
>

1

2
,

hence the predictor step is strictly feasible. The way we have chosen the neighbourhood param-
eter shows that (xp, sp) ∈ N2 (τ, µp). Therefore,

(xp, sp) ∈ N2 (τ, µp) ∩ D
(

1

2
, µp
)
. (51)

This is important, because it shows that the vector obtained after an iteration of the PC IPA
given in Algorithm 3.1 remains in the neighbourhood obtained by the intersection of a small
and a wide neighbourhood.
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4.5. Complexity bound

The next lemma gives an upper bound for the number of iterations produced by the PC IPA.

Lemma 4.11. Let x0 and s0 be strictly feasible, θ = 1
4(1+4κ)

√
n

, µ0 =
(x0)

T
s0

n and δ(x0, s0, µ0) ≤
τ = 1

16(1+4κ) . Moreover, let xk and sk be the iterates obtained after k iterations. Then,(
xk
)T

sk ≤ ε for

k ≥ 1 +

⌈
2

θ
log

3
(
x0
)T

s0

4ε

⌉
.

Proof. Using Lemma 4.10 we have

(
xk
)T

sk <
3nµk

4
(
1− θ

2

) =
3n
(
1− θ

2

)k−1
µ0

4
=

3
(
1− θ

2

)k−1 (
x0
)T

s0

4
.

The inequality
(
xk
)T

sk ≤ ε holds if
3(1− θ

2)
k−1

(x0)
T
s0

4 ≤ ε. We take logarithms, hence

(k − 1) log

(
1− θ

2

)
+ log

3
(
x0
)T

s0

4
≤ log ε.

From log(1 + θ) ≤ θ, θ ≥ −1, it follows that the above inequality holds if

−θ
2

(k − 1) + log
3
(
x0
)T

s0

4
≤ log ε.

This yields the desired result.

Theorem 4.12. Let τ = 1
16(1+4κ) and θ = 1

4(1+4κ)
√
n

. Then, Algorithm 3.1 is well defined and

the algorithm requires at most

O

(
(1 + 4κ)

√
n log

3nµ0

4ε

)
iterations. The output is a pair (x, s) satisfying xT s ≤ ε.

5. Numerical results

We implemented a variant of the proposed PC IPA in the C++ programming language using
[22]. We did all computations on a desktop computer with Intel quad-core 2.11 GHz processor
and 16 GB RAM. It should be mentioned that the value of the parameter κ can be very large,
which leads to a very small value of the parameter θ, see Theorem 4.12. This motivated us to
make some modifications in the implementation of the proposed PC IPA.
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Algorithm 5.1 : PC IPA from the implementation point of view

Let ε = 10−5, x0 = s0 = e, µ0 = 1, 0 < ρ < 1 and lb = 1
2 .

begin
k := 0;

while
(
xk
)T

sk > ε do begin
predictor step

µkp = ρ
min{xki ski : 1≤i≤n}

lb ;

compute (∆pxk,∆psk) from system (52);

αpx = min
{
− xki

∆pxki
|∆pxki < 0, 1 ≤ i ≤ n

}
;

αps = min
{
− ski

∆pski
|∆pski < 0, 1 ≤ i ≤ n

}
;

αp = min{αpx, αps};
(xp)k := xk + ραp∆pxk; (sp)k := sk + ραp∆psk;

corrector step

µkaff = ρ
min{(xpi )

k
(spi )

k
: 1≤i≤n}

lb ;

µkc =
(µkaff )3

(µkp)2
;

compute (∆cxk,∆csk) from system (53);
∆xk = ∆pxk + ∆cxk; ∆sk = ∆psk + ∆csk;

αcx = min
{
− (xpi )k

∆xki
|∆xki < 0, 1 ≤ i ≤ n

}
;

αcs = min
{
− (spi )k

∆ski
|∆ski < 0, 1 ≤ i ≤ n

}
;

αc = min{αcx, αcs};
(xc)k := (xp)k + ραc∆xk; (sc)k := (sp)k + ραc∆sk;
xk+1 := (xc)k , sk+1 := (sc)k; k := k + 1;

end
end.

Algorithm 5.1 illustrates the computational version of the theoretical PC IPA given in Al-
gorithm 3.1. Due to the performed modifications it may happen that the new points generated
by the Algorithm 5.1 can leave the feasibility region. That is why we determined the search
directions by considering residual vector in first equation of the Newton system. Hence, we
calculated the predictor search directions by solving the following system:

−M∆px + ∆ps = q +Mx− s,

S∆px +X∆ps = g(x, s), (52)

where g(x, s) is given in (19) and it can have different values for different functions ϕ. In our
case g(x, s) = −xs

2 . Similarly, the corrector search directions were obtained by solving

−M∆cx + ∆cs = q +Mx− s,

S∆cx +X∆cs = aϕ, (53)

where aϕ is given in (9). In our case aϕ = µxs
2(2xs−µe) −

xs
2 . The value of the parameter µ in the

predictor step was calculated as µkp = ρ
min{xki ski : 1≤i≤n}

lb , where 0 < ρ < 1, lb denotes a given
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lower bound, which in our case is 1
2 . In our case the value of ρ was 0.95. The way of determining

the value of the parameter µkp ensures that the components of the vector v are greater than a
positive constant, which is important in our case due to the used search direction. After that
we calculated the maximal step size αpx and αps to the boundary of nonnegative orthant by using
minimal ratio test. We considered the minimum value of these step sizes and we determined the
vectors xp and sp without modifying the actual points xk and sk. Note that the vectors xp and
sp were used in the computation of the parameter µaff , which was calculated in a similar way as
the value of the parameter µp at the beginning of an iteration. In Algorithm 5.1 we can see that
in the calculation of the parameter µ before the corrector step we used Mehrotra’s heuristics
[44]. It should be mentioned that we considered the search directions obtained by the sum of
the predictor and the corrector directions. In the determination of the step length in case of the
corrector step we used the same strategy as in case of the predictor step.

We tested the PC IPA on LCPs with sufficient matrices having positive κ parameters gen-
erated by Illés and Morapitiye [30]. We generated the test problems in the following way:
q := −Me + e. We considered x0 = e and s0 = e as starting points for our PC IPA.

We have tested the PC IPA for all 61 P∗(κ)-LCPs from the selection given in [30]. We could
easily obtain results for variants of the PC IPA using different functions ϕ in this new type of
AET technique by changing the right hand side of the Newton-system. In our computational
study we compared our PC IPA using the function ϕ(t) = t2 in system (6) with the variant of
the IPA which uses the ϕ(t) = t in the new type of AET technique characterized by system
(6). Note that in the case when ϕ(t) = t is used, then the value of lb is 1

4 , g(x, s) = −xs and

aϕ =
√
µxs

2
√
xs−√µe . This yields the same direction as the one used in [18], where system (5) was

considered with ϕ̄(t) = t −
√
t. Table 2 contains the average of iteration numbers and CPU

times (in seconds) for 10 given LCPs for each size n listed in the table. We can observe that the
results are similar for both variants of the PC IPA using the different search directions.

n ϕ(t) = t2 ϕ(t) = t

Avg. Iter. CPU Avg. Iter. CPU

10 7 0.0125 7 0.0119

20 7.5 0.0434 7.6 0.0398

50 5.6 0.0963 5.2 0.0898

100 6.1 0.4339 5.6 0.3946

200 6.7 2.8455 6.0 2.6184

500 7 39.6898 6.7 38.2645

Table 1: Numerical results for P∗(κ)-LCPs from [30] having positive handicap.

De Klerk and E.-Nagy [23] proved that the handicap of the matrix can be exponential in the
size of the problem. They considered the following matrix which was proposed by Zs. Csizmadia:

M =


1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0

...
...

...
. . .

...
−1 −1 −1 · · · 1

 , (54)

and they proved that κ̂(M) ≥ 22n−8 − 0.25. However, in our computational study we obtained
promising results for the two variants of PC IPAs. The results are summarized in Table 2.
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n ϕ(t) = t2 ϕ(t) = t

Nr. of Iter. CPU (s) Nr. of Iter. CPU (s)

10 12 0.022 12 0.024

20 15 0.049 15 0.069

50 25 0.782 25 0.842

100 43 5.485 43 5.407

200 78 29.04 78 29.345

300 113 132.247 113 133.697

400 149 396.283 149 403.419

Table 2: Numerical results for P∗(κ)-LCPs with matrix given in (54)

The obtained results can be further analysed, because it seems that the practical iteration
complexity is significantly better than the theoretical (worst case) guarantee for the special class
of LCPs with the lower triangular P -matrix M , introduced by Zs. Csizmadia.

6. Conclusions and further research

In this paper we proposed a new PC IPA for solving P∗(κ)-LCPs which uses the new type
of AET given in [21] for LO. The presented IPA applies the function ϕ(t) = t2 on the nonlinear
equation v2 = v in order to determine the new search directions. The corresponding kernel
function is a positive-asymptotic kernel function. Furthermore, similar to [18], we presented
the method for determining the Newton systems and scaled systems in case of PC IPAs using
this new type of AET. Due to the used search direction we had to ensure during the whole

process of the IPA that the components of the vector v were greater than
√

2
2 . In spite of this

fact, we proved that the PC IPA retains polynomial iteration complexity in the handicap of the
problem’s matrix, the size of the problem, the bitsize of the data and the deviation from the
complementarity gap. This is the first PC IPA for solving P∗(κ)-LCPs which uses the function
ϕ(t) = t2 in the new type of AET. Moreover, we also provided numerical results where we
compared our PC IPA to another variant of this algorithm using ϕ(t) = t in the new type
of AET technique. As further research, it would be interesting to find a class of monotone
increasing functions ϕ̄ for which we can assign corresponding functions ϕ. This would lead to a
case where we can establish equivalence between the two approaches of the AET presented in
this paper.
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feasible interior-point algorithm for symmetric cone horizontal linear complementarity
problem based on a positive-asymptotic barrier function. Optim. Methods Softw., 2020.
DOI:10.1080/10556788.2020.1734803.

[3] S. Asadi and H. Mansouri. A path-following algorithm for P∗(κ)-horizontal linear comple-
mentarity problem based on Darvay’s directions. In Proceeding of the 43rd Annual Iranian
Mathematics Conference, Tabriz University, Tabriz, Iran, pages 861–864, 2012.

[4] S. Asadi and H. Mansouri. Polynomial interior-point algorithm for P∗(κ) horizontal linear
complementarity problems. Numer. Algorithms, 63(2):385–398, 2013.

[5] Y.Q. Bai, M. El Ghami, and C. Roos. A comparative study of kernel functions for primal-
dual interior-point algorithms in linear optimization. SIAM J. Optim., 15(1):101–128, 2004.
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