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Abstract

In this paper we will discuss two variants of an inexact feasible interior point algorithm for
convex quadratic programming. We will consider two different neighbourhoods: a (small)
one induced by the use of the Euclidean norm which yields a short-step algorithm and a
symmetric one induced by the use of the infinity norm which yields a (practical) long-step
algorithm. Both algorithms allow for the Newton equation system to be solved inexactly.
For both algorithms we will provide conditions for the level of error acceptable in the Newton
equation and establish the worst-case complexity results.

Keywords: Inexact Newton Method, Interior Point Algorithms, Linear Programming, Quadratic
Programming, Worst-case Complexity Analysis, Matrix-Free Methods.

∗Supported by EPSRC grant EP/I017127/1. Accepted for publication in SIAM Journal on Optimization.
†Email: J.Gondzio@ed.ac.uk, URL: http://maths.ed.ac.uk/~gondzio/
‡For other papers in this series see http://www.maths.ed.ac.uk/ERGO/

1

Gondzio, J 2013, 'Convergence Analysis of an Inexact Feasible Interior Point Method for 
Convex Quadratic Programming' SIAM Journal on Optimization.



Inexact Feasible IPMs 2

1 Introduction

It is broadly accepted that interior point methods (IPMs) provide very efficient solution tech-
niques for linear and convex quadratic programming problems [11, 21]. Interior point algo-
rithms for these classes of problems enjoy excellent worst-case complexity bounds: indeed the
best known algorithms find the ε-accurate optimal solutions to the problem with n variables
in O(

√
n log(1/ε)) or O(n log(1/ε)) iterations, depending on how aggressive steps to optimality

are allowed. Computational experience provides evidence that the algorithm which uses a more
aggressive strategy (the so-called long-step method) solves linear and quadratic programming
problems in a number of iterations which may be expressed as O(log n log(1/ε)) [11].

The small number of iterations does not always guarantee the efficiency of the method because
occasionally IPMs struggle with a high per-iteration cost of the linear algebra operations. In
the most adverse case the cost of solving a dense optimization problem employing a direct linear
algebra method to solve the Newton equation system may reach O(n3) flops per iteration. The
effort of a single IPM iteration is usually significantly lower than this upper bound. However if
problems are very large then, although they may display reasonable sparsity features, the use
of direct sparsity-exploiting linear algebra techniques may still run into trouble due to excessive
memory requirements or unacceptably long CPU time. Iterative methods for linear equations
such as conjugate gradients or other approaches from the Krylov subspace family may offer a
viable alternative to direct methods in such cases.

The interest in the use of iterative methods to solve the Newton equation system in IPMs has
been growing over the last decade: see for example the recent survey of D’Apuzzo et al. [8].
Iterative methods offer several advantages. In particular they are often memory efficient and
hence allow much larger problems to be solved. However to take full advantage of iterative
methods one usually has to relax the accuracy requirements in the solution of the Newton
equation system. Consequently, instead of using an exact Newton direction, the resulting IPM
employs an inexact one. This opens up all sorts of theoretical questions. We will state and
answer some of these in this paper. In particular, we will discuss the key issue concerning an
acceptable level of error in the inexact Newton method used by an IPM.

The use of an inexact Newton method [9] is well established in the context of solving nonlinear
equations [13] and in nonlinear optimization [18]. Bellavia [5] applied an inexact interior point
method to solve monotone nonlinear complementarity problems and proved global convergence
and local superlinear convergence of the method. Armand et al. [3] studied the behaviour of a
primal-dual inexact interior point method for solving nonlinear programming problems. Several
successful attempts were also made to shed light on the application of an inexact Newton method
in IPMs for linear and convex quadratic programming problems.

Freund, Jarre and Mizuno [10] and Mizuno and Jarre [17] extended a very popular globally
convergent infeasible path-following method for linear programming of Kojima, Megiddo and
Mizuno [14] to accommodate the inexact solution of Newton systems. In particular Mizuno
and Jarre [17] proved that an inexact variant of this algorithm has O(n2 log(1/ε)) complexity.
Baryamureeba and Steihaug [4] provided another extension of the method of Kojima et al.,
allowing for inexactness in both primal and dual Newton steps. All these analyses considered
a general case in which no assumption was made about how the Newton system is solved. The
only assumptions made were concerned with the absolute or relative error in the inexact Newton
direction.
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Several authors tried to specialize their analyses using a better understanding of the specific
iterative methods of linear algebra employed to solve the Newton equation system inexactly.
Indeed, if a particular preconditioner is used in a given Krylov subspace method applied in
this context, it is often possible to control the residuals in specific linear subspaces and design
special variants of an inexact interior point algorithm. Al-Jeiroudi and Gondzio [1] considered the
case in which an indefinite preconditioner based on a guess of basic-nonbasic partition inspired
by the work of Oliveira and Sorensen [19] is used to precondition the indefinite augmented
system (the reduced KKT system). They designed an inexact infeasible primal-dual IPM for
linear programming and established its O(n2 log(1/ε)) complexity. Lu, Monteiro and O’Neal [15]
analysed the case of quadratic programming in which the matrix of the quadratic objective term
has a known factorization and proposed an interesting specialized preconditioner for the Newton
system in this case. They showed that the resulting inexact IPM converges in O(n2 log(1/ε))
iterations. Cafieri et al. [7] performed an analysis of an inexact potential reduction algorithm
for convex quadratic programming.

In this paper we consider a feasible primal-dual path-following method for convex quadratic
programming and analyse it in a situation when the solutions of the Newton systems admit a
certain level of inaccuracy. We prove worst-case iteration complexity results for two variants of
such a method. The first variant requires the iterates to stay in a small neighbourhood of the
central path induced by the use of the Euclidean norm to control the error in the perturbed
complementarity conditions. Such a method has the best known iteration complexity result
O(

√
n log(1/ε)) and we prove that the inexact variant preserves the same complexity. However,

this method is only of theoretical interest because its implementation demonstrates the behaviour
predicted by the worst-case analysis. Therefore, this algorithm is not used in practice. The
second variant allows the iterates to stay in a wide symmetric neighbourhood of the central path
induced by the use of the infinity norm to control the error in the perturbed complementarity
conditions. We show that this method reaches an ε-optimal solution in O(n log(1/ε)) iterations.
Since the exact method operating in the wide neighbourhood is an attractive approach in practice
[11] we analyze its inexact variant because it may provide the basis of an implementable method.

To simplify the analysis and to allow the reader to concentrate on the essential consequences of
inexactness in the Newton direction we will analyse feasible algorithms. It is worth mentioning
that this does not limit the applicability of methods analysed in this paper. We will provide an
explanation how any quadratic program may be transformed to another one for which the initial
feasible solution is known and therefore a feasible IPM may be applied to it. An alternative
would be to use the homogeneous and self-dual emdedding [22] which also allows to transform
the linear and quadratic programs into new models for which the primal and dual initial feasible
solutions are known and therefore primal and dual feasibility can be maintained throughout the
computations. The homogeneous and self-dual emdedding [22] was initially used in the context
of LPs and implemented by Andersen and Andersen [2] in their Mosek software.

Finally, let us comment that the key motivation for this work is the need to better understand
how much inaccuracy is admissible in the Newton systems and provide the foundations for
cases in which interior point algorithms rely on iterative methods to solve the underlying linear
algebra problems. There has recently been a shift of interest in the IPM community towards the
application of iterative methods to solve the reduced KKT systems [8]. There exists a rich body
of literature (cf. Benzi et al. [6]) which deals with very similar saddle point problem arising
in the discretisations of partial differential equations and we expect that the coming years will
bring many interesting developments in iterative methods applicable to IPMs. In particular
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there is a clear need to develop alternative preconditioners which are compatible with the spirit
of the matrix-free interior point method [11, 12].

The paper is organised as follows. In Section 2 we will introduce the quadratic optimization
problem, define the notation used in the paper and point out an essential difference between the
exact and inexact interior point methods. In Section 3 we will perform the worst-case analysis of
two variants of an inexact feasible interior point algorithm for convex quadratic programming.
First we will analyse the algorithm operating in a small neighbourhood of the central path
induced by the 2-norm. Such a method yields the best complexity result known to date but it
has only a theoretical importance. Next we will analyse the feasible algorithm operating in a
symmetric neighbourhood of the central path induced by the infinity norm. This method has a
practical meaning as an implementable algorithm. It provides a theoretical basis for the recently
developed matrix-free variant of the interior point method [12]. Our analysis will follow that of
Wright [21] and will generalize it from linear programming to quadratic programming and from
exact to inexact method. In Section 4 we will comment on some practical aspects related to
the implementation of inexact interior point method and finally in Section 5 we will give our
conclusions.

2 Interior point methods: background

We are concerned in this paper with the theory of interior point methods for solving convex
quadratic programming (QP) problems. We consider the following general primal-dual pair of
QPs

Primal Dual

min cT x + 1
2xT Qx max bT y − 1

2xT Qx
s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0, x, y free, s ≥ 0,

(1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive semidefinite matrix,
x, s, c ∈ Rn and y, b ∈ Rm. Setting Q = 0 yields the special case of the linear programming
(LP) primal-dual pair.

To derive a primal-dual interior point method [21] we first introduce the logarithmic barrier
function µ

∑n
j=1 log xj to “replace” the inequality constraint x ≥ 0 in the primal and then, by

using Lagrangian duality theory, write down the first-order optimality conditions

Ax = b,
AT y + s − Qx = c,

XSe = µe,
(x, s) ≥ 0,

(2)

where X and S are diagonal matrices in Rn×n with elements of vectors x and s spread across
the diagonal, respectively and e ∈ Rn is the vector of ones. This system of equations has a
unique solution (x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0 for any µ > 0. The corresponding point is
called a µ-centre. A family of these points for all positive values of µ determines a continuous
curve {(x(µ), y(µ), s(µ)) : µ > 0} which is called the primal-dual central trajectory or central
path.
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The first two equations in (2) are the primal and dual feasibility conditions, respectively. The
third equation is a perturbed complementarity condition; the parameter µ associated with the
logarithmic barrier function controls the level of perturbation. The convergence to optimality
is forced by taking the barrier parameter µ to zero [21, 11].

In this paper we will assume that we work with the feasible interior point method and therefore
all iterates (x, y, s) satisfy the first two equations in (2). Consequently, the duality gap is equal
to the complementarity gap

cT x +
1

2
xT Qx − (bT y − 1

2
xT Qx) = xT s = nµ, (3)

and by reducing the barrier parameter µ, IPM achieves convergence to optimality. The stan-
dard interior point algorithm applies the Newton method to (2), that is, computes the Newton
direction and makes a step in this direction followed by a reduction of the barrier parameter µ.
The reduction of the barrier term is enforced by the use of the parameter σ ∈ (0, 1) and setting
µnew = σµ. Due to the feasibility of (x, y, s) the residual in (2) takes the following form

(b − Ax, c − AT y − s + Qx, σµe − XSe) = (0, 0, ξ). (4)

Hence the Newton direction (∆x,∆y,∆s) is obtained by solving the following system of linear
equations





A 0 0
−Q AT I

S 0 X



 ·





∆x
∆y
∆s



 =





0
0
ξ



 , (5)

where I denotes the identity matrix of dimension n.

In this paper we will analyse the method which allows the system (5) to be solved inexactly. To
be precise, we will assume that all the iterates remain primal and dual feasible and an inexact
Newton direction (∆x,∆y,∆s) satisfies the following system of linear equations





A 0 0
−Q AT I

S 0 X



 ·





∆x
∆y
∆s



 =





0
0

ξ + r



 (6)

which admits an error r in the third equation. Let us observe that any step in such a primal-dual
inexact Newton direction preserves primal and dual feasibility.

By using the positive semidefiniteness of Q and exploiting the first two equations in the appro-
priate Newton system, it is easy to demonstrate that for both the exact (5) and the inexact (6)
Newton direction (∆x,∆y,∆s), the following property holds:

∆xT ∆s = ∆xT Q∆x ≥ 0. (7)

The third equation in the Newton system plays a crucial role in the convergence analysis of an
interior point algorithm. For the inexact Newton direction (6) this equation takes the following
form

S∆x + X∆s = ξ + r = σµe − XSe + r,
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and by using eT e = n and xT s = nµ we get

sT ∆x + xT ∆s = σµeT e − xT s + eT r = (σ − 1)xT s + eT r.

Hence the complementarity gap at the new point (x(α), y(α), s(α)) = (x, y, s) + α(∆x,∆y,∆s)
becomes

x(α)T s(α) = (x + α∆x)T (s + α∆s)

= xT s + α(sT ∆x + xT ∆s) + α2∆xT∆s

= (1 − α(1 − σ))xT s + αeT r + α2∆xT ∆s (8)

and the corresponding average complementarity gap is

µ(α) = x(α)T s(α)/n = (1 − α(1 − σ))µ + αeT r/n + α2∆xT ∆s/n. (9)

Under the condition that the error term eT r and the second order term ∆xT ∆s are kept small
enough in comparison with α(1 − σ)xT s, the complementarity gap at the new point is reduced
compared with that at the previous iteration, thus guaranteeing progress of the algorithm.

The convergence analysis of an interior point algorithm relies on imposing uniform progress
in reducing the error in the complementarity conditions which technically is translated into a
requirement that the error is small and bounded with O(µ). To achieve it we will restrict the
iterates to remain in the neighbourhood of the central path {(x(µ), y(µ), s(µ)), µ > 0} and we
will control the barrier reduction parameter σ and the stepsize α so that x(α)T s(α) in (8) is
noticeably smaller than xT s.

We will consider two different ways of controlling the proximity to the central path and in both
cases we will prove the convergence of the inexact interior point method and derive the worst-
case complexity result. In both cases we will consider the feasible interior point algorithm and,
hence, we will assume that all primal-dual iterates belong to the primal-dual strictly feasible
set F0 = {(x, y, s) |Ax = b, AT y + s − Qx = c, (x, s) > 0}. All iterates are confined to
a neighbourhood of the central path which translates to a requirement that the error in the
perturbed complementarity condition (2) is small. Depending on the norm used to measure this
error, we will consider two different neighbourhoods:

• a small neighbourhood induced by the use of the Euclidean norm for some θ ∈ (0, 1)

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe − µe‖ ≤ θµ}, (10)

which yields a short-step algorithm, and

• a symmetric neighbourhood induced by the use of the infinity norm for some γ ∈ (0, 1)

NS(γ) = {(x, y, s) ∈ F0 | γµ ≤ xjsj ≤
1

γ
µ, ∀j}, (11)

which yields a long-step algorithm.

The former has a theoretical importance as it leads to the algorithm with the best complexity
result known to date. However, it is not an implementable method because it leads to poor
performance in practice. Indeed, its behaviour reproduces the worst-case analysis. The latter
neighbourhood has a practical meaning and leads to an efficient algorithm in practice.
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It is worth adding that the symmetric neighbourhood (11) in which both too small and too large
complementarity products are forbidden has advantages over a standard (one sided) infinity
neighbourhood in which the complementarity products only have to satisfy xjsj ≥ γµ. In the
one sided infinity neighbourhood the largest complementarity product may reach the value of
(n − γ(n − 1))µ = O(nµ) while in the symmetric neighbourhood every product has to remain
O(µ). This has an important theoretical advantage and an even more important computational
advantage because it guarantees that ξ in (5) is well scaled, namely, every entry of it is O(µ).
The symmetric neighbourhood is very handy when multiple centrality correctors are used (see
[11] and the references therein).

Following the general theory of the inexact Newton Method [9, 13], we will assume that the
residual r in (6) satisfies

‖r‖p ≤ δ‖ξ‖p, (12)

for some δ ∈ (0, 1) and an appropriate p-norm. According to the type of the neighbourhood
used, (10) or (11), this inequality will use either p = 2 or p = ∞, respectively. Further in the
paper we will omit a subscript 2 for the Euclidean norm unless an expression involves different
norms at the same time and such an omission could lead to a confusion.

Let us observe that parameter δ measures the relative error in the third equation of (6) and it is
independent of µ. Whatever the neighbourhood of the central path is used ((10) or (11)), for any
well-centered iterate the right hand side term ξ in (5) and (6) is always O(µ). Hence condition
(12) implies that the residual r is also O(µ). In fact condition (12) is a standard stopping criteria
for an iterative method which allows the method to terminate when the error drops below a
certain fraction δ of the right hand side term in the equation system (5). Consequently, the
setting used in this paper is equivalent to an alternative one in which the residual r is directly
linked to the barrier term µ and the convergence of the inexact IPM is driven by the barrier
term going to zero. In this alternative setting, the condition r ≤ δ̄µ would involve the forcing
term δ̄ as it is usually the case in the analysis of inexact Newton method for nonlinear equations
[9, 13]. Such a setting was applied by Bellavia [5] and Armand et al. [3] to analyse the inexact
IPMs.

In the next section we will prove that the feasible interior point algorithm using an inexact New-
ton direction (6) and applied to a convex quadratic program converges to an ε-accurate solution
in O(

√
n ln(1/ε)) or O(n ln(1/ε)) iterations if it operates in the N2(θ) or NS(γ) neighbourhood,

respectively. Our analysis will follow the general scheme used by Wright [21].

3 Worst-case complexity results

The analysis for two different neighbourhoods will share certain common features. The algorithm
makes a step in the Newton direction obtained by solving (6). When a step in the Newton
direction (∆x,∆y,∆s) is made, the new complementarity product for component j is given by

xj(α) sj(α) = (xj + α∆xj)(sj + α∆sj)

= xjsj + α(sj∆xj + xj∆sj) + α2∆xj∆sj. (13)

The third equation in (6) is a local linearization of the complementarity condition and controls
the middle term sj∆xj +xj∆sj = ξj +rj in the above equation. The error in the approximation
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of complementarity products is determined by the second-order term ∆xj∆sj in (13). We will
provide a bound on these products, namely, we will bound the vector of the second-order error
terms ‖∆X∆Se‖.

Having multiplied the third equation in the Newton system (6) by (XS)−1/2, we obtain

X−1/2S1/2∆x + X1/2S−1/2∆s = (XS)−1/2(ξ + r). (14)

Defining u = X−1/2S1/2∆x and v = X1/2S−1/2∆s and using (7) we obtain uT v = ∆xT ∆s ≥ 0.
Let us partition all products ujvj into positive and negative ones: P = {j |ujvj ≥ 0} and
M = {j |ujvj < 0} and observe that

0 ≤ uT v =
∑

j∈P

ujvj +
∑

j∈M

ujvj =
∑

j∈P

|ujvj| −
∑

j∈M

|ujvj |. (15)

Next, let us write equation (14) component-wise as uj + vj = (xjsj)
−1/2(ξj + rj) for every

j ∈ {1, 2, . . . , n} and take the sum of squared equations for components j ∈ P:

0 ≤
∑

j∈P

(uj + vj)
2 =

∑

j∈P

(u2
j + v2

j ) + 2
∑

j∈P

ujvj =
∑

j∈P

(xjsj)
−1(ξj + rj)

2,

to get

2
∑

j∈P

|ujvj | = 2
∑

j∈P

ujvj ≤
∑

j∈P

(xjsj)
−1(ξj + rj)

2.

Inequality (15) implies
∑

j∈M |ujvj | ≤
∑

j∈P |ujvj| and, hence, we can write

‖∆X∆Se‖1 =
∑

j∈P

|ujvj | +
∑

j∈M

|ujvj| ≤ 2
∑

j∈P

|ujvj|

≤
∑

j∈P

(xjsj)
−1(ξj + rj)

2 ≤
n∑

j=1

(xjsj)
−1(ξj + rj)

2. (16)

We will now consider two different algorithms: the short-step method in which the iterates
are confined to N2(θ) neighbourhood (10) and the long-step method in which the iterates are
confined to NS(γ) neighbourhood (11). The names “short-step” and “long-step” describe the
steps to optimality and are related to the choice of barrier reduction parameter σ (and should
not be confused with the stepsizes taken in the Newton direction). In the short-step method, σ
is very close to one and therefore the algorithm makes only a short step to optimality while in
the long step method, σ is usually a small number satisfying σ ≪ 1.

3.1 Analysis of the short-step method

In this section we will assume that (x, y, s) ∈ N2(θ) for some θ ∈ (0, 1) and inequality (12) holds
for the 2-norm: ‖r‖2 ≤ δ‖ξ‖2. It is easy to deduce that since ‖XSe−µe‖∞ ≤ ‖XSe−µe‖2 ≤ θµ,
the complementarity products satisfy the following inequality

(1 − θ)µ ≤ xjsj ≤ (1 + θ)µ ∀j. (17)
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The barrier reduction parameter for the short-step algorithm is defined as

σ = 1 − β√
n

, (18)

for some β ∈ (0, 1). Such a definition implies that

(1 − σ)2n = β2 (19)

and therefore, using eT (XSe − µe) = 0, the norm of the term ξ = σµe − XSe in (4) satisfies

‖XSe − σµe‖2 = ‖(XSe − µe) + (1 − σ)µe‖2

= ‖XSe − µe‖2 + 2(1−σ)µeT(XSe−µe) + (1−σ)2µ2eT e

≤ θ2µ2 + (1 − σ)2nµ2

= (θ2 + β2)µ2. (20)

We are now ready to derive a bound on ‖∆X∆Se‖.

Lemma 3.1 Let θ ∈ (0, 1). If (x, y, s) ∈ N2(θ) then the inexact Newton direction (∆x,∆y,∆s)
obtained by solving (6) satisfies

‖∆X∆Se‖ ≤ (1 + δ)2(θ2 + β2)

(1 − θ)
µ. (21)

Proof: Inequality (17) provides a bound minj{xjsj} ≥ (1 − θ)µ. We use it to rewrite (16):

‖∆X∆Se‖2 ≤ ‖∆X∆Se‖1 ≤ 1

minj{xjsj}

n∑

j=1

(ξj + rj)
2 ≤ 1

(1 − θ)µ
‖ξ + r‖2. (22)

Using (12) (with p = 2) and (20) we write

‖ξ + r‖2 ≤ (‖ξ‖ + ‖r‖)2 ≤ (1 + δ)2‖ξ‖2 ≤ (1 + δ)2(θ2 + β2)µ2,

and after substituting this expression into (22) obtain the required inequality (21). �

Next we will show that for appropriately chosen constants θ, β and δ, a full Newton step is feasible
and the new iterate (x̄, ȳ, s̄) = (x, y, s) + (∆x,∆y,∆s) also belongs to the N2(θ) neighbourhood
of the central path. We will prove an even stronger result which is that for any step α ∈ (0, 1]
in the Newton direction the following point

(x(α), y(α), s(α)) = (x, y, s) + α(∆x,∆y,∆s) (23)

is primal-dual feasible and belongs to the N2(θ) neighbourhood.

Using (13) and (9) and sj∆xj +xj∆sj = σµ−xjsj +rj, the deviation of the jth complementarity
product from the average becomes

xj(α)sj(α)−µ(α) = (xj + α∆xj)(sj + α∆sj) − µ(α)

= xjsj + α(sj∆xj + xj∆sj) + α2∆xj∆sj − µ(α)

= (1−α)xjsj+ασµ+αrj +α2∆xj∆sj−(1−α)µ−ασµ−αeT r/n−α2∆xT∆s/n

= (1 − α)(xjsj − µ) + α(rj − eT r/n) + α2(∆xj∆sj − ∆xT ∆s/n).
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Consequently, the proximity measure for the point (x(α), y(α), s(α)) becomes

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)‖XSe−µe‖+α‖r− eT r

n
e‖+α2‖∆X∆Se−∆xT∆s

n
e‖. (24)

The Lemma below sets three parameters: the proximity constant θ ∈ (0, 1) in (10), β ∈ (0, 1) in
the barrier reduction parameter σ = 1 − β/

√
n, and the level of error δ ∈ (0, 1) allowed in the

inexact Newton method (12).

Lemma 3.2 Let (x, y, s) be the current iterate in N2(θ) neighbourhood and (∆x,∆y,∆s) be the
inexact Newton direction which solves equation system (6). Let θ = β = 0.1. If δ = 0.3 then for
any α ∈ (0, 1] the new iterate (23) after a step α in this direction satisfies

‖X(α)S(α)e − µ(α)e‖ ≤ θµ(α). (25)

Proof: Expanding the square and using eT e = n we write

‖r− eT r

n
e‖2 = ‖r‖2+

1

n2
(eT r)2eT e− 2

n
(eT r)2

= ‖r‖2− 1

n
(eT r)2 ≤ ‖r‖2. (26)

Similarly, expanding the square, using eT e = n again and (∆X∆Se)T e = ∆xT ∆s, we write

‖∆X∆Se−∆xT∆s

n
e‖2 = ‖∆X∆Se‖2 +

1

n2
(∆xT∆s)2eTe − 2∆xT∆s

n
(∆X∆Se)T e

= ‖∆X∆Se‖2− 1

n
(∆xT∆s)2 ≤ ‖∆X∆Se‖2. (27)

Next, using (24), the definition of N2(θ) and inequalities (26), (12) and (27), we write

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)‖XSe−µe‖+α‖r− eT r

n
e‖+α2‖∆X∆Se−∆xT∆s

n
e‖

≤ (1−α)θµ+αδ‖ξ‖+α2‖∆X∆Se‖.

Inequalities (20) and (21) (Lemma 3.1) provide bounds for the last two terms in the above
inequality. We use them to write

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)θµ+αδ
√

θ2 + β2µ+α2 (1 + δ)2(θ2 + β2)

(1 − θ)
µ.

The choice of θ = β = 0.1 guarantees that
√

θ2 + β2 ≤
√

2θ and (1+δ)2(θ2+β2)
(1−θ) = 2(1+δ)2

9 θ hence

‖X(α)S(α)e−µ(α)e‖ ≤ (1−α)θµ+
√

2αδθµ+α2 2(1 + δ)2

9
θµ.

Using equality (9) we observe that this lemma will be proved (inequality (25) will be satisfied)
if the following holds

(1−α)θµ+
√

2αδθµ+α2 2(1 + δ)2

9
θµ ≤ θ

(

(1 − α(1 − σ))µ + α
eT r

n
+ α2 ∆xT ∆s

n

)

.
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We further simplify this inequality by removing the same terms present on both sides of it and
then dividing it by αθ. Inequality (7) guarantees that ∆xT ∆s is nonnegative, hence we conclude
that (25) will be satisfied if

√
2δµ+α

2(1 + δ)2

9
µ ≤ σµ +

eT r

n
.

We observe that |eT r| ≤ ‖e‖‖r‖ =
√

nδ‖ξ‖ and hence, using (20), we write

|e
T r

n
| ≤ δ√

n

√

θ2 + β2µ ≤
√

2δθ√
n

µ. (28)

Therefore to guarantee that (25) holds for any α ∈ (0, 1], it suffices to choose δ such that

√
2δµ +

2(1 + δ)2

9
µ ≤ σµ −

√
2δθ√
n

µ

and this simplifies to

√
2δ(1+

θ√
n

) +
2(1 + δ)2

9
≤ σ = 1− β√

n
.

The left hand side of this inequality is an increasing function of δ and we can easily check that
the choice δ = 0.3 gives 0.3

√
2(1+θ/

√
n) + 3.38/9 ≤ 1−β/

√
n which holds for θ = β = 0.1 and

any n ≥ 2. �

Lemma 3.2 guarantees that for any α ∈ (0, 1] the new iterate (23) also belongs to the N2(θ)
neighbourhood of the central path. We will set α = 1 and take the full step in the Newton
direction. Observe that the inexact Newton direction (6) allows the error r to appear only in
the third equation which means that the direction (∆x,∆y,∆s) preserves the feasibility of primal
and dual equality constraints. The new iterate is defined as (x̄, ȳ, s̄) = (x, y, s) + (∆x,∆y,∆s)
and setting α = 1 in (9) gives

µ̄ = µ(α) = σµ +
eT r

n
+

∆xT ∆s

n
. (29)

With θ = β = 0.1 and δ = 0.3 the right hand side term in inequality (21) may be simplified to
give ‖∆X∆Se‖ ≤ 0.3756βµ and, using the Cauchy-Schwartz inequality, we get the bound

∆xT ∆s

n
=

(∆X∆Se)T e

n
≤ 1

n
‖∆X∆Se‖‖e‖ ≤ 0.3756√

n
βµ.

Using this inequality, our choice θ = β, (28) and σ = 1 − β/
√

n, we obtain the following bound
on µ̄ in (29)

µ̄ ≤ (1 − β√
n

)µ +

√
2δβ√
n

µ +
0.3756β√

n
µ ≤ (1 − η√

n
)µ, (30)

where β(1 −
√

2δ − 0.3756) ≥ 0.02, hence we may set η = 0.02 in (30).

We are now ready to state the complexity result for the inexact short-step feasible interior point
method operating in a N2(0.1) neighbourhood.
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Theorem 3.1 Given ǫ > 0, suppose that a feasible starting point (x0, y0, s0) ∈ N2(0.1) satisfies
(x0)T s0 = nµ0, where µ0 ≤ 1/ǫκ, for some positive constant κ. Then there exists an index L
with L = O(

√
n ln(1/ǫ)) such that µl ≤ ǫ, ∀l ≥ L.

Proof: is a straightforward application of Theorem 3.2 in Wright [21, Ch. 3]. �

3.2 Analysis of the long-step method

In this section we will assume that (x, y, s) ∈ NS(γ) for some γ ∈ (0, 1) and inequality (12)
holds for the infinity norm: ‖r‖∞ ≤ δ‖ξ‖∞. We will ask for an aggressive reduction of the
duality gap from one iteration to another and set the barrier reduction parameter σ ∈ (0, 1) to
be significantly smaller than 1. Therefore it will not be possible in general to make the full step
in the Newton direction.

Using definition (11) of the symmetric neighbourhood NS(γ) and observing that 1/γ−1 > 1−γ
we derive the following bound for the term ξ = σµe − XSe in (4)

‖XSe − σµe‖∞ = ‖(XSe − µe) + (1 − σ)µe‖∞
≤ ‖XSe − µe‖∞ + (1 − σ)µ

≤ max{1 − γ,
1

γ
− 1}µ + (1 − σ)µ

= (
1

γ
− σ)µ. (31)

We are now ready to derive a bound on ‖∆X∆Se‖∞.

Lemma 3.3 Let γ ∈ (0, 1). If (x, y, s) ∈ NS(γ) then the inexact Newton direction (∆x,∆y,∆s)
obtained by solving (6) satisfies

‖∆X∆Se‖∞ ≤ ‖∆X∆Se‖1 ≤ n
(1 + δ)2

γ
(
1

γ
− σ)2µ (32)

and

∆xj∆sj ≤
(1 + δ)2

γ
(
1

γ
− σ)2µ, ∀j. (33)

Proof: The definition of the NS(γ) neighbourhood provides a bound minj{xjsj} ≥ γµ. We use
it to rewrite (16):

‖∆X∆Se‖∞ ≤ ‖∆X∆Se‖1 ≤ 1

minj{xjsj}

n∑

j=1

(ξj + rj)
2 ≤ 1

γµ
‖ξ + r‖2

2. (34)

Using (12) (for the infinity norm) and (31) we write

‖ξ + r‖2
2 ≤ n‖ξ + r‖2

∞ ≤ n(1 + δ)2‖ξ‖2
∞ ≤ n(1 + δ)2(

1

γ
− σ)2µ2,
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and, after substituting this expression into (34), obtain the required inequality (32). We observe
that (32) implies that

−n
(1 + δ)2

γ
(
1

γ
− σ)2µ ≤ ∆xj∆sj ≤ n

(1 + δ)2

γ
(
1

γ
− σ)2µ, ∀j,

but we can obtain a tighter upper bound for this component-wise error term. For this we write
equation (14) for component j and square both sides of it to get

2∆xj∆sj ≤
(ξj + rj)

2

xjsj
≤ (1 + δ)2‖ξ‖2

∞

γµ
≤ (1 + δ)2

γ
(
1

γ
− σ)2µ, ∀j,

which implies (33) and completes the proof. �

Next we will show that for appropriately chosen constants σ, γ and δ, a (small) step α = O(1/n)
in the inexact Newton direction is feasible and the new iterate (x(α), y(α), s(α)) = (x, y, s) +
α(∆x,∆y,∆s) remains in the NS(γ) neighbourhood of the central path.

The Lemma below provides conditions which have to be met by three parameters: the proximity
constant γ ∈ (0, 1) in (11), the barrier reduction parameter σ ∈ (0, 1), and the level of error
δ ∈ (0, 1) allowed in the inexact Newton method (12).

Lemma 3.4 Let (x, y, s) be the current iterate in the NS(γ) neighbourhood and (∆x,∆y,∆s) be
the inexact Newton direction which solves equation system (6). If the stepsize α ∈ (0, 1] satisfies
the following conditions:

α(γ + n)
(1 + δ)2

γ
(
1

γ
− σ)2 ≤ σ(1 − γ) − δ(1 + γ)(

1

γ
− σ) (35)

δ(1 +
1

γ
)(

1

γ
− σ) + α

(1 + δ)2

γ
(
1

γ
− σ)2 ≤ (

1

γ
− 1)σ (36)

then the new iterate (x(α), y(α), s(α)) belongs to the NS(γ) neighbourhood, that is:

γµ(α) ≤ xj(α)sj(α) ≤ 1

γ
µ(α), ∀j. (37)

Proof: Using the average complementarity gap (9) at the new iterate (x(α), y(α), s(α)) together
with expression (13) and the third equation in (6), we deduce that the left inequality in (37)
will hold for any j if

γ

(

(1 − α)µ + ασµ + α
eT r

n
+ α2 ∆xT ∆s

n

)

≤ (1 − α)xjsj + ασµ + αrj + α2∆xj∆sj.

Since (x, y, s) ∈ NS(γ) we know that γ(1−α)µ ≤ (1−α)xjsj and therefore the above inequality
will hold if we satisfy a tighter version of it:

γ

(

(1 − α)µ + ασµ + α
eT r

n
+ α2 ∆xT ∆s

n

)

≤ γ(1 − α)µ + ασµ + αrj + α2∆xj∆sj.

After removing identical terms from both sides and dividing both sides by α, we conclude that
the inequality will hold if

α

(

γ
∆xT ∆s

n
− ∆xj∆sj

)

≤ σ(1 − γ)µ + rj − γ
eT r

n
. (38)
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Using Lemma 3.3 we deduce that

∆xT ∆s

n
=

(∆X∆Se)T e

n
≤ 1

n
‖∆X∆Se‖1‖e‖∞ ≤ (1 + δ)2

γ
(
1

γ
− σ)2µ (39)

hence

γ
∆xT ∆s

n
− ∆xj∆sj ≤ (γ + n)

(1 + δ)2

γ
(
1

γ
− σ)2µ. (40)

Using (12) (for the infinity norm) and (31) we deduce that ‖r‖∞ ≤ δ‖ξ‖∞ ≤ δ( 1
γ − σ)µ and

|eT r| ≤ ‖e‖1‖r‖∞ ≤ nδ(
1

γ
− σ)µ (41)

hence

|rj − γ
eT r

n
| ≤ |rj | + γ|e

T r

n
| ≤ δ(1 + γ)(

1

γ
− σ)µ. (42)

The inequalities (40) and (42) allow us to determine the most adverse conditions in (38), namely
when its left-hand-side is the largest possible and the right-hand-side is the smallest possible:

α(γ + n)
(1 + δ)2

γ
(
1

γ
− σ)2µ ≤ σ(1 − γ)µ − δ(1 + γ)(

1

γ
− σ)µ.

We then conclude that (35) implies (38) and therefore the left inequality in (37) holds. This
completes the first part of the proof.

The second part deals with the right inequality in (37). Again, using (9), (13) and the third
equation in (6), we write the required inequality which should be satisfied for any j ∈ {1, 2, . . . , n}

(1 − α)xjsj + ασµ + αrj + α2∆xj∆sj ≤
1

γ

(

(1 − α)µ + ασµ + α
eT r

n
+ α2 ∆xT ∆s

n

)

,

and determine the condition under which it holds. We use similar arguments as in the earlier
part of the proof: for example, (x, y, s) ∈ NS(γ) implies (1 − α)xjsj ≤ 1

γ (1 − α)µ. Hence we
simplify this inequality by removing identical terms and then divide both sides of it by α. The
inequality we need to satisfy becomes

rj −
eT r

γn
+ α

(

∆xj∆sj −
∆xT ∆s

γn

)

≤ (
1

γ
− 1)σµ. (43)

Using (33) and (7) we write

∆xj∆sj −
∆xT ∆s

γn
≤ (1 + δ)2

γ
(
1

γ
− σ)2µ (44)

and using (12) and (31) and similar arguments to those which led to (42) we write

|rj −
eT r

γn
| ≤ |rj | + |e

T r

γn
| ≤ δ(1 +

1

γ
)(

1

γ
− σ)µ. (45)

By (44) and (45), to satisfy (43) we need to choose α such that:

δ(1 +
1

γ
)(

1

γ
− σ)µ + α

(1 + δ)2

γ
(
1

γ
− σ)2µ ≤ (

1

γ
− 1)σµ



Inexact Feasible IPMs 15

which simplifies to (36) and completes the second part of the proof. �

Lemma 3.4 provides conditions which the stepsize α ∈ (0, 1] needs to satisfy so that the new
iterate remains in the NS(γ) neighbourhood of the central path. We still need to demonstrate
that after a step is made a sufficient reduction of duality gap is achieved.

Lemma 3.5 Let (x, y, s) ∈ NS(γ) be given and let (∆x,∆y,∆s) be the inexact Newton direction
which solves equation system (6). If the stepsize α ∈ (0, 1] satisfies the inequality

σ + δ(
1

γ
− σ) + α

(1 + δ)2

γ
(
1

γ
− σ)2 ≤ 0.9, (46)

then the duality gap at the new iterate (x(α), y(α), s(α)) satisfies:

µ(α) ≤ (1 − 0.1α)µ. (47)

Proof: By substituting (9) into (47), cancelling similar terms and dividing the resulting in-
equality by α, we replace (47) with a new condition that the stepsize α has to satisfy:

σµ +
eT r

n
+ α

∆xT ∆s

n
≤ 0.9µ.

Using the bounds (41) and (39) derived earlier we conclude that the above inequality will hold
if

σµ + δ(
1

γ
− σ)µ + α

(1 + δ)2

γ
(
1

γ
− σ)2µ ≤ 0.9µ,

which is equivalent to (46). �

It remains to consider the three conditions (35), (36) and (46) and to demonstrate that an
appropriate choice of parameters γ, σ and δ guarantees that all these conditions hold for some
α = O( 1

n).

We set the proximity constant γ = 0.5 in (11), the barrier reduction parameter σ = 0.5 and
δ = 0.05 as the level of error allowed in the inexact Newton method (12). Indeed, with these

parameter settings (1+δ)2

γ ( 1
γ − σ)2 = 4.96125, and we verify that all three conditions (35), (36)

and (46) are satisfied by α̂ = 1
50n for any n ≥ 2. Substituting such an α̂ into (47) gives

µ̄ = µ(α̂) ≤ (1 − η

n
)µ,

where η = 0.002, and allows us to conclude this section with the following complexity result for
the long-step inexact feasible interior point method operating in a NS(0.5) neighbourhood.

Theorem 3.2 Given ǫ > 0, suppose that a feasible starting point (x0, y0, s0) ∈ NS(0.5) satisfies
(x0)T s0 = nµ0, where µ0 ≤ 1/ǫκ, for some positive constant κ. Then there exists an index L
with L = O(n ln(1/ǫ)) such that µl ≤ ǫ, ∀l ≥ L.

Proof: is a straightforward application of Theorem 3.2 in Wright [21, Ch. 3]. �
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4 Practical aspects of the inexact IPM

Linear system (6) is a modification of (5) which admits the error r in its third equation. The
analysis in the previous section provides guarantees that when the Newton equation system (6)
is solved inexactly and error r satisfies condition (12) the interior point algorithms retain their
good complexity results. In this section we will comment on practical ways of computing the
Newton direction which meets condition (12).

Let us observe that after eliminating ∆s, (5) is reduced to the augmented form

[
−Q − Θ−1 AT

A 0

] [
∆x
∆y

]

=

[
−X−1ξ

0

]

, (48)

where Θ = XS−1 ∈ Rn×n. Any IPM has to solve at least one such system at each iteration
[8, 11]. Numerous attempts have been made during the last decade to employ an iterative
method for this task. Iterative methods for linear algebra are particularly attractive if they can
be used to find only an approximate solution of the linear system, that is, when their run can be
truncated to merely a few iterations. It is common to interrupt the iterative process once the
required (loose) accuracy of the solution is obtained. Clearly such a solution is inexact and in
the context of (48) this translates to dealing with an inexact Newton direction (∆x̃,∆ỹ) which
satisfies

[
−Q − Θ−1 AT

A 0

]

︸ ︷︷ ︸

K

[
∆x̃
∆ỹ

]

=

[
−X−1ξ + rx

ry

]

, (49)

where the errors rx ∈ Rn and ry ∈ Rm determine the level of inexactness.

The analysis presented in this paper applies to the situation when ry = 0. The other error, rx

may take a nonzero value and indeed, (49) becomes equivalent to (6) if ry = 0 and

−X−1ξ + rx = −X−1(ξ + r). (50)

This equation combined with condition (12) determines the practical stopping criteria set for
an iterative solution method applied to (48):

ry = 0 and ‖r‖ = ‖Xrx‖ ≤ δ‖ξ‖. (51)

Let us observe that the condition ry = 0 imposes a certain structure in the solution of (49) and
therefore both the IPM and the iterative method have to satisfy the following two conditions,
respectively:

C1 A feasible IPM has to be used to provide the correct structure of the right hand side in
(5) which will then yield (48).

C2 An iterative method applied to solve equation (48) has to guarantee that the residual ry

in (49) is zero.

Arguments that both these conditions may be satisfied are provided in the discussion below.
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In the general case of an arbitrary quadratic optimization problem, we may embed the problem
into another one for which the initial primal and dual strictly feasible solutions can be con-
structed. We replace the primal problem in the primal-dual pair (1) with the following new
problem:

min cT x + MeT
mx+ + MeT

mx− + Mζ+ + Mζ− + 1
2xT Qx

s.t. Ax + x+ − x− = b, (52)

eT
nx + ζ+ − ζ− = M (53)

x, x+, x−, ζ+, ζ− ≥ 0,

where M is a large enough number (the “big M”), x+, x− ∈ Rm, ζ+, ζ− ∈ R, and em ∈ Rm, en ∈
Rn denote the vectors of ones. For this problem we define the following primal feasible solution:
x = en, x+ = max{b − Aen, 0} + em, x− = max{−(b − Aen), 0} + em, ζ+ = M + 1 and ζ− =
eT
nen + 1 = n + 1. Let y and y0 be the Lagrange multipliers associated with equality constraints

(52) and (53), respectively and let s+, s−, sζ+ , sζ− be the Langrange multipliers associated with
the nonnegativity constraints x+, x−, ζ+, ζ− ≥ 0, respectively. The dual feasibility constraints
for this new quadratic problem have the following form

−Qx + AT y + eny0 + s = c

y + s+ = Mem

y0 + sζ+ = M (54)

−y + s− = Mem

−y0 + sζ− = M.

We use x = en as defined before and set y = 0. Then we set y0 to a sufficiently large negative
number to guarantee that s = c + Qen − eny0 is strictly positive. To satisfy it, we need −y0 >
‖c + Qen‖∞ and additionally we request −y0 < M . Finally, we define s+ = s− = Mem and
sζ+ = M − y0 and sζ− = M + y0, which completes the construction of an initial dual strictly
feasible solution.

In conclusion, we can embed the original quadratic optimization problem (1) into a new one for
which the initial strictly feasible primal-dual solution may be defined and therefore the feasible
interior point algorithm can be applied to it; condition C1 is satisfied.

The requirement ry = 0 in (49) implies that ∆̃x lies in the null space of A. It can be met
for example if equation (49) is solved by an appropriate Krylov-subspace method with an ap-
propriate preconditioner. Since (49) involves the symmetric indefinite matrix K, two possible
Krylov-subspace algorithms which can be used are the minimum residual method (MINRES)
for symmetric and possibly indefinite matrices and the generalized minimum residual method
(GMRES) for symmetric matrices. Although in exact arithmetic these methods should converge
in n + m iterations, in practice one needs to use preconditioning to improve the spectral prop-
erties of the matrix, ideally achieving a good clustering of the eigenvalues of the preconditioned
matrix [13]. The suitable preconditioners include nonsingular matrices of the form

P =

[
G AT

A 0

]

, (55)

where G ∈ Rn×n is a nonsingular approximation of the (1,1) block in K. Such preconditioners
have been used for example by Lukšan and Vlček [16] any many followers. They are sometimes
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called constraint preconditioners because they respect the constraints of the optimization prob-
lem. Observe that MINRES or GMRES applied to (49), using preconditioner P of (55) and
starting from an initial solution such that ∆̃x = 0 will initialize ry to zero and will maintain
ry = 0 throughout the whole iterative process.

Since K is indefinite, the standard conjugate gradient algorithm [13] cannot be applied to (49).
However, under certain conditions, such as the use of an appropriate preconditioner which
implicitly represents the null space of constraints [16], the preconditioned conjugate gradients
can be applied to this system. In a very interesting analysis, Rozlozńık and Simoncini [20]
provided conditions under which the preconditioned conjugate gradients may be applied to
an indefinite system. These require the preconditioned matrix KP−1 to be J-symmetric with
J = P−1 and the residual in conjugate gradients to maintain a zero block in the second equation
of (49). Such conditions are met for example when (49) is preconditioned with (55) and CG
starts from an initial solution ∆̃x = 0.

In conclusion, there exist Krylov-subspace methods which, with an appropriate preconditioner
and an appropriate initial solution, can deliver a solution to (49) such that ry = 0; condition C2
is therefore satisfied.

We summarize this section with an observation which follows from two recent surveys [8, 11] on
interior point methods. There is a growing interest in the development of interior point methods
which use iterative solvers to compute Newton directions and therefore need new theory and
a better understanding of situations when inexact Newton directions are employed. Several
approaches using iterative solvers and suitable preconditioners have already been developed and
some of them have been implemented, see [8, 11] and the references therein. The author’s
own experience in this area has been reported for example in [1, 11, 12]. The implemented
approaches often differ in details from those which follow the rigorous convergence and worst-
case complexity analyses. In this paper we present the theory of two implementable variants
of the inexact feasible interior point method. Such developments reduce the gap between the
theory and the computational practice of IPMs.

5 Conclusions

The analysis presented in this paper provides the proofs of O(
√

n log(1/ε)) and O(n log(1/ε))
iteration complexity of the, respectively, short-step and long-step inexact feasible primal-dual
algorithms for quadratic programming. The analysis allows for considerable relative errors in
the Newton direction. Indeed, δ in (12) may take values 0.3 and 0.05 for the short-step and
long-step algorithms, respectively. This shows, somewhat surprisingly, that the inexactness in
the solution of the Newton equation system (6) may be quite considerable without adversely
affecting the best known worst-case iteration complexity results of these algorithms. It is an
encouraging result for researchers who design preconditioners for iterative methods and wish
to apply them to solve the reduced Newton equation systems arising in the context of interior
point methods.
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