1,086 research outputs found

    Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras

    Full text link
    We propose a novel real-time direct monocular visual odometry for omnidirectional cameras. Our method extends direct sparse odometry (DSO) by using the unified omnidirectional model as a projection function, which can be applied to fisheye cameras with a field-of-view (FoV) well above 180 degrees. This formulation allows for using the full area of the input image even with strong distortion, while most existing visual odometry methods can only use a rectified and cropped part of it. Model parameters within an active keyframe window are jointly optimized, including the intrinsic/extrinsic camera parameters, 3D position of points, and affine brightness parameters. Thanks to the wide FoV, image overlap between frames becomes bigger and points are more spatially distributed. Our results demonstrate that our method provides increased accuracy and robustness over state-of-the-art visual odometry algorithms.Comment: Accepted by IEEE Robotics and Automation Letters (RA-L), 2018 and IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Odometria visual monocular em robôs para a agricultura com camara(s) com lentes "olho de peixe"

    Get PDF
    One of the main challenges in robotics is to develop accurate localization methods that achieve acceptable runtime performances.One of the most common approaches is to use Global Navigation Satellite System such as GPS to localize robots.However, satellite signals are not full-time available in some kind of environments.The purpose of this dissertation is to develop a localization system for a ground robot.This robot is inserted in a project called RoMoVi and is intended to perform tasks like crop monitoring and harvesting in steep slope vineyards.This vineyards are localized in the Douro region which are characterized by the presence of high hills.Thus, the context of RoMoVi is not prosperous for the use of GPS-based localization systems.Therefore, the main goal of this work is to create a reliable localization system based on vision techniques and low cost sensors.To do so, a Visual Odometry system will be used.The concept of Visual Odometry is equivalent to wheel odometry but it has the advantage of not suffering from wheel slip which is present in these kind of environments due to the harsh terrain conditions.Here, motion is tracked computing the homogeneous transformation between camera frames, incrementally.However, this approach also presents some open issues.Most of the state of art methods, specially those who present a monocular camera system, don't perform good motion estimations in pure rotations.In some of them, motion even degenerates in these situations.Also, computing the motion scale is a difficult task that is widely investigated in this field.This work is intended to solve these issues.To do so, fisheye lens cameras will be used in order to achieve wide vision field of views

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability
    corecore