70 research outputs found

    Novel approaches to applied cybersecurity in privacy, encryption, security systems, web credentials, and education

    Get PDF
    Applied Cybersecurity is a domain that interconnects people, processes, technologies, usage environment and vulnerabilities in a complex manner. As a cybersecurity expert at CTI Renato Archer- a research institute from Brazilian Ministry of Science, Technology and Innovations, author developed novel approaches to help solve practical and practice-based problems in applied cybersecurity over the last ten years. The needs of the government, industry, customers, and real-life problems in five categories: Privacy, Encryption, Web Credentials, Security Systems and Education, were the research stimuli. Based on prior outputs, this thesis presents a cohesive narrative of the novel approaches in the mentioned categories consolidating fifteen research publications. The customers and society, in general, expect that companies, universities, and the government will protect them from any cyber threats. Fifteen research papers that compose this thesis elucidate a broader context of cyber threats, errors in security software and gaps in cybersecurity education. This thesis's research points out that a large number of organisations are vulnerable to cyber threats and procedures and practices around cybersecurity are questionable. Therefore, society expects a periodic reassessment of cybersecurity systems, practices and policies. Privacy has been extensively debated in many countries due to personal implications and civil liberties with citizenship at stake. Since 2018, GDPR has been in force in the EU and has been a milestone for people and institutions' privacy. The novel work in privacy, supported by four research papers, discusses the private mode navigation in several browsers and shows how privacy is a fragile feeling. The secrets of different companies, countries and armed forces are entrusted to encryption technologies. Three research papers support the encryption element discussed in this thesis. It explores vulnerabilities in the most used encryption software. It provides data exposure scenarios showing how companies, government and universities are vulnerable and proposes best practices. Credentials are data that give someone the right to access a location or a system. They usually involve a login, a username, email, access code and a password. It is customary to have a rigorous demand for security credentials a sensitive system of information. The work on web credentials in this thesis, supported by one research paper, examines a novel experiment that permits the intruder to extract user credentials in home banking and e-commerce websites, revealing common cyber flaws and vulnerabilities. Antimalware systems are complex software engineering systems purposely designed to be safe and reliable despite numerous operational idiosyncrasies. Antimalware systems have been deployed for protecting information systems for decades. The novel work on security systems presented in the thesis, supported by five research papers, explores antimalware attacks and software engineering structure problems. Cybersecurity's primary awareness is expected through school and University education, but the academic discourse is often dissociated from practice. The discussion-based on two research papers presents a new insight into cybersecurity education and proposes an IRCS Index of Relevance in Cybersecurity (IRCS) to classify the computer science courses offered in UK Universities relevance of cybersecurity in their curricula. In a nutshell, the thesis presents a coherent and novel narrative to applied cybersecurity in five categories spanning software, systems, and education

    High-Fidelity Provenance:Exploring the Intersection of Provenance and Security

    Get PDF
    In the past 25 years, the World Wide Web has disrupted the way news are disseminated and consumed. However, the euphoria for the democratization of news publishing was soon followed by scepticism, as a new phenomenon emerged: fake news. With no gatekeepers to vouch for it, the veracity of the information served over the World Wide Web became a major public concern. The Reuters Digital News Report 2020 cites that in at least half of the EU member countries, 50% or more of the population is concerned about online fake news. To help address the problem of trust on information communi- cated over the World Wide Web, it has been proposed to also make available the provenance metadata of the information. Similar to artwork provenance, this would include a detailed track of how the information was created, updated and propagated to produce the result we read, as well as what agents—human or software—were involved in the process. However, keeping track of provenance information is a non-trivial task. Current approaches, are often of limited scope and may require modifying existing applications to also generate provenance information along with thei regular output. This thesis explores how provenance can be automatically tracked in an application-agnostic manner, without having to modify the individual applications. We frame provenance capture as a data flow analysis problem and explore the use of dynamic taint analysis in this context. Our work shows that this appoach improves on the quality of provenance captured compared to traditonal approaches, yielding what we term as high-fidelity provenance. We explore the performance cost of this approach and use deterministic record and replay to bring it down to a more practical level. Furthermore, we create and present the tooling necessary for the expanding the use of using deterministic record and replay for provenance analysis. The thesis concludes with an application of high-fidelity provenance as a tool for state-of-the art offensive security analysis, based on the intuition that software too can be misguided by "fake news". This demonstrates that the potential uses of high-fidelity provenance for security extend beyond traditional forensics analysis

    The InfoSec Handbook

    Get PDF
    Computer scienc

    SECURITY AND PRIVACY ASPECTS OF MOBILE PLATFORMS AND APPLICATIONS

    Get PDF
    Mobile smart devices (such as smartphones and tablets) emerged to dominant computing platforms for end-users. The capabilities of these convenient mini-computers seem nearly boundless: They feature compelling computing power and storage resources, new interfaces such as Near Field Communication (NFC) and Bluetooth Low Energy (BLE), connectivity to cloud services, as well as a vast number and variety of apps. By installing these apps, users can turn a mobile device into a music player, a gaming console, a navigation system, a business assistant, and more. In addition, the current trend of increased screen sizes make these devices reasonable replacements for traditional (mobile) computing platforms such as laptops. On the other hand, mobile platforms process and store the extensive amount of sensitive information about their users, ranging from the user’s location data to credentials for online banking and enterprise Virtual Private Networks (VPNs). This raises many security and privacy concerns and makes mobile platforms attractive targets for attackers. The rapid increase in number, variety and sophistication of attacks demonstrate that the protection mechanisms offered by mobile systems today are insufficient and improvements are necessary in order to make mobile devices capable of withstanding modern security and privacy threats. This dissertation focuses on various aspects of security and privacy of mobile platforms. In particular, it consists of three parts: (i) advanced attacks on mobile platforms and countermeasures; (ii) online authentication security for mobile systems, and (iii) secure mobile applications and services. Specifically, the first part of the dissertation concentrates on advanced attacks on mobile platforms, such as code re-use attacks that hijack execution flow of benign apps without injecting malicious code, and application-level privilege escalation attacks that allow malicious or compromised apps to gain more privileges than were initially granted. In this context, we develop new advanced code re-use attack techniques that can bypass deployed protection mechanisms (e.g., Address Space Layout Randomization (ASLR)) and cannot be detected by any of the existing security tools (e.g., return address checkers). Further, we investigate the problem of application-level privilege escalation attacks on mobile platforms like Android, study and classify them, develop proof of concept exploits and propose countermeasures against these attacks. Our countermeasures can mitigate all types of application-level privilege escalation attacks, in contrast to alternative solutions proposed in literature. In the second part of the dissertation we investigate online authentication schemes frequently utilized by mobile users, such as the most common web authentication based upon the user’s passwords and the recently widespread mobile 2-factor authentication (2FA) which extends the password-based approach with a secondary authenticator sent to a user’s mobile device or generated on it (e.g, a One-time Password (OTP) or Transaction Authentication Number (TAN)). In this context we demonstrate various weaknesses of mobile 2FA schemes deployed for login verification by global Internet service providers (such as Google, Dropbox, Twitter, and Facebook) and by a popular Google Authenticator app. These weaknesses allow an attacker to impersonate legitimate users even if their mobile device with the secondary authenticator is not compromised. We then go one step further and develop a general attack method for bypassing mobile 2FA schemes. Our method relies on a cross-platform infection (mobile-to-PC or PC-to-mobile) as a first step in order to compromise the Personal Computer (PC) and a mobile device of the same user. We develop proof-of-concept prototypes for a cross-platform infection and show how an attacker can bypass various instantiations of mobile 2FA schemes once both devices, PC and the mobile platform, are infected. We then deliver proof-of-concept attack implementations that bypass online banking solutions based on SMS-based TANs and visual cryptograms, as well as login verification schemes deployed by various Internet service providers. Finally, we propose a wallet-based secure solution for password-based authentication which requires no secondary authenticator, and yet provides better security guaranties than, e.g., mobile 2FA schemes. The third part of the dissertation concerns design and development of security sensitive mobile applications and services. In particular, our first application allows mobile users to replace usual keys (for doors, cars, garages, etc.) with their mobile devices. It uses electronic access tokens which are generated by the central key server and then downloaded into mobile devices for user authentication. Our solution protects access tokens in transit (e.g., while they are downloaded on the mobile device) and when they are stored and processed on the mobile platform. The unique feature of our solution is offline delegation: Users can delegate (a portion of) their access rights to other users without accessing the key server. Further, our solution is efficient even when used with constraint communication interfaces like NFC. The second application we developed is devoted to resource sharing among mobile users in ad-hoc mobile networks. It enables users to, e.g., exchange files and text messages, or share their tethering connection. Our solution addresses security threats specific to resource sharing and features the required security mechanisms (e.g., access control of resources, pseudonymity for users, and accountability for resource use). One of the key features of our solution is a privacy-preserving access control of resources based on FoF Finder (FoFF) service, which provides a user-friendly means to configure access control based upon information from social networks (e.g., friendship information) while preserving user privacy (e.g., not revealing their social network identifiers). The results presented in this dissertation were included in several peer-reviewed publications and extended technical reports. Some of these publications had significant impact on follow up research. For example, our publications on new forms of code re-use attacks motivated researchers to develop more advanced forms of ASLR and to re-consider the idea of using Control-Flow Integrity (CFI). Further, our work on application-level privilege escalation attacks was followed by many other publications addressing this problem. Moreover, our access control solution using mobile devices as access tokens demonstrated significant practical impact: in 2013 it was chosen as a highlight of CeBIT – the world’s largest international computer expo, and was then deployed by a large enterprise to be used by tens of thousands of company employees and millions of customers

    Untangling the Web: A Guide To Internet Research

    Get PDF
    [Excerpt] Untangling the Web for 2007 is the twelfth edition of a book that started as a small handout. After more than a decade of researching, reading about, using, and trying to understand the Internet, I have come to accept that it is indeed a Sisyphean task. Sometimes I feel that all I can do is to push the rock up to the top of that virtual hill, then stand back and watch as it rolls down again. The Internet—in all its glory of information and misinformation—is for all practical purposes limitless, which of course means we can never know it all, see it all, understand it all, or even imagine all it is and will be. The more we know about the Internet, the more acute is our awareness of what we do not know. The Internet emphasizes the depth of our ignorance because our knowledge can only be finite, while our ignorance must necessarily be infinite. My hope is that Untangling the Web will add to our knowledge of the Internet and the world while recognizing that the rock will always roll back down the hill at the end of the day

    On the malware detection problem : challenges and novel approaches

    Get PDF
    Orientador: AndrĂ© Ricardo Abed GrĂ©gioCoorientador: Paulo LĂ­cio de GeusTese (doutorado) - Universidade Federal do ParanĂĄ, Setor de CiĂȘncias Exatas, Programa de PĂłs-Graduação em InformĂĄtica. Defesa : Curitiba,Inclui referĂȘnciasÁrea de concentração: CiĂȘncia da ComputaçãoResumo: Software Malicioso (malware) Ă© uma das maiores ameaças aos sistemas computacionais atuais, causando danos Ă  imagem de indivĂ­duos e corporaçÔes, portanto requerendo o desenvolvimento de soluçÔes de detecção para prevenir que exemplares de malware causem danos e para permitir o uso seguro dos sistemas. Diversas iniciativas e soluçÔes foram propostas ao longo do tempo para detectar exemplares de malware, de Anti-VĂ­rus (AVs) a sandboxes, mas a detecção de malware de forma efetiva e eficiente ainda se mantĂ©m como um problema em aberto. Portanto, neste trabalho, me proponho a investigar alguns desafios, falĂĄcias e consequĂȘncias das pesquisas em detecção de malware de modo a contribuir para o aumento da capacidade de detecção das soluçÔes de segurança. Mais especificamente, proponho uma nova abordagem para o desenvolvimento de experimentos com malware de modo prĂĄtico mas ainda cientĂ­fico e utilizo-me desta abordagem para investigar quatro questĂ”es relacionadas a pesquisa em detecção de malware: (i) a necessidade de se entender o contexto das infecçÔes para permitir a detecção de ameaças em diferentes cenĂĄrios; (ii) a necessidade de se desenvolver melhores mĂ©tricas para a avaliação de soluçÔes antivĂ­rus; (iii) a viabilidade de soluçÔes com colaboração entre hardware e software para a detecção de malware de forma mais eficiente; (iv) a necessidade de predizer a ocorrĂȘncia de novas ameaças de modo a permitir a resposta Ă  incidentes de segurança de forma mais rĂĄpida.Abstract: Malware is a major threat to most current computer systems, causing image damages and financial losses to individuals and corporations, thus requiring the development of detection solutions to prevent malware to cause harm and allow safe computers usage. Many initiatives and solutions to detect malware have been proposed over time, from AntiViruses (AVs) to sandboxes, but effective and efficient malware detection remains as a still open problem. Therefore, in this work, I propose taking a look on some malware detection challenges, pitfalls and consequences to contribute towards increasing malware detection system's capabilities. More specifically, I propose a new approach to tackle malware research experiments in a practical but still scientific manner and leverage this approach to investigate four issues: (i) the need for understanding context to allow proper detection of localized threats; (ii) the need for developing better metrics for AV solutions evaluation; (iii) the feasibility of leveraging hardware-software collaboration for efficient AV implementation; and (iv) the need for predicting future threats to allow faster incident responses

    The InfoSec Handbook

    Get PDF
    Computer scienc

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Defense in Depth of Resource-Constrained Devices

    Get PDF
    The emergent next generation of computing, the so-called Internet of Things (IoT), presents significant challenges to security, privacy, and trust. The devices commonly used in IoT scenarios are often resource-constrained with reduced computational strength, limited power consumption, and stringent availability requirements. Additionally, at least in the consumer arena, time-to-market is often prioritized at the expense of quality assurance and security. An initial lack of standards has compounded the problems arising from this rapid development. However, the explosive growth in the number and types of IoT devices has now created a multitude of competing standards and technology silos resulting in a highly fragmented threat model. Tens of billions of these devices have been deployed in consumers\u27 homes and industrial settings. From smart toasters and personal health monitors to industrial controls in energy delivery networks, these devices wield significant influence on our daily lives. They are privy to highly sensitive, often personal data and responsible for real-world, security-critical, physical processes. As such, these internet-connected things are highly valuable and vulnerable targets for exploitation. Current security measures, such as reactionary policies and ad hoc patching, are not adequate at this scale. This thesis presents a multi-layered, defense in depth, approach to preventing and mitigating a myriad of vulnerabilities associated with the above challenges. To secure the pre-boot environment, we demonstrate a hardware-based secure boot process for devices lacking secure memory. We introduce a novel implementation of remote attestation backed by blockchain technologies to address hardware and software integrity concerns for the long-running, unsupervised, and rarely patched systems found in industrial IoT settings. Moving into the software layer, we present a unique method of intraprocess memory isolation as a barrier to several prevalent classes of software vulnerabilities. Finally, we exhibit work on network analysis and intrusion detection for the low-power, low-latency, and low-bandwidth wireless networks common to IoT applications. By targeting these areas of the hardware-software stack, we seek to establish a trustworthy system that extends from power-on through application runtime
    • 

    corecore