2,087 research outputs found

    Large-girth roots of graphs

    Get PDF
    We study the problem of recognizing graph powers and computing roots of graphs. We provide a polynomial time recognition algorithm for r-th powers of graphs of girth at least 2r+3, thus improving a bound conjectured by Farzad et al. (STACS 2009). Our algorithm also finds all r-th roots of a given graph that have girth at least 2r+3 and no degree one vertices, which is a step towards a recent conjecture of Levenshtein that such root should be unique. On the negative side, we prove that recognition becomes an NP-complete problem when the bound on girth is about twice smaller. Similar results have so far only been attempted for r=2,3.Comment: 14 pages, 4 figure

    Approximating the Largest Root and Applications to Interlacing Families

    Full text link
    We study the problem of approximating the largest root of a real-rooted polynomial of degree nn using its top kk coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in kk that use the top kk coefficients to approximate the maximum root within a factor of n1/kn^{1/k} and 1+O(lognk)21+O(\tfrac{\log n}{k})^2 when klognk\leq \log n and k>lognk>\log n respectively. We also prove corresponding information-theoretic lower bounds of nΩ(1/k)n^{\Omega(1/k)} and 1+Ω(log2nkk)21+\Omega\left(\frac{\log \frac{2n}{k}}{k}\right)^2, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of 2O~(n3)2^{\tilde O(\sqrt[3]n)} for all of them

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed

    Square-Root Finding Problem In Graphs, A Complete Dichotomy Theorem

    Full text link
    Graph G is the square of graph H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Given H it is easy to compute its square H^2. Determining if a given graph G is the square of some graph is not easy in general. Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph. The graph introduced in their reduction is a graph that contains many triangles and is relatively dense. Farzad et al. proved the NP-completeness for finding a square root for girth 4 while they gave a polynomial time algorithm for computing a square root of girth at least six. Adamaszek and Adamaszek proved that if a graph has a square root of girth six then this square root is unique up to isomorphism. In this paper we consider the characterization and recognition problem of graphs that are square of graphs of girth at least five. We introduce a family of graphs with exponentially many non-isomorphic square roots, and as the main result of this paper we prove that the square root finding problem is NP-complete for square roots of girth five. This proof is providing the complete dichotomy theorem for square root problem in terms of the girth of the square roots

    An Alon-Boppana Type Bound for Weighted Graphs and Lowerbounds for Spectral Sparsification

    Get PDF
    We prove the following Alon-Boppana type theorem for general (not necessarily regular) weighted graphs: if GG is an nn-node weighted undirected graph of average combinatorial degree dd (that is, GG has dn/2dn/2 edges) and girth g>2d1/8+1g> 2d^{1/8}+1, and if λ1λ2λn\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n are the eigenvalues of the (non-normalized) Laplacian of GG, then λnλ21+4dO(1d58) \frac {\lambda_n}{\lambda_2} \geq 1 + \frac 4{\sqrt d} - O \left( \frac 1{d^{\frac 58} }\right) (The Alon-Boppana theorem implies that if GG is unweighted and dd-regular, then λnλ21+4dO(1d)\frac {\lambda_n}{\lambda_2} \geq 1 + \frac 4{\sqrt d} - O\left( \frac 1 d \right) if the diameter is at least d1.5d^{1.5}.) Our result implies a lower bound for spectral sparsifiers. A graph HH is a spectral ϵ\epsilon-sparsifier of a graph GG if L(G)L(H)(1+ϵ)L(G) L(G) \preceq L(H) \preceq (1+\epsilon) L(G) where L(G)L(G) is the Laplacian matrix of GG and L(H)L(H) is the Laplacian matrix of HH. Batson, Spielman and Srivastava proved that for every GG there is an ϵ\epsilon-sparsifier HH of average degree dd where ϵ42d\epsilon \approx \frac {4\sqrt 2}{\sqrt d} and the edges of HH are a (weighted) subset of the edges of GG. Batson, Spielman and Srivastava also show that the bound on ϵ\epsilon cannot be reduced below 2d\approx \frac 2{\sqrt d} when GG is a clique; our Alon-Boppana-type result implies that ϵ\epsilon cannot be reduced below 4d\approx \frac 4{\sqrt d} when GG comes from a family of expanders of super-constant degree and super-constant girth. The method of Batson, Spielman and Srivastava proves a more general result, about sparsifying sums of rank-one matrices, and their method applies to an "online" setting. We show that for the online matrix setting the 42/d4\sqrt 2 / \sqrt d bound is tight, up to lower order terms
    corecore