COMPUTING GRAPH ROOTS WITHOUT SHORT CYCLES

BABAK FARZAD ${ }^{1}$ AND LAP CHI LAU ${ }^{2}$ AND VAN BANG LE ${ }^{3}$ AND NGUYEN NGOC TUY ${ }^{\dagger} 3,4$
${ }^{1}$ Department of Mathematics, Brock University, Canada. E-mail address: bfarzad@brocku.ca
${ }^{2}$ Department of Computer Science and Engineering, The Chinese University of Hong Kong. E-mail address: chi@cse.cuhk.edu.hk
${ }^{3}$ Universität Rostock, Institut für Informatik, Germany.
E-mail address: \{le, nn024\}@informatik.uni-rostock.de
${ }^{4}$ Hong Duc University, Vietnam.
E-mail address: nntuy@yahoo.com

Abstract. Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H^{2}, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if $G=H^{2}$ for some graph H of small girth. The main results are the following.

- There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism.
- There is a polynomial time algorithm to recognize if $G=H^{2}$ for some graph H of girth at least 6 .
- It is NP-complete to recognize if $G=H^{2}$ for some graph H of girth 4 .

These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed.

Key words and phrases: Graph roots, Graph powers, Recognition algorithms, NP-completeness.
\dagger This author is supported by the Ministry of Education and Training, Vietnam, Grant No. 3766/QDBGD \& DT.

STACS 2009
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 397-408
http://drops.dagstuhl.de/opus/volltexte/2009/1827

1. Introduction

Root and root finding are concepts familiar to most branches of mathematics. In graph theory, H is a square root of G and G is the square of H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Graph square is a basic operation with a number of results about its properties in the literature. In this paper we are interested in the characterization and recognition problems of graph squares. Ross and Harary [22] characterized squares of trees and showed that tree square roots, when they exist, are unique up to isomorphism. Mukhopadhyay [20] provided a characterization of graphs which have a square root, but this is not a good characterization in the sense that it does not give a short certificate when a graph does not have a square root. In fact, such a good characterization may not exist as Motwani and Sudan proved that it is NP-complete to determine if a given graph has a square root [19]. On the other hand, there are polynomial time algorithms to compute the tree square root $[17,14,15,3,4]$, a bipartite graph square root [15], and a proper interval graph square root [16].

The algorithms for computing tree square roots and bipartite graph square roots are based on the fact that the square roots have no cycles and no odd cycles respectively. Since computing the graph square uses only local information from the first and the second neighborhood, it is plausible that there are polynomial time algorithms to compute square roots that have no short cycles (locally tree-like), and more generally to compute square roots that have no short odd cycles (locally bipartite). The girth of a graph is the length of a shortest cycle. In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if $G=H^{2}$ for some graph H of small girth.

The main results of this paper are the following. In Section 2 we will provide a good characterization for graphs that are squares of some graph of girth at least 7. This characterization not only leads to a simple algorithm to compute a square root of girth at least 7 but also shows such a square root, if it exists, is unique up to isomorphism. Then, in Section 3, we will present a polynomial time algorithm to compute a square root of girth at least 6 , or report that none exists. In Section 4 we will show that it is NP-complete to determine if a graph G has a square root of girth 4. Finally, we discuss some open questions and conjectures.

These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results considerably generalize previous results on tree square roots. We believe that our algorithms can be extended to compute square roots with no short odd cycles (locally bipartite), and in fact one part of the algorithm for computing square roots of girth at least 6 uses only the assumption that the square roots have no 3 cycles or 5 cycles. Coloring properties of squares in terms of girth of the roots have been considered in the literature [2, 5, 11]; our algorithms would allow those results to apply even though a square root was not known apriori.

Definitions and notation: All graphs considered are finite, undirected and simple. Let $G=\left(V_{G}, E_{G}\right)$ be a graph. We often write $x y \in E_{G}$ for $\{x, y\} \in E_{G}$. Following [19, 16], we sometimes also write $x \leftrightarrow y$ for the adjacency of x and y in the graph in question; this is particularly the case when we describe reductions in NP-completeness proofs.

The neighborhood $N_{G}(v)$ in G of a vertex v is the set all vertices in G adjacent to v and the closed neighborhood of v in G is $N_{G}[v]=N_{G}(v) \cup\{v\}$. Set $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$, the
degree of v in G. We call vertices of degree one in G end-vertices of G. A center vertex of G is one that is adjacent to all other vertices.

Let $d_{G}(x, y)$ be the length, i.e., number of edges, of a shortest path in G between x and y. Let $G^{k}=\left(V_{G}, E^{k}\right)$ with $x y \in E^{k}$ if and only if $1 \leq d_{G}(x, y) \leq k$ denote the k-th power of G. If $G=H^{k}$ then G is the k-th power of the graph H and H is a k-th root of G. Since the power of a graph H is the union of the powers of the connected components of H, we may assume that all graphs considered are connected.

A set of vertices $Q \subseteq V_{G}$ is called a clique in G if every two distinct vertices in Q are adjacent; a maximal clique is a clique that is not properly contained in another clique. A stable set is a set of pairwise non-adjacent vertices. Given a set of vertices $X \subseteq V_{G}$, the subgraph induced by X is written $G[X]$ and $G-X$ stands for $G[V \backslash X]$. If $X=\{a, b, c, \ldots\}$, we write $G[a, b, c, \ldots]$ for $G[X]$. Also, we often identify a subset of vertices with the subgraph induced by that subset, and vice versa.

The girth of G, girth (G), is the smallest length of a cycle in G; in case G has no cycles, we set $\operatorname{girth}(G)=\infty$. In other words, G has girth k if and only if G contains a cycle of length k but does not contain any (induced) cycle of length $\ell=3, \ldots, k-1$. Note that the girth of a graph can be computed in $O(n m)$ time, where n and m are the number of vertices, respectively, edges of the input graph [13].

A complete graph is one in which every two distinct vertices are adjacent; a complete graph on k vertices is also denoted by K_{k}. A star is a graph with at least two vertices that has a center vertex and the other vertices are pairwise non-adjacent. Note that a star contains at least one edge and at least one center vertex; the center vertex is unique whenever the star has more than two vertices.

2. Squares of graphs with girth at least seven

In this section, we give a good characterization of graphs that are squares of a graph of girth at least seven. Our characterization leads to a simple polynomial-time recognition for such graphs.
Proposition 2.1. Let G be a connected, non-complete graph such that $G=H^{2}$ for some graph H.
(i) If $\operatorname{girth}(H) \geq 6$ and v is a vertex with $\operatorname{deg}_{H}(v) \geq 2$ then $N_{H}[v]$ is a maximal clique in G;
(ii) If $\operatorname{girth}(H) \geq 7$ and Q is a maximal clique in G then $Q=N_{H}[v]$ for some vertex v where $\operatorname{deg}_{H}(v) \geq 2$.

Proof. (i) Let v be a vertex with $\operatorname{deg}_{H}(v) \geq 2$. Clearly, $Q=N_{H}[v]$ is a clique in G. Consider an arbitrary vertex w outside Q; in particular, w is non-adjacent in H to v. If w is non-adjacent in H to all vertices in Q, then $d_{H}(w, v)>2$. If w is adjacent in H to a vertex $x \in Q-v$, let $y \in Q \backslash\{v, x\}$. Then $N_{H}[w] \cap N_{H}[y]=\emptyset$ (otherwise H would contain a cycle of length at most five), hence $d_{H}(w, y)>2$. Thus, in any case, w cannot be adjacent, in G, to all vertices in Q, and so Q is a maximal clique in G.
(ii) Let Q be a maximal clique in G and $v \in Q$ be a vertex that maximizes $\left|Q \cap N_{H}[v]\right|$. We prove that $Q=N_{H}[v]$. It can be seen that by the maximality of $Q, \operatorname{deg}_{H}(v) \geq 2$. Now, we show that if $w \in Q \backslash N_{H}[v]$ and $x \in Q \cap N_{H}[v]$, then $w x \notin E_{H}$: As $w \notin N_{H}[v]$, this is clear in case $x=v$. So, let $x \neq v$ and assume to the contrary that $w x \in E_{H}$. Then, by the choice of v, there exists a vertex $w^{\prime} \in Q \backslash N_{H}[x], w^{\prime} \in N_{H}[v]$. Note that $w^{\prime} x, w^{\prime} w \notin E_{H}$
because H has no C_{3}, C_{4}. As $w w^{\prime} \in E_{G} \backslash E_{H}$, there exists a vertex $u \notin\left\{w, w^{\prime}, x, v\right\}$ with $u w, u w^{\prime} \in E_{H}$. But then $H\left[w, w^{\prime}, x, v, u\right]$ contains a C_{4} or C_{5}. Contradiction.

Finally, we show that $Q \subseteq N_{H}[v]$, and so, by the maximality of $Q, Q=N_{H}[v]$: Assume otherwise and let $w \in Q \backslash N_{H}[v]$. As $w v \in E_{G} \backslash E_{H}$, there exists a vertex x such that $x w, x v \in E_{H}$, and so, $x \in N_{H}[v] \backslash Q$. By the maximality of Q, x must be non-adjacent (in $G)$ to a vertex $w^{\prime} \in Q$. In fact, $w^{\prime} \in Q \backslash N_{H}[v]$ as x is adjacent in G to every vertex in $N_{H}[v]$. Since $w^{\prime} v \in E_{G} \backslash E_{H}$, there exists a vertex a such that $a w^{\prime}, a v \in E_{H}$; note that $a \notin\{x, w\}$. Now, if $w w^{\prime} \in E_{H}$ then $H\left[w, w^{\prime}, a, v, x\right]$ contains a cycle of length at most five. If $w w^{\prime} \notin E_{H}$, let b be a vertex such that $b w, b w^{\prime} \in E_{H}$; possibly $b=a$. Then $H\left[w, w^{\prime}, a, b, v, x\right]$ contains a cycle of length at most six. In any case we have a contradiction, hence $Q \backslash N_{H}[v]=\emptyset$.

The 5-cycle C_{5} and the 6 -cycle C_{6} show that (i), respectively, (ii) in Proposition 2.1 is best possible with respect to the girth condition of the root. More generally, the maximal cliques in the square of the subdivision of any complete graph on $n \geq 3$ vertices do not satisfy Condition (ii).

Definition 2.2. Let G be an arbitrary graph. An edge of G is called forced if it is contained in (at least) two distinct maximal cliques in G.
Proposition 2.3. Let G be a connected, non-complete graph such that $G=H^{2}$ for some graph H with girth at least seven, and let F be the subgraph of G consisting of all forced edges of G. Then
(i) F is obtained from H by deleting all end-vertices in H;
(ii) for every maximal clique Q in $G, F\left[Q \cap V_{F}\right]$ is a star; and
(iii) every vertex in $V_{G}-V_{F}$ belongs to exactly one maximal clique in G.

Proof. First we observe that $x y$ is a forced edge in G iff $x y$ is an edge in H with $\operatorname{deg}_{H}(x) \geq 2$ and $\operatorname{deg}_{H}(y) \geq 2$. Now, (i) follows directly from the above observations. For (ii), consider a maximal clique Q in G. By Proposition 2.1, $Q=N_{H}[v]$ for some vertex v with $\operatorname{deg}_{H}(v) \geq 2$. Let X be the set of all neighbors of v in H that are end-vertices in H and $Y=N_{H}(v) \backslash X$. Since G is not complete, $Y \neq \emptyset$. By (i), $X \cap V_{F}=\emptyset$, hence $F\left[Q \cap V_{F}\right]=F[\{v\} \cup Y]$ which implies (ii). For (iii), consider a vertex $u \in V_{G}-V_{F}$ and a maximal clique Q containing u. Then, u cannot belong to Y and therefore Q is the only maximal clique containing u.

We now are able to characterize squares of graphs with girth at least seven as follows.
Theorem 2.4. Let G be a connected, non-complete graph. Let F be the subgraph of G consisting of all forced edges in G. Then G is the square of a graph with girth at least seven if and only if the following conditions hold.
(i) Every vertex in $V_{G}-V_{F}$ belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.
(iii) Every two non-disjoint edges in F belong to a common maximal clique in G.
(iv) For each maximal clique Q of $G, F\left[Q \cap V_{F}\right]$ is a star.
(v) F is connected and has girth at least seven.

Proof. For the only if-part, (ii) and (iii) follow easily from Proposition 2.1, and (i), (iv) and (v) follow directly from Proposition 2.3.

For the if-part, let G be a connected graph satisfying (i) - (v). We will construct a spanning subgraph H of G with girth at least seven such that $G=H^{2}$ as follows. For each edge $x y$ in F let, by (ii) and (iv), $Q \neq Q^{\prime}$ be the two maximal cliques in G with $Q \cap Q^{\prime}=\{x, y\}$. Let, without loss of generality, $\left|Q \cap V_{F}\right| \geq\left|Q^{\prime} \cap V_{F}\right|$. Assuming x is
a center vertex of the star $F\left[Q \cap V_{F}\right]$, then y is a center vertex of the star $F\left[Q^{\prime} \cap V_{F}\right]$: Otherwise, by (iv), x is the center vertex of the star $F\left[Q^{\prime} \cap V_{F}\right]$ and there exists some $y^{\prime} \in Q^{\prime} \cap V_{F}$ such that $y y^{\prime} \notin F$; note that $x y^{\prime} \in F$ (by (iv)). As $\left|Q \cap V_{F}\right| \geq\left|Q^{\prime} \cap V_{F}\right|$, there is an edge $x z \in F-x y$ in $Q-Q^{\prime}$. By (iii), $z y^{\prime} \in E_{G}$. Now, as Q^{\prime} is maximal, the maximal clique $Q^{\prime \prime}$ containing x, y, z, y^{\prime} is different from Q^{\prime}. But then $\left\{y, y^{\prime}\right\} \subseteq Q^{\prime} \cap Q^{\prime \prime}$, i.e., $y y^{\prime} \in F$, hence F contains a triangle $x y y^{\prime}$, contradicting (v).

Thus, assuming x is a center vertex of the star $F\left[Q \cap V_{F}\right], y$ is a center vertex of the star $F\left[Q^{\prime} \cap V_{F}\right]$. Then put the edges $x q, q \in Q-x$, and $y q^{\prime}, q^{\prime} \in Q^{\prime}-y$, into H.

By construction, $F \subseteq H \subseteq G$ and by (i),

$$
\begin{equation*}
\text { for all vertices } u \in V_{H} \backslash V_{F}, \operatorname{deg}_{H}(u)=1 \text {, } \tag{2.1}
\end{equation*}
$$

$\forall v \in V_{F}, \forall a, b \in V_{H}$ with $v a, v b \in E_{H}: a$ and b belong to the same clique in G.
Furthermore, as every maximal clique in G contains a forced edge (by (iv)), H is a spanning subgraph of G. Moreover, F is an induced subgraph of H : Consider an edge $x y \in E_{H}$ with $x, y \in V_{F}$. By construction of H, x or y is a center vertex of the star $F\left[Q \cap V_{F}\right]$ for some maximal clique Q in G. Since $x, y \in V_{F}, x y$ must be an edge of this star, i.e., $x y \in E_{F}$. Thus, F is an induced subgraph of H. In particular, by (2.1) and (v), H is connected and $\operatorname{girth}(H)=\operatorname{girth}(F) \geq 7$.

Now, we complete the proof of Theorem 2.4 by showing that $G=H^{2}$. Let $u v \in E_{G} \backslash E_{H}$ and let Q be a maximal clique in G containing $u v$. By (iv), Q contains a forced edge $x y$ and x or y is a center vertex of the star $F\left[Q \cap V_{F}\right]$. By construction of $H, x u$ and $x v$, or else $y u$ and $y v$ are edges of H, hence $u v \in E_{H^{2}}$. This proves $E_{G} \subseteq E_{H^{2}}$. Now, let $a b \in E_{H^{2}} \backslash E_{H}$. Then there exists a vertex x such that $x a, x b \in E_{H}$. By (2.1), $x \in V_{F}$, and by (2.2), $a b \in E_{G}$. This proves $E_{H^{2}} \subseteq E_{G}$.

Corollary 2.5. Given a graph $G=\left(V_{G}, E_{G}\right)$, it can be recognized in $O\left(\left|V_{G}\right|^{2} \cdot\left|E_{G}\right|\right)$ time if G is the square of a graph H with girth at least seven. Moreover, such a square root, if any, can be computed in the same time.
Proof. Note that by Proposition 2.1, any square of an n-vertex graph with girth at least seven has at most n maximal cliques. Now, to avoid triviality, assume G is connected and non-complete. We first use the algorithm in [23] to list the maximal cliques in G in time $O\left(n^{2} m\right)$. If there are more than n maximal cliques, G is not the square of any graph with girth at least seven. Otherwise, compute the forced edges of G to form the subgraph F of G. This can be done in time $O\left(n^{2}\right)$ in an obvious way. Conditions (i) - (v) in Theorem 2.4 then can be tested within the same time bound, as well as the square root H, in case all conditions are satisfied, according to the proof of Theorem 2.4.
Corollary 2.6. The square roots with girth at least seven of squares of graphs with girth at least seven are unique, up to isomorphism.

Proof. Let G be the square of some graph H with girth ≥ 7. If G is complete, clearly, every square root with girth ≥ 6 of G must be isomorphic to the star $K_{1, n-1}$ where n is the vertex number of G.

Thus, let G be non-complete, and let F be the subgraph of G formed by the forced edges. If F has only one edge, G clearly consists of exactly two maximal cliques, Q_{1}, Q_{2}, say, and $Q_{1} \cap Q_{2}$ is the only forced edge of G. Then, it is easily seen that every square root with girth ≥ 6 of G must be isomorphic to the double star T having center edge $v_{1} v_{2}$ and $\operatorname{deg}_{T}\left(v_{i}\right)=\left|Q_{i}\right|$.

So, assume F has at least two edges. Then for each two maximal cliques Q, Q^{\prime} in G with $Q \cap Q^{\prime}=\{x, y\}, x$ or y is the unique center vertex of the star $F\left[V_{F} \cap Q\right]$ or $F\left[V_{F} \cap Q^{\prime}\right]$. Hence, for any end-vertex u of H, i.e., $u \in V_{G}-V_{F}$, the neighbor of u in F is unique. Since F is the graph resulting from H by deleting all end-vertices, H is therefore unique.

2.1. Further Considerations

Squares of bipartite graphs can be recognized in $O(\Delta \cdot M(n))$ time in [15], where $\Delta=$ $\Delta(G)$ is the maximum degree of the n-vertex input graph G and $M(n)$ is the time needed to perform the multiplication of two $n \times n$-matrices. However, no good characterization is known so far. As bipartite graphs with girth at least seven are exactly the (C_{4}, C_{6})-free bipartite graphs, we immediately have:

Corollary 2.7. Let G be a connected, non-complete graph. Let F be the subgraph of G consisting of all forced edges in G. Then G is the square of a $\left(C_{4}, C_{6}\right)$-free bipartite graph if and only if the following conditions hold.
(i) Every vertex in $V_{G}-V_{F}$ belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.
(iii) Every two non-disjoint edges in F belong to the same maximal clique in G.
(iv) For each maximal clique Q of $G, F\left[Q \cap V_{F}\right]$ is a star.
(v) F is a connected $\left(C_{4}, C_{6}\right)$-free bipartite graph.

Moreover, squares of $\left(C_{4}, C_{6}\right)$-free bipartite graphs can be recognized in $O\left(n^{2} m\right)$ time, and the $\left(C_{4}, C_{6}\right)$-free square bipartite roots of such squares are unique, up to isomorphism.

Using the results in this section, we obtain a new characterization for tree squares that allow us to derive the known results on tree square roots easily.

It was shown in [17] that CLIQUe and STABLE SET remain NP-complete on squares of graphs (of girth three). Another consequence of our results is.
Corollary 2.8. The weighted version of CLIQUE can be solved in $O\left(n^{2} m\right)$ time on squares of graphs with girth at least 7, where n and m are the number of vertices, respectively, edges of the input graph.
Proof. Let $G=\left(V_{G}, E_{G}\right)$ be the square of some graph with girth at least seven. By Proposition 2.1, G has $O\left(\left|V_{G}\right|\right)$ maximal cliques. By [23], all maximal cliques in G then can be listed in time $O\left(\left|V_{G}\right| \cdot\left|E_{G}\right| \cdot\left|V_{G}\right|\right)$.

In [12], it was shown that STABLE SET is even NP-complete on squares of the subdivision of some graph (i.e. the squares of the total graph of some graph). As the subdivision of a graph has girth at least six, stable set therefore is NP-complete on squares of graphs with girth at least six.

3. Squares of graphs with girth at least six

In this section we will show that squares of graphs with girth at least six can be recognized efficiently. Formally, we will show that the following problem

SQUARE OF GRAPH with girth at least six
Instance: A graph G.
Question: Does there exist a graph H with girth at least 6 such that $G=H^{2}$?
is polynomially solvable (Theorem 3.5).
Similar to the algorithm in [15], our recognition algorithm consists of two steps. The first step (subsection 3.1) is to show that if we fix a vertex $v \in V$ and a subset $U \subseteq N_{G}(v)$, then there is at most one $\left\{C_{3}, C_{5}\right\}$-free (locally bipartite) square root graph H of G with $N_{H}(v)=U$. Then, in the second step (subsection 3.2), we show that if we fix an edge $e=u v \in E_{G}$, then there are at most two possibilities of $N_{H}(v)$ for a square root H with girth at least 6 . Furthermore, both steps can be implemented efficiently, and thus it will imply that square of graph with girth at least six is polynomially solvable.

3.1. Square root with a specified neighborhood

This subsection deals with the first auxiliary problem.
$\left\{C_{3}, C_{5}\right\}$-free square root with a specified neighborhood
Instance: A graph $G, v \in V_{G}$ and $U \subseteq N_{G}(v)$.
Question: Does there exist a $\left\{C_{3}, C_{5}\right\}$-free graph H such that $H^{2}=G$ and $N_{H}(v)=U$?
An efficient recognition algorithm for $\left\{C_{3}, C_{5}\right\}$-Free square root with a specified NEIGHBORHOOD relies on the following fact.
Lemma 3.1. Let $G=H^{2}$ for some $\left\{C_{3}, C_{5}\right\}$-free graph H. Then, for all vertices $x \in V$ and all vertices $y \in N_{H}(x), N_{H}(y)=N_{G}(y) \cap\left(N_{G}[x] \backslash N_{H}(x)\right)$.

Proof. First, consider an arbitrary vertex $w \in N_{H}(y)-x$. Clearly, $w \in N_{G}(y)$, as well $w \in N_{G}(x)$. Also, since H is C_{3}-free, $w x \notin E_{H}$. Thus $w \in N_{G}(y) \cap\left(N_{G}(x) \backslash N_{H}(x)\right)$.

Conversely, let w be an arbitrary vertex in $N_{G}(y) \cap\left(N_{G}[x] \backslash N_{H}(x)\right)$. Assuming $w y \notin$ E_{H}, then $w \neq x$ and there exist vertices z and z^{\prime} such that $z x, z w \in E_{H}$ and $z^{\prime} y, z^{\prime} w \in E_{H}$. As H is C_{3}-free, $z y \notin E_{H}, z^{\prime} x \notin E_{H}$, and $z z^{\prime} \notin E_{H}$. But then x, y, w, z and z^{\prime} induce a C_{5} in H, a contradiction. Thus $w \in N_{H}(y)$.

Recall that $M(n)$ stands for the time needed to perform a matrix multiplication of two $n \times n$ matrices; currently, $M(n)=O\left(n^{2.376}\right)$.
Theorem 3.2. $\left\{C_{3}, C_{5}\right\}$-Free square root with a specified neighborhood has at most one solution. The unique solution, if any, can be constructed in time $O(M(n))$.
Proof. Given $G, v \in V_{G}$ and $U \subseteq N_{G}(v)$, assume H is a $\left\{C_{3}, C_{5}\right\}$-free square root of G such that $N_{H}(v)=U$. Then, by Lemma 3.1, the neighborhood in H of each vertex $u \in U$ is uniquely determined by $N_{H}(u)=N_{G}(u) \cap\left(N_{G}[v] \backslash U\right)$. By repeatedly applying Lemma 3.1 for each $v^{\prime} \in U$ and $U^{\prime}=N_{H}\left(v^{\prime}\right)$ and noting that all considered graphs are connected, we can conclude that H is unique.

Lemma 3.1 also suggests the following BFS-like procedure, Algorithm 1 below, for constructing the $\left\{C_{3}, C_{5}\right\}$-free square root H of G with $U=N_{H}(v)$, if any.

It can be seen, by construction, that H is $\left\{C_{3}, C_{5}\right\}$-free, and thus the correctness of Algorithm 1 follows from Lemma 3.1. Moreover, since every vertex is enqueued at most once, lines 1-13 take $O(m)$ steps, $m=\left|E_{G}\right|$. Checking if $G=H^{2}$ (line 14) takes $O(M(n)$) steps, $n=\left|V_{G}\right|$.

ALGORITHM 1

Input: A graph G, a vertex $v \in V_{G}$ and a subset $U \subseteq N_{G}(v)$.
Output: A $\left\{C_{3}, C_{5}\right\}$-free graph H with $H^{2}=G$ and $N_{H}(v)=U$, or else 'NO' if such a square root H of G does not exist.

```
Add all edges \(v u, u \in U\), to \(E_{H}\)
\(Q \leftarrow \emptyset\)
for each \(u \in U\) do
        enqueue \((Q, u)\)
        parent \((u) \leftarrow v\)
    while \(Q \neq \emptyset\) do
        \(u \leftarrow\) dequeue \((Q)\)
        set \(W:=N_{G}(u) \cap\left(N_{G}(\operatorname{parent}(u)) \backslash N_{H}(\operatorname{parent}(u))\right)\)
        for each \(w \in W\) do
            add \(u w\) to \(E_{H}\)
            if parent \((w)=\emptyset\)
            then parent \((w) \leftarrow u\)
                enqueue \((Q, w)\)
    if \(G=H^{2}\) then return \(H\)
        else return ' NO '
```


3.2. Square root with a specified edge

This subsection discusses the second auxiliary problem.
GIRTH ≥ 6 ROOT GRAPH WITH ONE SPECIFIED EDGE
Instance: A graph G and an edge $x y \in E_{G}$.
Question: Does there exist a graph H with girth at least six such that $H^{2}=G$ and $x y \in E_{H}$?
The question is easy if $|G| \leq 2$. So, for the rest of this section, assume that $|G|>2$. Then, we will reduce this problem to $\left\{C_{3}, C_{5}\right\}$-free square root with a specified neighborhood. Given a graph G and an edge $x y$ of G, write $C_{x y}=N_{G}(x) \cap N_{G}(y)$, i.e., $C_{x y}$ is the set of common neighbors of x and y in G.

Lemma 3.3. Suppose H is of girth at least 6, $x y \in E_{H}$ and $H^{2}=G$. Then $G\left[C_{x y}\right]$ has at most two connected components. Moreover, if A and B are the connected components of $G\left[C_{x y}\right]$ (one of them maybe empty) then (i) $A=N_{H}(x)-y$ and $B=N_{H}(y)-x$, or (ii) $B=N_{H}(x)-y$ and $A=N_{H}(y)-x$.

By Lemma 3.3, we can solve GIRTH ≥ 6 ROot GRaph with one specified edge as follows: Compute $C_{x y}$. If $G\left[C_{x y}\right]$ has more than two connected components, there is no solution. If $G\left[C_{x y}\right]$ is connected, solve $\left\{C_{3}, C_{5}\right\}$-free square root with a specified NEIGHBORHOOD for inputs $I_{1}=\left(G, v=x, U=C_{x y}+y\right)$ and $I_{2}=\left(G, v=y, U=C_{x y}+x\right)$. If, for I_{1} or I_{2}, Algorithm 1 outputs H and H is C_{4}-free, then H is a solution. In other cases there is no solution. If $G\left[C_{x y}\right]$ has two connected components, A and B, solve $\left\{C_{3}, C_{5}\right\}$-Free SQuare root with a specified neighborhood for inputs $I_{1}=(G, v=x, U=A+y)$, $I_{2}=(G, v=x, U=B+y), I_{3}=(G, v=y, U=A+x), I_{4}=(G, v=y, U=B+x)$, and
make a decision similar as before. In this way, checking if a graph is C_{4}-free is the most expensive step, and we obtain

Theorem 3.4. GIRTH ≥ 6 ROOT GRAPH WITH ONE SPECIFIED EDGE can be solved in time $O\left(n^{4}\right)$.

Let $\delta=\delta(G)$ denote the minimum vertex degree in G. Now we can state the main result of this section as follows.

Theorem 3.5. SQUARE OF GRAPH WITH GIRTH AT LEAST SIX can be solved in time $O\left(\delta \cdot n^{4}\right)$.
Proof. Given G, let x be a vertex of minimum degree in G. For each vertex $y \in N_{G}(x)$ check if the instance $\left(G, x y \in E_{G}\right)$ for Girth ≥ 6 root graph with one specified edge has a solution.

4. Squares of graphs with girth four

Note that the reductions for proving the NP-completeness results by Motwani and Sudan [19] show that recognizing squares of graphs with girth three is NP-complete. In this section we show that the following problem is NP-complete.

SQUARE OF GRAPH wITH GIRTH FOUR
Instance: A graph G.
Question: Does there exist a graph H with girth 4 such that $G=H^{2}$?
Observe that SQuare of Graph with girth four is in NP. We will reduce the following NP-complete problem SET SPLitting [8, Problem SP4], also known as hYPERGRAPH 2-colorability, to it.

SET SPLItTING
Instance: Collection D of subsets of a finite set S.
Question: Is there a partition of S into two disjoint subsets S_{1} and S_{2} such that each subset in D intersects both S_{1} and S_{2} ?
Our reduction is a modification of the reductions for proving the NP-completeness of square of chordal graph [16, Theorem 3.5] and for cube of bipartite graph [15, Theorem 7.6]. We also apply the tail structure of a vertex v, first described in [19], to ensure that v has the same neighbors in any square root H of G.
Lemma 4.1 ([19]). Let a, b, c be vertices of a graph G such that (i) the only neighbors of a are b and c, (ii) the only neighbors of b are a, c, and d, and (iii) c and d are adjacent. Then the neighbors, in $V_{G}-\{a, b, c\}$, of d in any square root of G are the same as the neighbors, in $V_{G}-\{a, b, d\}$, of c in G; see Figure 1.

We now are going to describe the reduction. Let $S=\left\{u_{1}, \ldots, u_{n}\right\}, D=\left\{d_{1}, \ldots, d_{m}\right\}$ where $d_{j} \subseteq S, 1 \leq j \leq m$, be an instance of SET SPLitting. We construct an instance $G=G(D, S)$ for SQuare of Graph with girth four as follows.

The vertex set of graph G consists of:
(I) $U_{i}, 1 \leq i \leq n$. Each 'element vertex' U_{i} corresponds to the element u_{i} in S.
(II) $D_{j}, 1 \leq j \leq m$. Each 'subset vertex' D_{j} corresponds to the subset d_{j} in D.
(III) $D_{j}^{1}, D_{j}^{2}, D_{j}^{3}, 1 \leq j \leq m$. Each three 'tail vertices' $D_{j}^{1}, D_{j}^{2}, D_{j}^{3}$ of the subset vertex D_{j} correspond to the subset d_{j} in D.
(IV) $S_{1}, S_{1}^{\prime}, S_{2}, S_{2}^{\prime}$, four 'partition vertices'.
(V) X, a 'connection vertex'.

The edge set of graph G consists of:
(I) Edges of tail vertices of subset vertices:

For all $1 \leq j \leq m: D_{j}^{3} \leftrightarrow D_{j}^{2}, D_{j}^{3} \leftrightarrow D_{j}^{1}, D_{j}^{2} \leftrightarrow D_{j}^{1}, D_{j}^{2} \leftrightarrow D_{j}, D_{j}^{1} \leftrightarrow D_{j}$, and for all i, $D_{j}^{1} \leftrightarrow U_{i}$ whenever $u_{i} \in d_{j}$.
(II) Edges of subset vertices:

For all $1 \leq j \leq m: D_{j} \leftrightarrow S_{1}, D_{j} \leftrightarrow S_{1}^{\prime}, D_{j} \leftrightarrow S_{2}, D_{j} \leftrightarrow S_{2}^{\prime}, D_{j} \leftrightarrow X, D_{j} \leftrightarrow U_{i}$ for all i, and $D_{j} \leftrightarrow D_{k}$ for all k with $d_{j} \cap d_{k} \neq \emptyset$.
(III) Edges of element vertices:

For all $1 \leq i \leq n: U_{i} \leftrightarrow X, U_{i} \leftrightarrow S_{1}, U_{i} \leftrightarrow S_{2}, U_{i} \leftrightarrow S_{1}^{\prime}, U_{i} \leftrightarrow S_{2}^{\prime}$, and $U_{i} \leftrightarrow U_{i^{\prime}}$ for all $i^{\prime} \neq i$.
(IV) Edges of partition vertices:
$S_{1} \leftrightarrow X, S_{1} \leftrightarrow S_{1}^{\prime}, S_{1} \leftrightarrow S_{2}^{\prime}, S_{2} \leftrightarrow X, S_{2} \leftrightarrow S_{1}^{\prime}, S_{2} \leftrightarrow S_{2}^{\prime}, S_{1}^{\prime} \leftrightarrow X, S_{2}^{\prime} \leftrightarrow X$.
Clearly, G can be constructed from D, S in polynomial time. For an illustration, given $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $D=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$ with $d_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}, d_{2}=\left\{u_{2}, u_{5}\right\}$, $d_{3}=\left\{u_{3}, u_{4}\right\}$, and $d_{4}=\left\{u_{1}, u_{4}\right\}$, the graph G is depicted in Figure 2. In the figure, the two dotted lines from a vertex to the clique $\left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, X\right\}$ mean that the vertex is adjacent to all vertices in that clique.

Note that, apart from the three vertices X, S_{1}^{\prime}, and S_{2}^{\prime} (or, symmetrically, X, S_{1}, and S_{2}), our construction is the same as those in [16, §3.1.1]. While S_{1} and S_{2} will represent a partition of the ground set S (Lemma 4.3), the vertices X, S_{1}^{\prime}, and S_{2}^{\prime} allow us to make a square root of G being C_{3}-free (Lemma 4.2).
Lemma 4.2. If there exists a partition of S into two disjoint subsets S_{1} and S_{2} such that each subset in D intersects both S_{1} and S_{2}, then there exists a graph H with girth four such that $G=H^{2}$.

In the above example, $S_{1}=\left\{u_{1}, u_{3}, u_{5}\right\}$ and $S_{2}=\left\{u_{2}, u_{4}\right\}$ is a possible legal partition of S. The corresponding graph H constructed in the proof of Lemma 4.2 is depicted in Figure 3.

Lemma 4.3. If H is a square root of G, then there exists a partition of S into two disjoint subsets S_{1} and S_{2} such that each subset in D intersects both S_{1} and S_{2}.

Note that in Lemma 4.3 above we did not require that H has girth four. Thus, any square root of G-particularly, any square root with girth four-will tell us how to do set splitting. Together with Lemma 4.2 we conclude:

Theorem 4.4. sQuare of graph with girth four is NP-complete.

5. Conclusion and open problems

We have shown that squares of graphs with girth at least six can be recognized in polynomial time. We have found a good characterization for squares of graphs with girth at least seven that gives a faster recognition algorithm in this case. For squares of graphs with girth at most four we have shown that recognizing the squares of such graphs is NPcomplete.

The complexity status of computing square root with girth (exactly) five is not yet determined. However, we believe that this problem should be efficiently solvable. Also, we believe that the algorithm to compute a square root of girth 6 can be extended to compute
a square root with no C_{3} or C_{5}. More generally, let k be a positive integer and consider the following problem.
k-POWER OF GRAPH WITH GIRTH $\geq 3 k-1$
Instance: A graph G.
Question: Does there exist a graph H with girth $\geq 3 k-1$ such that $G=H^{k}$?
Conjecture 5.1. k-POWER OF GRAPH WITH GIRTH $\geq 3 k-1$ is polynomially solvable.
The truth of the above conjecture together with the results in this paper would imply a complete dichotomy theorem: SQUARES OF GRAPHS OF GIRTH g is polynomial if $g \geq 5$ and NP-complete otherwise.

References

[1] Geir Agnarsson, Raymond Greenlaw, Magnús M. Halldórsson, On powers of chordal graphs and their colorings, Congressus Numer. 144 (2000) 41-65.
[2] Noga Alon, Bojan Mohar, The chromatic number of graph powers, Combinatorics, Probability and Computing 11 (2002) 1-10.
[3] Andreas Brandstädt, Van Bang Le, and R. Sritharan, Structure and linear time recognition of 4-leaf powers, ACM Transactions on Algorithms, to appear.
[4] Maw-Shang Chang, Ming-Tat Ko, and Hsueh-I Lu, Linear time algorithms for tree root problems, Lecture Notes in Computer Science, 4059 (2006) 411-422.
[5] Daniel W. Cranston, Seog-Jin Kim, List-coloring the square of a subcubic graph, J. Graph Theory 57 (2007) 65-87.
[6] Elias Dahlhaus, P. Duchet, On strongly chordal graphs, Ars Combin. 24 B (1987) 23-30.
[7] F. Escalante, L. Montejano, and T. Rojano, Characterization of n-path graphs and of graphs having nth root, J. Combin. Theory B 16 (1974) 282-289.
[8] Michael R. Garey, David S. Johnson, Computers and Intractability-A Guide to the Theory of NPCompleteness, Freeman, New York (1979), twenty-third printing 2002.
[9] Martin C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).
[10] Frank Harary, R.M. Karp, and W.T. Tutte, A criterion for planarity of the square of a graph, J. Combin. Theory 2 (1967) 395-405.
[11] Frédéric Havet, Choosability of the square of planar subcubic graphs with large girth, Discrete Math., to appear.
[12] J.D. Horton, K. Kilakos, Minimum edge dominating sets, SIAM J. Discrete Math. 6 (1993) 375-387.
[13] Alon Itai, Michael Rodeh, Finding a minimum circuit in a graph, SIAM J. Computing 7 (1978) 413-423.
[14] Paul E. Kearney, Derek G. Corneil, Tree powers, J. Algorithms 29 (1998) 111-131.
[15] Lap Chi Lau, Bipartite roots of graphs, ACM Transactions on Algorithms 2 (2006) 178-208.
[16] Lap Chi Lau, Derek G. Corneil, Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83-102.
[17] Yaw.-Ling Lin, Steven S. Skiena, Algorithms for square roots of graphs, SIAM J. Discrete Math. 8 (1995) 99-118.
[18] A. Lubiw, Γ-free matrices, Master Thesis, Dept. of Combinatorics and Optimization, University of Waterloo, Canada, 1982.
[19] Rajeev Motwani, Madhu Sudan, Computing roots of graphs is hard, Discrete Appl. Math. 54 (1994) 81-88.
[20] A. Mukhopadhyay, The square root of a graph, J. Combin. Theory 2 (1967) 290-295.
[21] A. Raychaudhuri, On powers of strongly chordal and circular arc graphs, Ars Combin. 34 (1992) 147160.
[22] I.C. Ross, Frank Harary, The square of a tree, Bell System Tech. J. 39 (1960) 641-647.
[23] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Computing 6 (1977) 505-517.

Figure 1: Tail in H (left) and in $G=H^{2}$ (right)

Figure 2: An example of G

Figure 3: An example of root H with girth 4

