170 research outputs found

    Factorization of Discriminatively Trained i-vector Extractor for Speaker Recognition

    Full text link
    In this work, we continue in our research on i-vector extractor for speaker verification (SV) and we optimize its architecture for fast and effective discriminative training. We were motivated by computational and memory requirements caused by the large number of parameters of the original generative i-vector model. Our aim is to preserve the power of the original generative model, and at the same time focus the model towards extraction of speaker-related information. We show that it is possible to represent a standard generative i-vector extractor by a model with significantly less parameters and obtain similar performance on SV tasks. We can further refine this compact model by discriminative training and obtain i-vectors that lead to better performance on various SV benchmarks representing different acoustic domains.Comment: Submitted to Interspeech 2019, Graz, Austria. arXiv admin note: substantial text overlap with arXiv:1810.1318

    Full Covariance Modelling for Speech Recognition

    Get PDF
    HMM-based systems for Automatic Speech Recognition typically model the acoustic features using mixtures of multivariate Gaussians. In this thesis, we consider the problem of learning a suitable covariance matrix for each Gaussian. A variety of schemes have been proposed for controlling the number of covariance parameters per Gaussian, and studies have shown that in general, the greater the number of parameters used in the models, the better the recognition performance. We therefore investigate systems with full covariance Gaussians. However, in this case, the obvious choice of parameters – given by the sample covariance matrix – leads to matrices that are poorly-conditioned, and do not generalise well to unseen test data. The problem is particularly acute when the amount of training data is limited. We propose two solutions to this problem: firstly, we impose the requirement that each matrix should take the form of a Gaussian graphical model, and introduce a method for learning the parameters and the model structure simultaneously. Secondly, we explain how an alternative estimator, the shrinkage estimator, is preferable to the standard maximum likelihood estimator, and derive formulae for the optimal shrinkage intensity within the context of a Gaussian mixture model. We show how this relates to the use of a diagonal covariance smoothing prior. We compare the effectiveness of these techniques to standard methods on a phone recognition task where the quantity of training data is artificially constrained. We then investigate the performance of the shrinkage estimator on a large-vocabulary conversational telephone speech recognition task. Discriminative training techniques can be used to compensate for the invalidity of the model correctness assumption underpinning maximum likelihood estimation. On the large-vocabulary task, we use discriminative training of the full covariance models and diagonal priors to yield improved recognition performance

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Sparse and Low-rank Modeling for Automatic Speech Recognition

    Get PDF
    This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that whenever a speech signal is measured in a high-dimensional feature space, the true class information is embedded in low-dimensional subspaces whereas noise is scattered as random high-dimensional erroneous estimations in the features. In this context, the contribution of this thesis is twofold: (i) identify sparse and low-rank modeling approaches as excellent tools for extracting the class-specific low-dimensional subspaces in speech features, and (ii) employ these tools under novel ASR frameworks to enrich the acoustic information present in the speech features towards the goal of improving ASR. Techniques developed in this thesis focus on deep neural network (DNN) based posterior features which, under the sparse and low-rank modeling approaches, unveil the underlying class-specific low-dimensional subspaces very elegantly. In this thesis, we tackle ASR tasks of varying difficulty, ranging from isolated word recognition (IWR) and connected digit recognition (CDR) to large-vocabulary continuous speech recognition (LVCSR). For IWR and CDR, we propose a novel \textit{Compressive Sensing} (CS) perspective towards ASR. Here exemplar-based speech recognition is posed as a problem of recovering sparse high-dimensional word representations from compressed low-dimensional phonetic representations. In the context of LVCSR, this thesis argues that albeit their power in representation learning, DNN based acoustic models still have room for improvement in exploiting the \textit{union of low-dimensional subspaces} structure of speech data. Therefore, this thesis proposes to enhance DNN posteriors by projecting them onto the manifolds of the underlying classes using principal component analysis (PCA) or compressive sensing based dictionaries. Projected posteriors are shown to be more accurate training targets for learning better acoustic models, resulting in improved ASR performance. The proposed approach is evaluated on both close-talk and far-field conditions, confirming the importance of sparse and low-rank modeling of speech in building a robust ASR framework. Finally, the conclusions of this thesis are further consolidated by an information theoretic analysis approach which explicitly quantifies the contribution of proposed techniques in improving ASR

    Robust automatic transcription of lectures

    Get PDF
    Automatic transcription of lectures is becoming an important task. Possible applications can be found in the fields of automatic translation or summarization, information retrieval, digital libraries, education and communication research. Ideally those systems would operate on distant recordings, freeing the presenter from wearing body-mounted microphones. This task, however, is surpassingly difficult, given that the speech signal is severely degraded by background noise and reverberation
    • …
    corecore