
Joint Training Methods for Tandem and
Hybrid Speech Recognition Systems

using Deep Neural Networks

Chao Zhang

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Peterhouse July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/200998939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and are my own work carried out at the Machine
Intelligence Laboratory, Cambridge University Engineering Department. It includes
nothing which is the outcome of any work done in collaboration except explicitly stated.
Reference to the work of others is specifically indicated in the text where appropriate.
Some of the materials have been presented at international conferences and workshops
(Knill et al., 2013; Liu et al., 2015; Woodland et al., 2015; Yang et al., 2016; Zhang
and Woodland, 2014, 2015a,b, 2016, 2017), and published in a software manual (Young
et al., 2015). To my best knowledge, the length of this thesis including footnotes and
appendices is approximately 57200 words.

Chao Zhang
July 2017

Acknowledgements

First, I would like to thank my supervisor Prof. Phil Woodland, for his guidance, sup-
port, and patience throughout my PhD study. I feel privileged to have the opportunity
to work with Phil, and have learned a great deal from his experience and insight. I am
grateful for the time Phil set aside for our meetings and replying my emails, even on
weekends and holidays. In particular, Phil read and revised this thesis multiple times.
I would also like to thank him for kindly securing funding support for me, and giving
me the opportunity to get involved in the IARPA Babel, DARPA BOLT, and EPSRC
NST research projects. On that note, I also thank the Cambridge Commonwealth,
European & International Trust for their support during my first three years with a
Cambridge International Scholarship.

I also want to thank Prof. Mark Gales, from whom I learned a lot through various
projects, especially during the 2013 Babel project evluation period. Mark created the
Babel scripts that I used almost everyday throughout the PhD study. He is also very
generous in sharing wonderful ideas and providing valuable suggestions, for which I am
truly grateful. Outstanding computing facilities are provided by the group and I must
also thank Patrick Gosling and Anna Langley for maintaining the computer systems.
There are many other people in the laboratory who have helped in various ways, and
my thanks go to, in alphabetical order, Dr. Andrew Liu, Dr. Anton Ragni, Prof. Bill
Byrne, Dr. Federico Flego, Dr. Haipeng Wang, Dr. Jingzhou Yang, Dr. Kate Knill,
Dr. Matt Seigel, Dr. Matt Shannon, Dr. Penny Karanasou, Dr. Pierre Lanchantin, Dr.
Rogier van Dalen, Dr. Shixiong Zhang, Dr. Tong Xiao, Dr. Xie Chen, Dr. Yanmin
Qian, Dr. Yongqiang Wang, and Dr. Yu Wang. Meanwhile, my thanks also go to
Prof. Steve Renals and Prof. Thomas Hain for co-leading the NST project. For three
years I had a great time and I was fortunate to meet and collaborate with everyone
in the NST project. Moreover, since I initially learned speech recognition using the
HTK toolkit and all of my PhD work was based on HTK, I want to thank Prof. Steve
Young for his work in initially creating such a great toolkit.

Finally, the biggest thanks go to my family to whom I always owe everything! My
parents have always been very supportive and helpful during my school career, and I

vi

know they will always be standing behind me. My dear wife, Linlin, has accompanied
me and has been very patient with me. She undertook all the housework to save me
time while writing this thesis, and helped me proof-read it. And to my baby daughter
Zitong, you are the biggest motivation for me to complete my thesis!

Summary

Hidden Markov models (HMMs) have been the mainstream acoustic modelling
approach for state-of-the-art automatic speech recognition (ASR) systems over the
past few decades. Recently, due to the rapid development of deep learning technologies,
deep neural networks (DNNs) have become an essential part of nearly all kinds of ASR
approaches. Among HMM-based ASR approaches, DNNs are most commonly used to
extract features (tandem system configuration) or to directly produce HMM output
probabilities (hybrid system configuration).

Although DNN tandem and hybrid systems have been shown to have superior
performance to traditional ASR systems without any DNN models, there are still
issues with such systems. First, some of the DNN settings, such as the choice of
the context-dependent (CD) output targets set and hidden activation functions, are
usually determined independently from the DNN training process. Second, different
ASR modules are separately optimised based on different criteria following a greedy
build strategy. For instance, for tandem systems, the features are often extracted by a
DNN trained to classify individual speech frames while acoustic models are built upon
such features according to a sequence level criterion. These issues mean that the best
performance is not theoretically guaranteed.

This thesis focuses on alleviating both issues using joint training methods. In DNN
acoustic model joint training, the decision tree HMM state tying approach is extended
to cluster DNN-HMM states. Based on this method, an alternative CD-DNN training
procedure without relying on any additional system is proposed, which can produce
DNN acoustic models comparable in word error rate (WER) with those trained by the
conventional procedure. Meanwhile, the most common hidden activation functions,
the sigmoid and rectified linear unit (ReLU), are parameterised to enable automatic
learning of function forms. Experiments using conversational telephone speech (CTS)
Mandarin data result in an average of 3.4% and 2.2% relative character error rate (CER)
reduction with sigmoid and ReLU parameterisations. Such parameterised functions
can also be applied to speaker adaptation tasks.

At the ASR system level, DNN acoustic model and corresponding speaker depen-
dent (SD) input feature transforms are jointly learned through minimum phone error
(MPE) training as an example of hybrid system joint training, which outperforms the
conventional hybrid system speaker adaptive training (SAT) method. MPE based

ii

speaker independent (SI) tandem system joint training is also studied. Experiments on
multi-genre broadcast (MGB) English data show that this method gives a reduction
in tandem system WER of 11.8% (relative), and the resulting tandem systems are
comparable to MPE hybrid systems in both WER and the number of parameters. In
addition, all approaches in this thesis have been implemented using the hidden Markov
model toolkit (HTK) and the related source code has been or will be made publicly
available with either recent or future HTK releases, to increase the reproducibility of
the work presented in this thesis.

Contents

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1
1.1 Thesis Outline . 2
1.2 Proposed Methods . 3

1.2.1 Optimising baseline DNN systems 3
1.2.2 Standalone DNN acoustic model training 4
1.2.3 Parameterised sigmoid and ReLU functions 4
1.2.4 Hybrid system discriminative joint SAT 5
1.2.5 SI tandem system joint training 6
1.2.6 A generic ANN extension to HTK 6

1.3 Summary of Contributions . 7

2 Automatic Speech Recognition 9
2.1 Automatic Speech Recognition System Structure 9
2.2 Feature Extraction . 11
2.3 Acoustic Models . 13

2.3.1 Acoustic modelling units . 13
2.3.2 Hidden Markov models and the forward-backward procedure . . 14
2.3.3 The ML HMM training problem 19
2.3.4 The Baum-Welch algorithm . 20
2.3.5 Properties of the BW algorithm 22

2.4 Language Models and The Decoding Process 23
2.4.1 Language modelling . 23
2.4.2 Decoding process . 24

iv Contents

2.4.3 Representing hypotheses using lattices 26
2.4.4 WER evaluation . 27

2.5 Context-Dependent Acoustic Modelling 29
2.6 Maximum Likelihood Linear Transforms 32

2.6.1 Maximum likelihood linear regression 33
2.6.2 Heteroscedastic linear discriminant analysis 35
2.6.3 Semi-tied covariance matrices 36

2.7 Discriminative Sequence Training . 37
2.7.1 Maximum mutual information 38
2.7.2 The extended Baum-Welch algorithm 40
2.7.3 Minimum phone error rate . 43
2.7.4 I-smoothing and percentile based variance floor 45

2.8 LVCSR Acoustic Model Construction 47
2.8.1 HTK LVCSR silence modelling 47
2.8.2 Embedded-unit training . 47
2.8.3 Flat start initialisation . 48
2.8.4 GMM-HMM system construction 48

3 Artificial Neural Networks for Speech Recognition 51
3.1 An ANN Model . 51
3.2 ANNs with Flexible Structures . 53
3.3 Probabilistic Interpretations . 56

3.3.1 Output activation function . 56
3.3.2 Cross entropy criterion . 57
3.3.3 Sigmoid hidden activation function 58
3.3.4 ReLU hidden activation function 60

3.4 Error Backpropagation . 61
3.5 Gradient Descent . 64

3.5.1 Full batch based gradient descent 64
3.5.2 Stochastic gradient descent . 65

3.6 Practical Solutions to SGD Issues . 66
3.6.1 Learning rate scheduler . 66
3.6.2 Momentum . 67
3.6.3 Gradient and update value clipping 67
3.6.4 Batch normalisation . 68

3.7 Regularisation . 69
3.8 Deep Learning . 70

Contents v

3.8.1 Deep ANN models . 71
3.8.2 Generative PT . 73
3.8.3 Discriminative PT . 74

3.9 Integrating ANNs into ASR . 74
3.9.1 Tandem system . 75
3.9.2 Hybrid system . 76
3.9.3 Sequence training for hybrid systems 78

3.10 Baseline Configurations . 78
3.10.1 An improved NewBob scheduler 79
3.10.2 Tandem baseline system . 81
3.10.3 Hybrid baseline system . 83
3.10.4 Joint decoding system . 84

3.11 Joint Training Methods . 85
3.11.1 ASR system joint training . 85
3.11.2 DNN acoustic model joint training 85
3.11.3 Related work . 86

4 DNN Acoustic Model Standalone Training 89
4.1 CI-DNN-HMM Standalone Training . 90

4.1.1 Initial alignment refinement . 90
4.1.2 Discriminative PT with realignment 90

4.2 Target Clustering for CD-DNN-HMMs 91
4.2.1 Class-conditional distribution interpretation 91
4.2.2 DNN-HMM based decision tree target clustering 92
4.2.3 Distribution estimation based on hidden activations 93
4.2.4 Statistics collection and CD-DNN construction 94

4.3 Standalone Training Experiments . 94
4.3.1 Baseline system performance . 95
4.3.2 CI system standalone training 95
4.3.3 CD system standalone training 96

4.4 CI Discriminative PT . 97
4.4.1 CI initialisation for CD-DNNs 97
4.4.2 CI state classification accuracy 99

4.5 CI Initialisation Experiments . 99
4.5.1 WSJ SI-84 DNN-HMM system performance 100
4.5.2 Investigation of DNN layer output values 101
4.5.3 WSJ SI-284 DNN-HMM system performance 101

vi Contents

4.5.4 Aurora-4 DNN-HMM system performance 102
4.6 Summary and Conclusions . 103
4.7 Related Work . 104

5 Learning Hidden Activation Functions 107
5.1 Training Parameterised Activation Functions with error backpropagation

(EBP) . 108
5.2 Parameterised Activation Functions . 109

5.2.1 Parameterised sigmoid functions 109
5.2.2 Parameterised ReLU functions 111

5.3 Speaker Independent Modelling Experiments 113
5.3.1 Training p-Sigmoid and p-ReLU parameters 113
5.3.2 Selecting p-Sigmoid and p-ReLU parameters to train 114

5.4 p-Sigmoid and p-ReLU for Speaker Adaptation 115
5.4.1 SD p-Sigmoid and p-ReLU parameters 115
5.4.2 Adaptation criteria and the layer-wise scheme 117

5.5 Speaker Adaptation Experiments . 117
5.5.1 MGB hybrid system adaptation 118
5.5.2 MGB tandem system adaptation 119
5.5.3 MGB stacked hybrid system adaptation 120
5.5.4 TED hybrid system adaptation 121

5.6 Summary and Conclusions . 122
5.7 Related Work . 124

6 Hybrid and Tandem System Joint Training 127
6.1 Hybrid System MPE Training . 127
6.2 MPE Training Experiments . 129
6.3 Discriminative Joint SAT . 130
6.4 Discriminative Joint SAT Experiments 133
6.5 Training GMMs using SGD . 135

6.5.1 GPU based GMM calculations 135
6.5.2 Revisiting tandem system construction 137

6.6 MPE Training for GMMs with SGD . 138
6.6.1 Parameter smoothing and weight decay 139
6.6.2 The percentile based variance floor 140

6.7 Tandem System Joint Training . 141
6.7.1 Use of ReLU to replace linear activation functions 141

Contents vii

6.7.2 Relative update value clipping 142
6.7.3 Amplified GMM learning . 143
6.7.4 Parameter updating schemes . 143

6.8 Tandem System Joint Training Experiments 143
6.8.1 GMM-HMM MPE training . 144
6.8.2 MDNN-HMM MPE training . 145
6.8.3 Further experiments . 146

6.9 Summary and Conclusions . 147
6.10 Related Work . 149

7 Conclusions and Future Work 151
7.1 Contributions and Conclusions . 151
7.2 Future Work . 154

Appendix A Data Sets and System Setup 155
A.1 Babel Conversational Telephone Speech 155
A.2 Multi-Genre Broadcast Task . 156
A.3 Wall Street Journal Read Speech . 157
A.4 Aurora-4 Multi-Condition Read Speech 158
A.5 Mandarin Conversational Telephony Speech 159
A.6 TED Talks . 160

Appendix B A General ANN Extension for HTK 161
B.1 Design Principles . 161
B.2 Implementation Details . 162
B.3 ANN Support and Training Methods 162
B.4 Data Cache . 164
B.5 Interfacing ANNs with HMMs . 164
B.6 Other Key Features . 165

B.6.1 Math kernels . 165
B.6.2 Input transforms and speaker adaptation 165
B.6.3 Model editing . 166
B.6.4 Decoders . 166

References 167

List of Figures

2.1 A statistical ASR system. 10
2.2 A sketch map of an HMM for phone hh. 16
2.3 A sketch map of a GMM-HMM for phone hh. 18
2.4 HTK LVCSR silence model structure. 48

3.1 An ANN layer and artificial neurons. 53
3.2 Examplar ANN models with different structures. 54
3.3 Sigmoid, ReLU, and soft ReLU functions. 59
3.4 The tandem feature generation procedure. The pitch feature can be

included in the SI tandem features. 76
3.5 A sketch map of a hybrid system. 77

5.1 Piecewise approximation by p-Sigmoid functions. 110
5.2 The rotation of the positive and negative parts of p-ReLU functions

around the origin of the coordinate system. 112
5.3 p-Sigmoid and p-ReLU adaptation results on TED Tst2010 test set with

different amounts of speaker specific data. 123

6.1 MGB 200h DNN-HMM MPE training performance on Dev.full test set
with a 64k word 4-gram LM. CE DNN-HMMs generated the initial
lattices for MPE; lattices can be regenerated after 1st MPE epoch. . . . 131

6.2 The DNN structure for discriminative joint SAT. A CMLLR transform
is used to initialise an input layer shared by all context shifts of the
frames from the same speaker. 132

6.3 The DNN structure for discriminative joint SAT with LinXForm. A
CMLLR transform is viewed as an input layer shared by all context
shifts of the frames from the same speaker. The LinXForm layer is
shared by all frames. 133

6.4 MDNN-HMMs used for tandem system joint training. 141

x List of Figures

6.5 MGB 50h GMM-HMM MPE system %WERs on Dev.sub with a 160k
word trigram LM. 144

6.6 MGB 50h jointly trained tandem system %WERs on Dev.sub with a
160k word trigram LM. 145

List of Tables

3.1 Comparison between the NewBob and NewBob+ schedulers on Babel
Cantonese FLP data set. 80

3.2 Babel Cantonese FLP BN GMM-HMM system trigram LM CERs with
different BN CD-DNN silence modelling methods. 81

3.3 Babel Cantonese FLP BN GMM-HMM system trigram LM CERs with
different BN layer positions and sizes. 82

3.4 MGB 200h BN GMM-HMM system 64k word 4-gram LM WERs on
Dev.sub with different BN layer positions and sizes. 82

3.5 Babel Cantonese FLP CD-DNN-HMM system trigram LM CERs with
different non-speech modelling methods. 83

3.6 Babel Cantonese FLP CD-DNN-HMM system trigram LM CERs with
different input feature transforms. 84

3.7 MGB 200h 64k word 4-gram LM WERs on Dev.sub, produced by
BN GMM-HMMs, CD-DNN-HMMs, and their combination via joint
decoding. 84

4.1 WSJ SI-284 setup baseline systems with a 65k word trigram LM. . . . 95
4.2 WSJ SI-284 system results of CI-DNN-HMMs with conventional PT or

PT with realignment, using a 65k word trigram LM. The “PT Procedure”
column listed the PT methods used in system construction. 96

4.3 WSJ SI-284 system comparison between GMM-HMM and DNN-HMM
based state tying using a 65k word trigram LM. 97

4.4 WSJ SI-84 DNN-HMM system recognition and classification results with
a 65k word trigram LM. 100

4.5 Standard deviations of DNN layer output values on the WSJ SI-84 CV set.101
4.6 WSJ SI-284 DNN-HMM system recognition and classification results

using a 65k word trigram LM. The time cost in terms of seconds of
different PT methods is also included. 102

xii List of Tables

4.7 Aurora-4 CD-DNN-HMMs results with different regularisation setups
and a 5k bigram LM. 103

5.1 Dev04 WERs with a trigram LM produced by the p-Sigmoid Mandarin
CTS CD-DNN-HMM systems. 114

5.2 Dev04 WERs with a trigram LM produced by the p-ReLU Mandarin
CTS CD-DNN-HMM systems. 114

5.3 Mandarin CTS CD-DNN-HMM system WERs with a trigram LM on
Eval97, Eval03, and Dev04 test sets. 115

5.4 MGB 200h CD-DNN-HMM system WERs with a 160k word 4-gram
LM on Dev.sub test set. 119

5.5 MGB 200h BN GMM-HMM system WERs with a 160k word 4-gram
LM on Dev.sub using different BN DNN and adaptation methods. . . . 120

5.6 MGB 200h stacked DNN-HMM system WERs with a 160k word 4-gram
LM on Dev.sub using different BN features and adaptation methods. . 121

5.7 TED CD-DNN-HMM system 4-gram LM WERs on Dev2010, Tst2010,
and Tst2011 test sets. 122

6.1 Babel Tamil LLP DNN-HMM system CERs on Dev set with a trigram
LM, and different lattice pruning settings. 130

6.2 SI-84 MPE SAT DNN-HMM system performance with a 65k word
trigram LM. 134

6.3 72h Mandarin CTS MPE SAT DNN-HMM system performance with a
trigram LM on Eval97, Eval03, and Dev04 test sets. 134

6.4 MGB 50h system performance with a 160k word trigram LM on Dev.sub.147
6.5 MGB 200h system performance with a 160k word trigram LM on Dev.sub.147

A.1 The Babel DNN CE training configuration. 156
A.2 The MGB DNN CE training configuration. 157
A.3 The WSJ DNN CE training configuration. 158
A.4 The Aurora-4 DNN CE training configuration. 159
A.5 The Mandarin CTS DNN CE training configuration. 160

B.1 A list of the ANN related HTK modules. 162
B.2 A list of the ANN related HTK tools. 163

Nomenclature

Roman Symbols

A The weight matrix of a linear transform

a The input activation value to an artificial neuron

aij An HMM transition probability from HMM state i to j

b A bias vector

ce The context shift set associated with a feature element e

cim The weight value associated with a Gaussian mixture component m in HMM
state i

Ck The kth class among a set of classes

D The dimension number of a vector or some constant value

D The Kullback-Leibler divergence function.

E The mathematic expectation function.

F An objective function

Il The number of input artificial neurons in layer l

Jl The number of output artificial neurons in layer l

M The number of Gaussian mixture components

N A Gaussian distribution

Nmin The minimum number of epochs to train by NewBob and NewBob+ schedulers

O A speech observation sequence

xiv Nomenclature

o(t) A speech observation vector at time t

Q An HMM state sequence

S The number of HMM states

T The total number of frames in the observation sequence

t A time step

V A vocabulary

W A text string, usually words

wk The inbound weight vector associated with artificial neuron k

W(l) The weight matrix in layer l

x(l)(t) The input vector of layer l at time t

x
(l)
i (t) The input value to the ith input artificial neuron of layer l at time t

y(l)(t) The output vector of layer l at time t

y
(l)
j (t) The output value of the jth output artificial neuron of layer l at time t

z(t) A tandem feature vector at time t

α
(l)
i The first activation function parameter of artificial neuron i in layer l

αi(t) The forward variable of being in HMM state i at time t

β
(l)
i The second activation function parameter or the first batch normalisation

parameter associated with artificial neuron i in layer l

βi(t) The backward variable given HMM state i at time t

δ The update value of a parameter in SGD.

δkk
′ The Kronecker delta function that returns 1 if k = k

′ , and 0 otherwise.

η A learning rate

∆Framp The ramp state threshold of NewBob and NewBob+ schedulers

∆Fstop The stopping threshold of NewBob and NewBob+ schedulers

Nomenclature xv

γ
(l)
i The third activation function parameter or the second batch normalisation

parameter associated with artificial neuron i in layer l

γi(t) The posterior probability of being in an HMM state i at time t

γim(t) The posterior probability of being in a Gaussian mixture component m of an
HMM state i at time t

κ The inverse language model grammar scaling factor

Λ A set of HMMs

λ An HMM

µ A mean value

π The ratio of a circle’s circumference to its diameter

πim(t) The posterior probability of a vector being generated by a Gaussian component
m given in HMM state i at time t

ρ The momentum coefficient

Σ A covariance matrix of a multi-variate Gaussian distribution

σ A standard deviation value

Θ A set of model parameters

θ A model parameter

υ The gradient/update value clipping threshold

ε The coefficient of L2 regularisation or weight decay

Acronyms / Abbreviations

0-MN Zero mean normalisation

1-VN Unit variance normalisation

AI Artificial intelligence

ANN Artificial neural network

APS Arcs per second

xvi Nomenclature

ASR Automatic speech recognition

BLAS Basic linear algebra subprograms

BOLT Broad operational language technology

BPTT Backpropagation through time

BRNN Bidirectional recurrent neural network

BW Baum-Welch

CD Context-dependent

CDF Cumulative distribution function

CE Cross entropy

CI Context-independent

CLDNN Convolutional long-short term memory deep neural network

CMLLR Constrained maximum likelihood linear regression

CNN Convolutional neural network

CTC Connectionist temporal classification

CTS Conversational telephony speech

CUED Cambridge University Engineering Department

DAG Directed acyclic graph

DCG Directed cyclic graph

DCT Discrete cosine transform

DNN Deep neural network

DP Dynamic programming

EBP Error backpropagation

EBW Extended Baum-Welch

EM Expectation-maximisation

Nomenclature xvii

FBANK Log-Mel filterbank amplitudes

FB Forward-backward algorithm

FNN Feedforward neural network

FT Fine-tuning

GD Gradient descent

GEMM General matrix multiplication

GMM Gaussian mixture model

GPU Graphics processing unit

GRU Gated recurrent unit

HLDA Heteroscedastic linear discriminant analysis

HMM Hidden Markov model

HTK The hidden Markov model toolkit

KLD Kullback–Leibler divergence

KLT Karhunen-Loève transform

LHUC Learning hidden unit contribution

LM Language model

LSTM Long-short term memory

LVCSR Large vocabulary continuous speech recognition

MAP Maximum a posteriori

MBR Minimum Bayesian risk

MDNN Gaussian mixture density neural network

MFCC Mel-scale frequency cepstral coefficients

MGB Multi-genre broadcast

MLLR Maximum likelihood linear regression

xviii Nomenclature

ML Maximum likelihood

MLP Multi-layer perceptron

MMI Maximum mutual information

MMSE Minimum mean squared error

MPE Minimum phone error

OOV Out of vocabulary

PLP Perceptual linear prediction

p-ReLU Parameterised rectified linear unit

p-sigmoid Parameterised sigmoid unit

p-SoftPlus Parameterised soft rectified linear unit

PT Pretraining

RBM Restricted Boltzmann machine

ReLU Rectified linear unit

RNN Recurrent neural network

SAT Speaker adaptive training

SD Speaker dependent

SGD Stochastic gradient descent

SI Speaker independent

STC Semi-tied covariance matrices

TDNN Time delay neural network

WER Word error rate

WFST Weighted finite state transducer

WSJ Wall Street Journal

Chapter 1

Introduction

Talking to machines has been a dream of human beings for a long time. ASR technology
allows computers to acquire the text embedded in human speech, and thus is essential
in interacting with machines by speech. Nowadays, ASR integration is considered to be
important for many software applications, especially when deployed on devices without
a proper keyboard. Personal intelligent assistants, such as Apple Siri, rely on speech
input and have changed many people’s way of accessing information and acquiring
services compared to a decade ago.

Nevertheless, ASR suffers from many known limitations and is by no means perfect.
The first issue lies in the statistical modelling approach, which serves as the cornerstone
of state-of-the-art ASR systems. The capability of accurate modelling using the seen
(available for training) speech and the generalisation ability to the unseen data are
crucial in ASR performance, but there is no perfect model for the purpose. Secondly,
there are usually acoustic and phonetic mismatches between the seen and unseen data,
caused by different speaker characteristics, pronunciations, accents, background noises
and channels etc. Lastly and more fundamentally, language models (LMs) often suffer
from out of task and out of grammar issues, and it is even impossible for ASR to
recognise out of vocabulary (OOV) words. These issues often occur in real-world
application, and are referred to as the linguistic mismatches.

Recently, there has been a breakthrough in ASR performance, which can notably
improve the user experience, especially for applications like voice search and even CTS
transcription, where ASR performance is quickly approaching human levels (Saon et al.,
2016; Xiong et al., 2016). This leap forward is mainly due to the development of deep
learning that can significantly increase the power of statistical models for classification
and regression (Goodfellow et al., 2016; Hinton et al., 2012; Hinton and Salakhutdinov,
2006). Besides better accuracy and generalisation abilities, deep learning is also helpful

2 Introduction

in solving the acoustic and phonetic mismatch problems by improving model accuracies.
Alternatively, this issue can also be solved by collecting a diverse set of training data
to cover more acoustic and phonetic scenarios. It is worth noting that the model power
is also important in learning more statistical patterns from diversified data.

It is known that improving deep learning models can further improve ASR per-
formance (Morgan, 2012), for example, using deeper and larger models to transform
specific speech fragments into desired distributions, or using longer span temporal
information to distinguish between confusable phonetic units (Bi et al., 2016; Graves
and Schmidhuber, 2005; Sainath et al., 2015a; Sercu et al., 2016). An alternative way to
improve statistical ASR modelling is to have the deep learning models configured and
trained in a more suitable way, for instance, to use a more suitable set of phonetic units,
or to learn the model parameters based on a more appropriate criterion (Kingsbury,
2009; Kingsbury et al., 2012; McDermott et al., 2014; Povey et al., 2016; Su et al.,
2013; Veselý et al., 2013).

In this thesis, in order to help improve state-of-the-art system performance, the
focus is to refine the integration of deep learning models into the noisy source-channel
model based ASR framework (Jelinek, 1998). This ASR framework is also termed
as statistical ASR or HMM based ASR approaches. The major advantage of this
methodology is to allow the reuse of many existing methods developed in the past in
the new deep learning based framework (Gales, 1998, 1999; Gauvain and Lee, 1994;
Juang and Katagiri, 1992; Leggetter and Woodland, 1995; Povey and Woodland, 2002;
Woodland et al., 1995; Woodland and Povey, 2002; Young et al., 1994). Moreover, it
should be rather straightforward to apply the proposed approaches with alternative
deep learning models, which allows them to have broader application.

1.1 Thesis Outline

In this thesis, the object of study to improve the statistical ASR approach is a DNN,
and the proposed methods can be applied to alternative artificial neural network (ANN)
models as well (Chung et al., 2014; Hochreiter and Schmidhuber, 1997; LeCun et al.,
1998a; Rumelhart et al., 1986; Sainath et al., 2015a; Waibel et al., 1989). In this ASR
approach, a DNN is often used for either feature extraction or acoustic modelling
purposes, leading to the tandem or hybrid configurations for DNN integration. Instead
of merely replacing the corresponding shallow models with cross entropy (CE) trained
DNNs, the choice of the DNN targets, training criterion, adaptation scheme, along

1.2 Proposed Methods 3

with DNN feature extraction and acoustic model joint training are investigated to
make DNNs more appropriately configured and trained for modelling human speech.

In Chapter 2, the background of the statistical ASR approach is reviewed. Chapter 3
introduces and discusses the basics of deep learning. Baseline tandem and hybrid
system configurations are also investigated in this chapter. In Chapter 4, a DNN
acoustic model building procedure termed standalone training, that does not rely on
any pre-existing system, is proposed. A context-independent (CI) initialisation method
is also proposed as an effective regularisation method. Chapter 5 proposes the learning
of sigmoid and ReLU hidden activation function parameters for SI DNN acoustic
modelling. The effective parameters found in SI training are also used for speaker
adaptation. Chapter 6 first studies hybrid system MPE training, which is then used
later in the joint learning of DNN acoustic model and SD input transforms. SI tandem
system joint training is also investigated in the chapter, which is based on training the
DNN feature extraction and Gaussian mixture model (GMM) acoustic models together
according to the MPE criterion. Finally, conclusions and suggestions to the future
work are presented in Chapter 7.

1.2 Proposed Methods

Except for the baseline system configurations, the proposed methods in this thesis can
be categorised into two classes: DNN acoustic model joint training and ASR system
level joint training. DNN acoustic model joint training includes standalone training and
parameterised sigmoid and ReLU function learning. CI initialisation and parameterised
activation function adaptation methods are also developed based on these methods.
ASR system level joint training is studied based on hybrid and tandem configurations.
In the hybrid configuration, DNN-HMM discriminative sequence training is investigated
and the SD feature transforms are jointly trained with the SI DNN acoustic model.
The tandem system joint training is applied as the SI MPE training of the Gaussian
mixture density neural network (MDNN) system.

1.2.1 Optimising baseline DNN systems

In Chapter 3, DNN based baseline tandem and hybrid system configurations are
investigated. For tandem configurations, the DNN features are derived from a bottleneck
(BN) hidden layer, which can generate features that are not only discriminative, but
are also compact in size. This chapter starts with an investigation of the appropriate

4 Introduction

DNN configuration for feature extraction, such as output targets, silence modelling,
and the BN layer size and position, based on the traditional Cambridge University
Engineering Department (CUED) tandem system setup (Park et al., 2011). Various
silence modelling methods and input feature transforms are also compared with the
hybrid system configuration. A joint decoding method is also investigated that is used
as a tandem and hybrid system combination approach in this thesis.

1.2.2 Standalone DNN acoustic model training

DNN-HMM with CD phonetic units is a widely used type of acoustic model in ASR.
However, the CE training of this method requires frame to label alignments produced
by an existing system. The standalone training approach proposed in Chapter 4 trains
a high performance CD-DNN-HMM system without relying on another system. This
method first integrates realignments into the discriminative pretraining (PT) procedure
to train a CI DNN model. Next, DNN based decision tree tying is proposed, which
is a modification of the standard GMM-HMM based decision state tying approach
(Young et al., 1994). The state output distributions used in maximum likelihood (ML)
clustering are single Gaussians explicitly estimated as the approximations of equivalent
terms to the CD-DNN output distribution. The resulting initial CD-DNN model is
then optimised by the normal fine-tuning (FT) method. Experiments have shown that
standalone training gives comparable WERs to the conventional procedure.

The idea of initialising the CD-DNN model with parameters trained for classifying
CI states can be applied to the conventional CD-DNN training procedure as well.
Compared to generative PT with restricted Boltzmann machines (RBMs) (Hinton
et al., 2006), CI initialisation can improve ASR performance as it is discriminative,
while keeping a unified training algorithm, error backpropagation (EBP), for DNN
construction. Compared to the standard CD discriminative PT (Hinton et al., 2012),
besides saving the time cost, CI initialisation also regularises CD training to prevent
the lower layers from being over-specific to the CD state targets. Experiments have
shown that the CI initialisation method outperforms CD discriminative PT on 15h
and 66h data sets, and its regularisation effect is complementary to the weight decay
method.

1.2.3 Parameterised sigmoid and ReLU functions

The choice of hidden activation functions is an important issue in deep learning.
Common choices include sigmoid and ReLU functions (Glorot et al., 2011; Nair and

1.2 Proposed Methods 5

Hinton, 2010; Rumelhart et al., 1986). In Chapter 5, the use of logistic functions is
proposed as the parameterised form of sigmoid functions, denoted as the p-Sigmoid.
Its adaptive parameters can be learned together with standard DNN parameters in
SI training. Since logistic functions can be used for the piecewise approximation to
many other smoothed functions by varying their parameters, the p-Sigmoid allows each
artificial neuron to learn the most appropriate activation function form. Similarly, the
ReLU function is also parameterised to associate independent adaptive scaling factors
to the positive and negative parts, which enables the discrimination ability of outputs
of each artificial neuron to be controlled in learning.

In the first part of this chapter, experiments investigate different activation function
parameters and training schemes. Moreover, as many of these parameters can be
viewed as linear scales and biases, they can be integrated into the standard SI DNN
weights and biases without resulting in any extra parameters.

In addition to SI model training, the most useful p-Sigmoid and p-ReLU config-
urations, using output value scaling factors, are also applied to speaker adaptation.
Since these scaling factors can have a direct impact on the output of the layer, training
these SD parameters is very efficient using limited speaker specific data for adaptation.
Furthermore, a layer-wise adaptation scheme is also proposed that is found to stabilise
and improve the adaptation process. Unsupervised test time adaptation experiments
have been conducted with hybrid, tandem, and stacked hybrid systems. The results
show that the proposed method not only outperforms but also is complementary to
other commonly used DNN adaptation methods.

1.2.4 Hybrid system discriminative joint SAT

Traditionally, a DNN acoustic model is often trained to minimise the classification
criterion like CE and minimum mean squared error (MMSE). Such criteria, however,
only use the information within each input vector (usually formed by a small set of
speech frames) and ignore the temporal structure embedded in the speech sequence.
On the contrary, ASR is normally evaluated based upon a sequence of segments,
which clearly generates a criterion mismatch and can cause the DNN parameters to
converge to a local optimum that is not suitable for speech recognition. Chapter 6
first investigates DNN-HMM discriminative sequence training, such as the MPE and
maximum mutual information (MMI) training methods.

Next, DNN-HMM MPE training is applied to optimise the SD input transforms
with the DNN-HMM acoustic models on the training set, which is a discriminative
joint SAT method. When estimating the test-time speaker SD transforms, MPE is

6 Introduction

then smoothed by the frame level CE criterion and the SI DNN parameters are kept
frozen. This can alleviate over-fitting to the supervision hypotheses in unsupervised
adaptation.

1.2.5 SI tandem system joint training

In the latter part of Chapter 6, tandem system joint training studies training the
BN DNN and GMMs together based on the MPE criterion. Traditional extended
Baum-Welch (EBW) algorithm based GMM-HMM MPE training is first adapted to
use the stochastic gradient descent (SGD) optimisation method, and to use the state-
of-the-art general purpose graphics processing unit (GPU) devices. Unlike the EBW
case, MPE training does not result in over-fitting with appropriate SGD configurations.
However, techniques developed for EBW based MPE training, such as I-smoothing,
dynamic MMI prior, and percentile based variance floor (Povey, 2003; Young et al.,
2015), are still useful in improving SGD training performance. The MPE joint training
is applied to the ML trained tandem system. The BN DNN and GMMs are seen as a
single MDNN model, and the joint training becomes MDNN discriminative sequence
training. A set of methods, such as linear to ReLU activation function conversion,
relative update value clipping, amplified GMM learning, as well as various parameter
update schemes are proposed and investigated to improve joint training stability and
performance.

1.2.6 A generic ANN extension to HTK

The aforementioned joint training approaches are based on generic ANN models, whose
related definitions, algorithms, and formulas are proposed in Chapter 3. Generic
ANN support is implemented in the HTK toolkit, which reduces the difficulties in
reproducing the experimental results and reusing the methods. Based on a flexible
ANN structure and a vector/matrix based parameter sharing approach, commonly
used models, such as DNNs, convolutional neural networks (CNNs), recurrent neural
networks (RNNs), along with their variants and combinations are supported. HTK also
supports both frame and sequence level ANN training methods, based on a powerful
data cache that allows the data to be accessed randomly and efficiently in several
different ways.

Another feature of the HTK ANN extension is the seamless integration with the
pre-existing ASR approaches in HTK, such as decision tree state clustering, SI and
SD transform estimation, and discriminative sequence training. The tandem system

1.3 Summary of Contributions 7

implementation is an important instance, where the GMMs can directly use the ANN
output values transformed in different ways. GMM training can be conducted using
either EBW or SGD, and implicit data structure conversion happens automatically
when using a different optimisation method. Details of the HTK ANN functions and
their implementation can be found in Appendix B.

1.3 Summary of Contributions

The main contributions of this thesis are the following:

• Proposed a discriminative PT method with realignment, a DNN based decision
tree tying method, and a CI initialisation method. These methods constituted a
CD-DNN standalone training approach that was comparable in performance to
traditional CD-DNN training.

• Proposed parameterised sigmoid and ReLU functions and used them in both SI
and SD DNN acoustic modelling. For SI modelling, many such parameters could
be integrated into the conventional DNN parameters. A layer-wise adaptation
procedure analogous to discriminative PT and FT was also proposed.

• Studied DNN-HMM sequence training, and applied it to hybrid system discrimi-
native joint SAT. The F-smoothing was found useful in alleviating the over-fitting
issue in unsupervised discriminative adaptation.

• Proposed tandem system joint training based on MDNN-HMM discriminative
sequence training. The I-smoothing, dynamic MMI prior, and percentile based
variance floor techniques were adapted to the SGD framework. In order to
improve training stability and performance, linear to ReLU activation function
conversion, relative update value clipping, and amplified GMM learning were
proposed.

• Implemented a generic ANN model extension in HTK. The new ANN functions
were seamlessly integrated with the traditional HTK GMM-HMM functions.

Chapter 2

Automatic Speech Recognition

2.1 Automatic Speech Recognition System Struc-
ture

ASR is defined as an automatic process of translating a speech waveform into its
corresponding transcription by computer (Rabiner and Juang, 1993). Usually the
waveform is first converted into a sequence of speech observation vectors O,

O = o(1),o(2), . . . ,o(T), (2.1)

through a feature extraction process, where o(t) is the feature vector at time t derived
from the corresponding speech frame (an audio segment), and T is the total number of
frames in the utterance. The required transcription is presented as a text string W of
a variable length L,

W = w1,w2, . . . ,wL. (2.2)

wl is the lth unit of the string given wl ∈ V , and V is the vocabulary that contains
all units that are possible to be recognised. Therefore, the function of ASR can be
formally presented as

W∗ = argmax
W

P (W|O), (2.3)

where W∗ is a posteriori the most likely hypothesis of the text and is considered to be
the 1-best ASR output. This is actually a noisy source-channel model (Jelinek, 1998;
MacKay, 2003; Shannon and Weaver, 1949) where the speech production, propagation,

10 Automatic Speech Recognition

reception, quantification and waveform conversion processes are considered as a noisy
channel, O is the observed channel output, and W is the intended source. Therefore,
Eqn. (2.3) decodes the source text from the channel output and is referred to as the
maximum a posteriori (MAP) decoding rule.

Applying Bayes’ rule, we can get

P (W|O)∝ P (O|W)P (W), (2.4)

since P (O) is a constant given a certain utterance and is therefore independent from
the hypotheses. P (O|W) is the likelihood of translating W to O through the channel;
P (W) is the probability distribution of the source. In ASR, P (O|W) and P (W) are
modelled by the acoustic model and the language model (LM), both of which are
usually statistical models. The above-mentioned ASR approach is also referred to
as the statistical approach (Jelinek, 1998) and is illustrated in Figure 2.1, with the
waveform conversion presented as the feature extraction module.

Feature Extraction Acoustic Model Decoding Hypothesis

Language Model

-2.47 A
-6.67 APPROPRIATE
…
-1.58 IS ZURICH STILL

Waveform

hello

world

Observation

o(1)o(2) o(T) o(1)o(2) o(T)

hello
world

Figure 2.1 A statistical ASR system.

In the rest of this chapter, each ASR module will be introduced. However, since the
exact ASR module setups differ significantly according to the recognition objective, it
is useful to define the hypothesis spaces and their corresponding recognition tasks first.
In W, a unit wl can be a phoneme, a syllable, a word, a phrase, or even a sentence,
depending on the desired linguistic representation of the text. Assume that the duration
of each frame is short enough that it cannot contain multiple linguistic units (which is
generally true), then the upper bound of the hypothesis space is constrained by the

2.2 Feature Extraction 11

size of vocabulary, i.e.,

|V |L ⩽ |V |T . (2.5)

If V is small, containing only phonemes, syllables, or some selected set of names and
commands, the decoding cost for searching the hypothesis space is low. The model
complexity is also reduced as not a full set of linguistic units needs to be covered by
the acoustic model and LM. If V is large, for example, it contains tens or hundreds
of thousands of words, both the decoding cost and model complexity would be much
higher and that makes the problem much more difficult. In this thesis, all methods
were evaluated by recognising a large vocabulary of words. In addition, rather than
isolated words, the data used in this thesis contain either continuous read speech,
or spontaneous speech with a natural speaking style from telephone conversations or
broadcast shows. Such speech data contain more variations in pronunciation and are
harder to recognise. The task defined above is called large vocabulary continuous
speech recognition (LVCSR) and is one of the most generic and challenging problems
in the ASR research field.

Besides the statistical approach, expert systems (Haton, 1985; Zue and Lamel,
1986), template matching (Berndt and Clifford, 1994; Gemmeke et al., 2011; Myers
et al., 2003; Wachter et al., 2007), detection based methods (Lee, 2004), and end-to-end
methods (Bahdanau et al., 2016; Graves and Jaitly, 2014) etc., have been investigated as
alternative approaches. In recent decades, mainly due to its superior performance and
theoretical simplicity, statistical approaches have been dominant in practical systems.
Therefore, this thesis is based on the statistical approach and refers to it as ASR
without any further distinction.

2.2 Feature Extraction

The feature extraction module parameterises a raw waveform into a feature sequence
O, which is an adequate representation of the speech. Here a brief review of two
types of speech features, Mel-scale frequency cepstral coefficients (MFCCs) (Davis
and Mermelstein, 1980) and perceptual linear prediction (PLP) (Hermansky, 1990), is
provided as an example of the process.

It is known that the frequencies across the audio spectrum are resolved non-linearly
by the human ear, which can be used to derive better features, such as MFCCs, to
improve speech recognition performance. Initially, the waveform is segmented into short

12 Automatic Speech Recognition

time frames (25ms in length with a 15ms overlap throughout this thesis), over which
the waveforms are assumed to be stationary. Based on the stationary assumption, the
short-term Fourier transform (Oppenheim and Schafer, 1975) is applied within each
segment and the resulting magnitude coefficients are weighted and summed over a set
of triangular filters. MFCCs use filters equally spaced along the Mel-scale to acquire
the desired non-linear resolution (Davis and Mermelstein, 1980),

Mel(f) = 2595log10(1+ f

700). (2.6)

The log amplitudes of the Mel-scale filterbanks are sometimes directly used as features
denoted in HTK as FBANK. Otherwise, the log spectrum can be further linearly
decorrelated by the discrete cosine transform (DCT) (Oppenheim and Schafer, 1975) to
produce the cepstral vectors. For simplicity, many details, such as signal pre-emphasis,
Hamming window framing, lower/upper frequency cut-off, and cepstral coefficient
liftering etc., are omitted from the above procedure (Young et al., 2015).

PLP features are often used as an alternative to MFCCs, which mainly approximate
three main perceptual aspects: the non-linear frequency resolution curves, the equal-
loudness curve, and the intensity-loudness power-law relation (Hermansky, 1990). In
this thesis, the Mel-scale is also taken as the non-linear spectral scale for PLP as
well (Woodland, 2002; Woodland et al., 1997). The Mel filterbank amplitudes are
weighted by the equal-loudness emphasis to simulate the sensitivity of hearing, and
then compressed by taking the cube root to convert to the auditory perceived intensity
of strength. The resulting auditory spectrum is used for linear prediction analysis (Atal
and Hanauer, 1971), and the cepstral coefficients are used as the PLP features.

Besides choosing the appropriate feature type, adding time derivatives to the basic
static feature vector can also enhance the ASR performance (Furui, 1986). Such time
derivatives are computed as the linear regression coefficients within a window (Young
et al., 2015),

d(1)(t) =
∑2

θ=1 (o(t+ θ)−o(t− θ)) · θ
2
∑2

θ=1 θ2
. (2.7)

d(1)(t) are called the first order regression coefficients of o(t). The second and third
order coefficients d(2)(t) and d(3)(t) can be computed by replacing o(t) with d(1)(t)
and d(2)(t) in Eqn. (2.7). Following the HTK convention (Young et al., 2015), the first,
second, and third order regression coefficients are indicated by appending D, A, and
T qualifiers to the feature type.

2.3 Acoustic Models 13

In addition, a benefit of cepstral features like MFCCs and PLP, is the simplicity
of compensation of different recording channels. Assume it is a linear time-invariant
system, since the effect of adding a transmission channel is equivalent to that of
multiplying the audio spectrum by the channel transfer function (Oppenheim and
Schafer, 1975), then in the log cepstral domain, such multiplication becomes a simple
addition. Therefore, if the averaged offset is zero and independent of the channel,
normalising the cepstral mean values to zero by subtraction approximately compensates
for the channel difference. More generally speaking, zero mean normalisation (0-MN),
o = o−µ, and unit variance normalisation (1-VN), o = o/σ, are common feature
pre-processing techniques to standardise the range of the data and reduce variabilities,
where µ and σ are the mean and standard deviation vectors of o. Note that µ and σ

estimates, together with the relevant 0-MN and 1-VN, are often based on a portion
of data, such as an utterance, a conversation side, a broadcast show episode, which
determines the normalisation level.

2.3 Acoustic Models

2.3.1 Acoustic modelling units

The acoustic model is often designed to model some units connected with the words
in the vocabulary, since it handles the generation of likelihood P (O|W). For LVCSR
tasks studied in this thesis, some fine-grained units that constitute parts of the spoken
or written forms of words are often used as the acoustic modelling unit, which are
often called subword units. There are some benefits of using subwords instead of words
to construct acoustic models:

• Acoustic models are estimated from a training corpus of utterances and the
associated transcriptions. Collecting a corpus with sufficient occurrences of a
large vocabulary of words for reliable model parameter estimation is sometimes an
unrealistic task. It is especially severe when taking the pronunciation variations
into consideration, as every alternative pronunciation of each word needs sufficient
samples. However, as there are far fewer phones than words, collecting sufficient
data for phone model estimation is much more feasible.

• When deploying an LVCSR product, it is not uncommon to extend the vocabulary
to recognise new words that did not appear in training. For word based acoustic
models, they have to be rebuilt to model the new words. For phone based acoustic

14 Automatic Speech Recognition

models, on the other hand, as long as the phone set is sufficient to cover the
pronunciations of the new words, no acoustic model modification is required,
which makes the application more flexible.

In this thesis, all English ASR systems followed the phone based acoustic modelling
strategy. Besides conventional phones, other phonetic units can be used as well, for
instance, the phones can be associated with their in-word positions and the relevant
tones (for tonal languages), which is adopted by all non-English ASRs in this thesis (Liu
et al., 2011). For multi-lingual ASR systems, a global set of phone from the international
phonetic alphabet (Selkirk, 1986) is sometimes used instead of language dependent
phones (Schultz and Waibel, 2001), which can be decomposed into different categories
of articulatory features representing their articulation status. The articulartory features
can also be used to construct acoustic models (Kirchhoff, 1999). The syllable is
another option for acoustic modelling units, but it is not always clearly defined in
all languages (King et al., 1998). Subword units can be derived automatically and
they were sometimes reported to outperform phones (Bacchiani and Ostendorf, 1998;
Byrne et al., 2000). Moreover, rather than the spoken form, the written form of words,
such as the characters, can be used for acoustic modelling as well (Gales et al., 2015;
Kanthak and Ney, 2002).

2.3.2 Hidden Markov models and the forward-backward pro-
cedure

In the statistical ASR approach, each phone is normally modelled by an HMM, which
assumes that the properties of its associated signals can be characterised by a discrete
time Markov process or Markov chain (Gardiner, 1985). That is, the speech signal can
be described at any time as being in one of the N distinct states, and at each time it
may undergo a change of state according to a set of probabilities associated with the
state, whose probabilistic description requires the specification of the current and the
preceding states. An HMM is a first order Markov chain as its probabilistic description
is truncated to just the current and the last state. More specifically, if Q is the state
sequence,

Q = q1, q2, . . . , qT , (2.8)

2.3 Acoustic Models 15

where qt ∈ {1,2, . . . ,N}. The first order Markov property of an HMM λ is (Gardiner,
1985)

P (qt = j|qt−1 = i, qt−2 = k, . . . ,λ) = P (qt = j|qt−1 = i,λ), (2.9)

1 ⩽ i, j, k ⩽ N . P (qt = j|qt−1 = i) is called a state transition probability and denoted
as aij . In ASR, aij is often a fixed value, and therefore the duration staying in a
particular HMM state follows the Geometric distribution (Gardiner, 1985). Based on
Eqn. (2.9), we have

P (Q|λ) =
T∏

t=1
P (qt|qt−1,λ). (2.10)

Note that a virtual entry state q0 = 0 is introduced in Eqn. (2.10) and P (q1|q0,λ) =
P (q1|λ) follows the initial state distribution.

The other keyword of an HMM, hidden, means that the state sequence Q is not
directly observable. It can only be observed through another state dependent stochastic
process of the feature sequence O, which is extracted from the speech waveform. Hence
O is also called the observation sequence. The probability of observing O given Q is

P (O|Q,λ) =
T∏

t=1
P (o(t)|qt,λ), (2.11)

where each feature vector o(t) is assumed to be independently generated by the state
assigned to qt. P (o(t)|qt,λ) is called the output probability and is often denoted as
bqt(o(t)); λ is comprised of {aij} and {bj(·)}. A sketch map of an HMM is illustrated
in Figure 2.2, and note that the virtual entry state is not shown in it. Therefore, based
on Eqns. (2.10) and (2.11), the likelihood P (O|λ) can be calculated by

P (O|λ) =
∑

Q
P (Q|λ)P (O|Q,λ) (2.12)

=
∑

q1,q2,...,qT

T∏

t=1
aqt−1qtbqt(o(t)). (2.13)

When evaluating O with an N state HMM using Eqn. (2.12), about 2T ·NT

calculations are required with all aij and bj(o(t)) available. The computational
complexity grows exponentially when T increases, and can be intractable even for a
short speech segment (e.g., 1 second with T = 100). A more efficient procedure is the

16 Automatic Speech Recognition

a state

state transition

hh

an observation vector

o(1) o(2) o(3) o(4) o(5) o(6) o(7) o(8)

Figure 2.2 A sketch map of an HMM for phone hh.

forward-backward (FB) algorithm, which saves redundant calculations using a recursive
structure. Define a forward variable αi(t) as

αi(t) = P (o(1),o(2), . . . ,o(t), qt = i|λ), (2.14)

which is the partial observation sequence o(1),o(2), . . . ,o(t) and state i at t. αi(t) is
computed through an induction step:

αj(t) =
[

N∑

i=1
αi(t−1)aij

]
bj(o(t)), (2.15)

for 1 < t ⩽ T . This recursion depends on the fact that the probability of the joint event
of being in state j at t and seeing o(1),o(2), . . . ,o(t) can be deduced by summing the
transition probabilities weighted forward variables over all possible preceding states.
The initial condition for t = 1 is

αj(1) = a0jbj(o(t)). (2.16)

When terminating the forward procedure, the likelihood is acquired by

P (O|λ) =
N∑

i=1
αi(T). (2.17)

In this way, computing P (O|λ) requires only order T ·N2 calculations.
In a similar way, the backward variable βi(t) is defined as

βi(t) = P (o(t+1),o(t+2), . . . ,o(T)|qt = i,λ), (2.18)

2.3 Acoustic Models 17

which is the conditional probability of observing the partial observation sequence from
t + 1 to the end, given that the model in state i at t. βi(t) can be calculated in a
reverse time order by

βi(t) =
N∑

j=1
aijbj(o(t+1))βj(t+1). (2.19)

By multiplying the forward and backward variables, it is easy to see

αi(t)βi(t) = P (O, qt = i|λ), (2.20)

and the likelihood can be calculated by

P (O|λ) =
N∑

i=1
αi(t)βi(t). (2.21)

Therefore, we complete the evaluation of an HMM. Note this can also be achieved
using only αi(T) by

P (O|λ) =
N∑

i=1
αi(T), (2.22)

but Eqn. (2.21) is more useful in HMM training, as shown later in Eqns. (2.27) – (2.30).
There are many different kinds of HMMs, and the most commonly seen one for

acoustic modelling is the continuous density HMM, which employs a Gaussian mixture
model (GMM) to model the output distribution (Juang, 1985). A GMM is defined as
a weighted sum of a set of Gaussian components, i.e.,

p(o(t)|qt = i,λ) =
M∑

m=1
cimN(o(t)|µim,Σim) (2.23)

=
M∑

m=1
cim

1
(2π)D/2|Σim|1/2 exp

{
−1

2(o(t)−µim)TΣ−1
im(o(t)−µim)

}
,

where D is the input feature vector size, M is the number of components in the GMM of
state i; N(ot|µim,Σim) is the mth Gaussian component with µim and Σim representing
its mean vector and covariance matrix; and cim is the corresponding weight. When all
dimensions of the feature o, od, can be treated as independent variables, Σim becomes
a diagonal matrix and its diagonal elements can be presented as a variance vector σ2

im.

18 Automatic Speech Recognition

state output

hh a GMM

Figure 2.3 A sketch map of a GMM-HMM for phone hh.

Thus, Eqn. (2.23) becomes

p(o(t)|qt = i,λ) =
M∑

m=1
cimN(o(t)|µim,σ2

im) (2.24)

=
M∑

m=1
cim

1
(2π)D/2∏D

d=1 σimd

exp
{
−1

2

D∑

d=1

(od(t)−µimd)2

σ2
imd

}
,

where µimd and σimd are the dth dimension of vector µim and σim. Note for multivariate
Gaussian distributions, since a covariance matrix contains significantly more parameters
than a variance vector, it often requires much more data to estimate Σim robustly.
Thus, GMM with a variance vector is a more common choice, and o are linearly
decorrelated as in Section 2.2. As the exact form of the distributions of the observation
generation process in each state is unknown, a GMM is employed due to its ability to
form smooth approximations to arbitrarily shaped densities (Juang, 1985). Continuous
density HMMs are also denoted as GMM-HMMs in this thesis, and an example is
shown in Figure 2.3.

Besides using the standard GMMs defined in Eqns. (2.23) and (2.24), continuous
density HMMs can be reformed in different ways by having the GMM parameters
shared at different levels. Instead of using diagonal covariance matrices to reduce the
number of parameters, a full covariance matrix can be shared among all GMMs, which
is equivalent to a log-linear mixture model (Heigold, 2010). If the GMM in each HMM
state is adapted from a globally shared GMM using state dependent vectors, it is called
a subspace GMM-HMM (Povey et al., 2010). If the GMM parameters are shared at the
Gaussian level, or every GMM is formed by Gaussians selected from the same codebook,
it is a semi-continuous density HMM (Huang, 1989). In addition, it is also possible to
replace GMMs with other statistical models, such as Dirichlet mixture models (Neal,

2.3 Acoustic Models 19

2000), support vector machines (Vapnik, 1998a,b), and in particular artificial neural
network (ANN) models (Bishop, 1995; Bourlard and Morgan, 1993) that are widely
used nowadays and will be introduced in detail later in Section 3.1. When the GMM
is replaced by discrete probabilities, it is a discrete density HMM (Rabiner, 1989).
Meanwhile, the use of an autoregression process for observation generation leads to the
autoregressive HMM class (Rabiner, 1989). In additional to the output probabilities,
the transition probabilities can also follow distributions other than the Geometric
distribution, such as the Gamma, Gaussian, and Poisson distributions forming hidden
semi-Markov models (Levinson, 1986; Russell and Moore, 1985; Yoshimura et al., 1998).

2.3.3 The ML HMM training problem

So far, the acoustic modelling units and model types have been discussed. However,
these are still not sufficient to distinguish a set of acoustic models as the model
parameters have not yet been determined. Since HMMs are evaluated based on
Eqn. (2.12), it is natural to use parameters that can maximise the likelihood. Given
an HMM λ, the maximum log-likelihood objective function is defined as

FML(O) = lnp(O|λ), (2.25)

and the maximum likelihood (ML) parameter estimation procedure can be specifically
presented as

λ∗ = argmax
λ

∑
O
FML(O). (2.26)

Prior to describing the actual HMM training procedure, there are several useful
variables to define based on the FB algorithm. The first one is ξij(t) defined as the
probability of being in state i at t and state j at t+ 1, given the model and the entire
observation sequence, i.e.,

ξij(t) = P (qt = i, qt+1 = j|O,λ) (2.27)

According to Bayes’ rule and Eqn. (2.21), ξij(t) can be calculated by

P (qt = i, qt+1 = j|O,λ) = p(O, qt = i, qt+1 = j|λ)
p(O|λ)

= αi(t)aijbj(ot+1)βj(t+1)
∑N

i
′=1 αi

′ (t)βi
′ (t)

. (2.28)

20 Automatic Speech Recognition

The next variable γi(t) is the posterior probability of being in state i at t,

γi(t) = P (qt = i|O,λ). (2.29)

Similarly, γi(t) can also be computed using the FB algorithm as

P (qt = i|O,λ) = p(O, qt = i|λ)
p(O|λ)

= αi(t)βi(t)∑N
i
′=1 αi

′ (t)βi
′ (t)

. (2.30)

γi(t) is often termed as the state occupancy as it reflects how probable that a frame o(t)
is aligned with a certain state i. The last two variables are associated with GMMs and
require an assumption that each sample is generated by only one Gaussian component.
The posterior probability of being generated by the mth Gaussian component given
state i and the observation sequence is represented by a variable πim(t). That is,

πim(t) =P (gt = m|qt = i,O,λ),

= cimN(o(t)|µim,Σim)
∑M

m
′=1 cim

′N(o(t)|µim
′ ,Σim

′)
, (2.31)

where gt is the auxiliary variable revealing the membership of o(t), and 1 ⩽ m ⩽ M .
Finally, we define γim(t) as

γim(t) = P (qt = i,gt = m|O,λ), (2.32)

and then we have

P (qt = i,gt = m|O,λ) =P (qt = i|O,λ)P (gt = m|qt = i,O,λ)
=γi(t)πim(t), (2.33)

based on Eqn. (2.29) and Eqn. (2.31).

2.3.4 The Baum-Welch algorithm

Next, we are going to solve Eqn. (2.26). Since there is no known way to analytically find
the solution λ∗, HMM parameters are often estimated through iterative optimisation
procedures (Baum and Egon, 1972; Dempster et al., 1977; Gill et al., 1981), among
which the most common one is the Baum-Welch (BW) algorithm (Baum and Egon,

2.3 Acoustic Models 21

1972). Instead of directly maximising FML, the BW algorithm is derived by maximising
Baum’s auxiliary function (Baum and Egon, 1972), which is also named the Q function,

Q(λ, λ̂) =
∑

Q
P (Q|O,λ) lnp(O,Q|λ̂), (2.34)

where λ̂ = {{âij},{b̂j(·)}} is the re-estimated parameter set. The solution found by
maximising the Q function also maximises FML, as shown later in Section 2.3.5. By
taking Eqns. (2.10) and (2.11) into the Q function, it can be re-written as

Q(λ, λ̂) =
∑

Q
P (Q|O,λ)

T∑

t=1
ln âqt−1qt +

∑

Q
P (Q|O,λ)

T∑

t=1
ln b̂qt(ot). (2.35)

Since the two terms of Eqn. (2.35) are associated with different types of HMM param-
eters, they can be treated separately.

By re-organising and applying Lagrange multipliers (Gill et al., 1981) to the first
term in Eqn. (2.35) with constraints

∑N
j=1 âij = 1 and

∑M
m=1 ĉim = 1, we can get

âij =
∑T

t=1 P (qt−1 = i, qt = j|O,λ)
∑T

t=1 P (qt−1 = i|O,λ)
=
∑T

t=1 ξij(t−1)
∑T

t=1 γi(t−1)
, (2.36)

ĉim =
∑T

t=1 P (qt = i,gt = m|O,λ)
∑T

t=1
∑M

m
′=1 P (qt = i,gt = m

′ |O,λ)
=

∑T
t=1 γim(t)

∑T
t=1
∑M

m
′=1 γim

′ (t)
. (2.37)

Meanwhile, by taking the derivatives of the second item with respect to µ̂im and Σ̂im

and setting them to zero, we have

µ̂im =
∑T

t=1 P (qt = i,gt = m|O,λ)o(t)
∑T

t=1 P (qt = i,gt = m|O,λ)

=
∑T

t=1 γim(t)o(t)
∑T

t=1 γim(t)
, (2.38)

Σ̂im =
∑T

t=1 P (qt = i,gt = m|O,λ)(o(t)− µ̂im)(o(t)− µ̂im)T
∑T

t=1 P (qt = i,gt = m|O,λ)

=
∑T

t=1 γim(t)o(t)o(t)T
∑T

t=1 γim(t)
− µ̂imµ̂T

im. (2.39)

When building a set of GMM-HMM acoustic models, an HMM is constructed
for each phone unit (including silence, as described in Section 2.8 in detail). For

22 Automatic Speech Recognition

each utterance in the training corpus, it is segmented into speech segments according
to phone to frame alignments, and each such segment is regarded as an individual
observation sequence in this section. The GMM-HMM parameter update formulas
in Eqns. (2.37) – (2.39) are executed once their numerators and denominators have
been accumulated from every relevant segment of all utterances in the training corpus.
Note that phone to frame alignments can be acquired by converting the word level
reference transcriptions into phone sequences and finding the time boundaries of each
phone manually or automatically with the Viterbi algorithm (see Section 2.4.2). As an
alternative to hard segmentations, the FB algorithm can be applied at the utterance
level using a composite HMM to produce “soft” segmentations, which is introduced in
detail in Section 2.8.

2.3.5 Properties of the BW algorithm

Next, we will show that the BW algorithm can guarantee the monotonic increase of
the training data likelihood. First, FML is re-arranged as

lnp(O|λ̂) =ln
∑

Q
P (Q|O,λ) p(O,Q|λ̂)

P (Q|O,λ)

⩾
∑

Q
P (Q|O,λ) ln p(O,Q|λ̂)

P (Q|O,λ) . (2.40)

The inequality in Eqn. (2.40) makes use of Jensen’s inequality (Bishop, 2006). Since
the BW algorithm increases the Q function value such that

∑
Q

P (Q|O,λ) lnp(O,Q|λ̂) ⩾
∑

Q
P (Q|O,λ) lnp(O,Q|λ), (2.41)

from Eqn. (2.40) we have

lnp(O|λ̂) ⩾ ln
∑

Q
P (Q|O,λ) ln p(O,Q|λ)

P (Q|O,λ) ⩾ lnp(O|λ), (2.42)

which shows that the BW algorithm guarantees that the likelihood will not decrease.
Further examing the Q function, Eqn. (2.34) becomes

Q(λ, λ̂) = EQ|O,λ

[
lnp(O,Q|λ̂)

]
, (2.43)

where EQ|O,λ[·] is the mathematical expectation with respect to P (Q|O,λ). Therefore,
the BW algorithm can be interpreted as an implementation of the more general expec-

2.4 Language Models and The Decoding Process 23

tation maximisation (EM) algorithm (Dempster et al., 1977). From this perspective,
the BW algorithm comprises the E (expectation) step, which calculates the Q function
and the related variables using the FB algorithm, and the M (maximisation) step that
updates the parameters to maximise the expected log-likelihood based on the E step.
It should be noted that λ∗ found by the BW algorithm is only a local rather than
global optimum (Bishop, 2006), which is usually one of the multiple local optima on a
complex optimisation surface.

2.4 Language Models and The Decoding Process

2.4.1 Language modelling

In ASR, besides a dictionary with a vocabulary of words and their pronunciations,
linguistic and semantic knowledge are also used in the LM, which provides the prior
probability of each word sequence, P (W), in the MAP decoding rule in Eqn. (2.3).

P (W) = P (w1,w2, . . . ,wL)
= P (w1)P (w2|w1) · · ·P (wL|w1,w2, . . . ,wL−1) (2.44)

If W is assumed to have an nth order Markov property, that is, each word depends on
at most n−1 preceding words, then the above equation can be re-written as

P (W) =
L∏

l=1
P (wl|wl−n+1,wl−n+2, . . . ,wl−1). (2.45)

Eqn. (2.45) defines an n-gram model that has been the most successful and commonly
used LM (Jelinek, 1991; Manning and Schütze, 1999). P (wl|wl−n+1,wl−n+2, . . . ,wl−1)
is estimated based on ML as

P (wl|wl−n+1,wl−n+2, . . . ,wl−1) = count(wl−n+1,wl−n+2, . . . ,wl)
count(wl−n+1,wl−n+2, . . . ,wl−1) , (2.46)

where count(wl−n+1,wl−n+2, . . . ,wl) is the number of observed wl−n+1,wl−n+2, . . . ,wl

units in the training corpus.
Taking a deeper look at the n-gram model, for a vocabulary sized |V |, it contains

|V |n discrete probabilities. However, when n is large, most n-gram units do not have
sufficient occurrences in the training corpus for reliable estimation giving rise to a severe
data sparseness issue. Unseen n-gram units with zero frequencies can even prohibit

24 Automatic Speech Recognition

ASR from outputting such units in the hypotheses, regardless of how unambiguous
the acoustic signal is. This can certainly be alleviated by training the LM on more
data to cover the n-gram units better. Meanwhile, the estimation of infrequent n-gram
units can be smoothed by “backing-off” to models with smaller histories (Manning and
Schütze, 1999). Different smoothing techniques have been developed based on such
backoff strategies (Church and Gale, 1991; Katz, 1987; Kneser and Ney, 1995).

2.4.2 Decoding process

The decoding process relies on creating a finite state graph structure that integrates
the acoustic model, dictionary and language model. This graph can be constructed
statically (Baker, 1975; Mohri et al., 2002; Young et al., 1989), dynamically (Odell,
1995; Odell et al., 1994), or in a hybrid manner that dynamically adds language
model information to a static graph (Demuynck et al., 2000; Odell, 1999). The graph
includes often context dependent HMM models appropriately connected according to
the dictionary and language model. The speech recognition task then corresponds to
finding the most likely path through the graph that will have generated the utterance to
be decoded according to the MAP decoding rule in Eqn. (2.3). Common breadth-first,
depth-first, and heuristic pathfinding algorithms can be used for this task (Huang
et al., 2001; Young, 1996). The most widely used search method is Viterbi decoding
(Viterbi, 1967), which is a dynamic programming (DP) algorithm (Cormen et al., 1990)
for finding the most likely sequence of hidden states. Let ϕj(t) represent the maximum
likelihood of being in state j at time t and observing o(1),o(2), . . . ,o(t). ϕj(t) can be
computed recursively by

ϕj(t) = max
i
{ϕi(t−1)+ lnaij}+lnbj(o(t)). (2.47)

When computing each ϕj(t), the maximum operation removes the paths that can not
form the overall optimal path. At the last time T , the maximum likelihood value of
generating O with HMM λ is obtained by

ϕ̂(T) = max
e

{
max

i
{ϕi(T −1)aie}+lnbe(o(T))

}
, (2.48)

where state e is any of the exit states of HMM λ.
Equivalently, the token passing model, an alternative form of the Viterbi algorithm,

is often used in practical decoders (Woodland et al., 1994; Young et al., 1989). In this
conceptual model, at time t, an HMM state j holds a moveable token that contains

2.4 Language Models and The Decoding Process 25

ϕj(t) and the history to achieve it. At each time t, a copy of every token in every state
i is passed to all of their possible succeeding states j, and each token has its value
increased by lnaij + lnbj(o(t)). Afterwards, in each state, discard all tokens except
for the one with the highest value. When multiple HMMs are considered, a token in
an exit state of an HMM can be passed to the connected states in other HMMs. If
the two HMMs belong to different words, say wl and wl+1, the token passing causes
a word transition and the token value needs to be increased further by lnP (wl+1|wl).
By assuming every utterance starts with a silence word, w0, initially lnP (w1) is added
to the token value by setting lnP (w1|w0) = lnP (w1)1. These enable the token passing
algorithm to search for the maximum posterior probability rather than the maximum
likelihood path by taking the LM into account. The LM log-probability is usually
linearly scaled by a grammar scaling factor (Bahl et al., 1980) when combined with the
acoustic log-likelihood. This is necessary since HMM acoustic models often produce
a wider dynamic range of likelihood values due to the underestimation of likelihood
arising from invalid assumptions (Woodland and Povey, 2002). At the end of the
search, again every utterance is assumed to end with silence, then the best path with
the highest probability is acquired only from the tokens staying in the exit states of
the silence HMM at T . In addition, the token passing model is also useful for finding
N -best paths by allowing each model state to hold multiple tokens to increase the
number of different token histories that can be maintained. Tokens from different
preceding words are regarded as distinct. Empirically, this has been shown to well
approximate the optimal N -best paths acquired without discarding any token (Young
et al., 2015).

For LVCSR, as discussed in Section 2.1, efficiency becomes more critical due to the
increase of decoding complexity. A common strategy is to reduce the search space by
sharing possible phone model evaluations in different pronunciations. However, this is
still not adequate in practice. Since Viterbi decoding is a time-synchronous breadth-first
search, it is possible to prune the searching space by reducing the “breadth”. That is,
at each time, any model whose token value falls more than some threshold below the
maximum among all models is deactivated. It works as to only search within paths
defined by a beam of a certain width and is therefore named as beam search (Lowerre,
1976). A similar method can also be applied among the tokens being propagated into
new words, which is called word end pruning. Note that the beam search can prune
the optimal path and cause word error rate (WER) increase, but normally a good
result accuracy/computation complexity trade off can often be found with appropriate

1These LM scores can also be pre-compiled into the graph.

26 Automatic Speech Recognition

thresholds. The HTK LVCSR decoder, HDecode, is used in all experiments in this
thesis (Young et al., 2015). In HDecode, the LM is decoupled from the dictionary, in
order to handle their information separately using multiple tokens. The dictionary
and HMMs are used to construct a compact static graph, while the LM information is
incorporated into the search dynamically at the run time. This achieves a good trade
off between the computation and storage complexity, and allows a flexible choice of
the LM. In addition, decoders can also be equivalently designed based on weighted
finite state transducers (WFST) by representing each of the acoustic model, LM, and
lexicon as a weighted finite state automata to simplify their integration in decoding
(Mohri, 1997; Mohri et al., 2002).

2.4.3 Representing hypotheses using lattices

Section 2.4.2 briefly describes decoders based on Viterbi decoding. In general, more
sophisticated linguistic and phonetic knowledge, such as a higher order LM, is often
used in decoding, which can even result in an unmanageably large search space or
infeasible decoder implementation. One solution is to apply the “divide and conquer”
strategy to decompose the searching objective into multiple progressive stages, which
leads to the multi-pass decoding (Huang et al., 2001; Young, 1996). For example,
to decode using a 4-gram LM, a bigram LM can be applied in the first decoding
pass, while in the second pass the 4-gram LM is used to rescore the resulting word
level hypotheses by keeping the acoustic model scores produced in the first pass.
For this purpose, a data structure is required to represent and cache the word level
hypotheses. A straightforward solution is the word lattice (Woodland et al., 1995),
or equivalently the word graph (Ney and Aubert, 1994), which is a weighted DAG
specified for each utterance with time information. A word lattice consists of a number
of nodes placed along the time axis and many arcs connecting the nodes. Except
for the entry node, every node serves as the common end of its inbound words and
is associated with its ending time t. An arc between two nodes with t1 and t2 is
a directed link corresponding to a hypothesised word aligned with the observation
sequence o(t1),o(t1 +1), . . . ,o(t2). Therefore, every path covering time from 1 to T

is a valid hypothesis, and the common words among some hypotheses are efficiently
represented by the shared arcs of corresponding paths.

One benefit of using a word lattice, is to efficiently rescore the embedded hypotheses
using a lattice based modification of the FB algorithm. Like in Section 2.3.2, we can
define the lattice based forward and backward variables αq and βq analogous to the

2.4 Language Models and The Decoding Process 27

αi(t) and βi(t). Let Λ be the HMM set used to produce the lattice,

αq =p(o(1),o(2), . . . ,o(te
q−1), q|Λ) (2.49)

βq =p(o(te
q),o(te

q +1), . . . ,o(T)|q,Λ), (2.50)

where q is an arc whose starting and ending times are ts
q and te

q. Their properties are
found similar to Eqns. (2.15) and (2.19). Provided that arcs h and q are the immediate
preceding arcs of q and r, denoting p(q) = p(o(ts

q),o(ts
q +1), . . . ,o(te

q−1)|q,Λ), the
recursive calculation formulas of αq and βq are

αq =
∑

h

αhP (q|h)p(q) (2.51)

βq =
∑

r

βrP (r|q)p(r). (2.52)

Back to the example of rescoring a lattice with a 4-gram LM, p(q) is the acoustic
score saved from lattice generation, and P (q|p) is the LM score. However, since the
4-gram LM requires more preceding words than h, the lattice needs to be expanded
before rescoring to make the nodes represent multiple preceding words (Liu et al., 2013;
Woodland et al., 1995).

It is empirically found that though the whole hypothesis space is very large, it can
be well approximated by a small subset of hypotheses. Therefore, the word lattices
from the first pass are normally pruned (Woodland et al., 1995), which can significantly
reduce the search space of the following decoding stages. The pruned lattices can be
measured by lattice density, which is often defined as the averaged number of arcs per
second (APS) indicating the amount of hypotheses reserved in the lattice. The lowest
WER for any word sequence in the lattice is often used to evaluate the quality of the
lattice, since pruning can remove such sequences from the lattice (Woodland et al.,
1995). Note that there exist multiple lattice definitions. For example, time information
can be excluded from the word lattice or word graph (Ljolje et al., 1999). Equivalently,
WFST based technology can be applied to lattices as well (Povey et al., 2012).

2.4.4 WER evaluation

The choice of the evaluation standard of an ASR system depends on the specific
recognition task. For English LVCSR tasks studied in this thesis, WER is often used,
which measures the ratio of words differing between the reference and hypothesis

28 Automatic Speech Recognition

transcriptions1. However, since it is not necessary to have the same number of words
in a pair of reference and hypothesis, each hypothesis word needs to be aligned to
a reference word for comparison purpose. Three kinds of errors arise from such
comparisons:

• Substitution error, which occurs when a hypothesis word is aligned with a reference
word and they are different. This means a word is misrecognised as another.

• Insertion error, which occurs when a hypothesis word cannot be aligned with any
reference word. This indicates an additional word has been produced by ASR.

• Deletion error, which occurs when a reference word is not aligned to any word in
the hypothesis indicating a word has been omitted by ASR.

Therefore, word sequence alignment is critical in hypothesis evaluation, which is often
carried out so as to minimise the Levenshtein edit distance between the two sequences
using a DP procedure (Levenshtein, 1966). The Levenshtein edit distance is defined as

1 if correct
0 if a substitution error
−1 if an insertion error

. (2.53)

Based on Eqn. (2.53), the word accuracy is

%WordAcc = H− I

N
×100%, (2.54)

where H, I, and N are the numbers of correctly recognised words, insertion errors, and
words in the reference sequence. WER is therefore calculated by

%WER = 100%−%WordAcc. (2.55)

In addition to the Levenshtein edit distance, there are other edit distances serving
as the DP cost functions for hypothesis evaluation purpose. If the insertion error cost
is changed to 0 in Eqn. (2.53), i.e., word insertions are not penalised, the evaluation
standard becomes the word correctness (Young et al., 2015). However, it is not as
useful an evaluation standard as WER for ASR outputs with variable lengths. To show

1For the Mandarin, Cantonese, and Tamil speech recognition systems in this thesis, character
error rate (CER) is used instead of WER.

2.5 Context-Dependent Acoustic Modelling 29

this, a dummy hypothesis can be made as an example,

w
(1)
1 ,w

(2)
1 , . . . ,w

(|V |)
1 ,w

(1)
2 ,w

(2)
2 , . . . ,w

(|V |)
2 , . . . ,w

(1)
T ,w

(2)
T , . . . ,w

(|V |)
T , (2.56)

where w
(1)
t ,w

(2)
t , . . . ,w

(|V |)
t are all words in the vocabulary enumerated for frame t. This

dummy hypothesis always has 100% word correctness (assuming there are no OOVs),
but is useless in practice. The edit distance can also be expanded to include unit
dependent costs to weigh the errors of different units differently. This is typically used
for specific ASR error pattern extraction (Fung et al., 2000).

Besides WER, ASR performance is sometimes evaluated at a different level. For
phone recognition, phone error rate is often used and calculated similar to WER, with
the word errors replaced by corresponding phone errors. Another useful metric is the
sentence error rate (SER) that counts utterances fully correctly recognised using a 0-1
loss function. The 0-1 loss function is defined as (Bishop, 2006)

δWW′ =
{

1 if W = W
′

0 otherwise
, (2.57)

where W and W
′ are the reference and hypothesis sequences, and δWW′ is also termed

as Kronecker delta function.

2.5 Context-Dependent Acoustic Modelling

In continuous speech processing, an important factor to take into account is the
coarticulation effect. Coarticulation refers to a situation that an isolated speech sound
is influenced by its neighbouring speech sounds, which is generally produced through the
continuous movement of speech organs when articulating (Selkirk, 1986). The resulted
pronunciation changes are usually handled by extending the acoustic modelling units
to depend on their neighbouring units for better categorisation of sounds. For example,
a phone a can be specified to b−a+c, by taking its preceding phone b and succeeding
phone c into consideration. Such an extended phone unit is called a triphone (Schwartz
et al., 1985), which is a particular type of context-dependent (CD) units, while standard
phones are often referred to as a monophone that belongs to the context-independent
(CI) unit class. An alternative solution is to directly model the dependencies between
the current and context phones using a more flexible model rather than HMM, for
example, dynamic Bayesian networks (Bishop, 2006; Frankel et al., 2007).

30 Automatic Speech Recognition

When constructing an HMM for each triphone, an issue encountered is explosion in
the number of parameters. For instance, if there are 40 monophones in the phone set,
a maximum number of 403 = 64000 triphones could be generated. Though in practice
the actual triphones (referred to as logical triphones) are normally fewer than the
maximum number due to the linguistic rules applied through the dictionary, HMMs
still suffer from the data sparsity issue since many triphones may have insufficient
occurrences in the training corpus. A solution is to tie some parameters of some HMMs
together, which can share samples of the involved triphones for better estimation.
This parameter tying can happen at different levels in an HMM. The most commonly
used strategy is to tie the GMMs in HMM states as the tied state systems. Another
important choice in parameter tying is the clustering approach. Two types of clustering
approaches are often used: bottom-up and top-down. The bottom-up approaches often
do data-driven clustering of the individual untied states according to some metric
(Chesta et al., 1997; Young et al., 1994; Young and Woodland, 1993), while in contrast,
the top-down approaches split a collection of untied states into classes through the
growth of a decision tree (Bahl et al., 1991). For triphone state clustering, the top-down
approaches have some key advantages that unseen triphone states can be clustered and
the linguistic knowledge is easier to be utilised, while comparable in performance with
the bottom-up approaches (Young et al., 1994). Next, a detailed description of the ML
criterion based decision tree tying approach is presented (Odell, 1995; Young et al.,
1994).

In the decision tree state tying approach, a decision tree is often constructed for
every state of every non-silence monophone, which restricts the tying to happen only
among the same states of the triphone HMMs with the same central phone. With this
configuration, it is implicitly assumed that the states assigned to different decision trees
should not be tied as they belong to different linguistic spaces. Other configurations,
such as a single decision tree for all states, are also possible (Knill et al., 2013; Paul,
1997). In each tree node, the state set Sp in the node is split into two classes Sr∗

1
and

Sr∗
2

according to their answers to a binary question r∗, and each class is associated
with a child node. Question r∗ is a linguistic rule selected from a pre-designed question
set R that results in the largest likelihood increase by splitting the current node,

r∗ = argmax
r∈R

∆L(S,r), (2.58)

2.5 Context-Dependent Acoustic Modelling 31

where

∆L(S,r∗) = L(Sr∗
1
)+L(Sr∗

2
)−L(Sp). (2.59)

L(S), the log-likelihood of generating a set of observation O with a state set S, is

L(S) =
T∑

t=1
lnp(o(t)|S)

=
T∑

t=1
ln
(∑

s∈S

P (qt = s|o(t),S) p(o(t), qt = s|S)
P (qt = s|o(t),S)

)

⩾
T∑

t=1

∑

s∈S

lnN(o(t)|µS ,ΣS)γs(t). (2.60)

Similar to the case in Section 2.3.5, the inequality is again due to Jensen’s inequality.
P (qt = s|o(t),S) is denoted as γs(t) since the HMM transition probabilities are ignored
and each frame is generated individually. Furthermore, p(o(t)|S) is replaced by
N(o(t);µS ,ΣS) by assuming that the samples are (single) Gaussian distributed. By
taking equality

T∑

t=1

∑

s∈S

(o(t)−µS)TΣ−1
S (ot−µS)γs(t) = D

T∑

t=1

∑

s∈S

γs(t), (2.61)

into Eqn (2.60), we can get

L(S)≈−1
2 (D ln(2π)+ ln |ΣS |+D)

T∑

t=1

∑

s∈S

γs(t), (2.62)

where D is the dimension number. Since
∑T

t=1
∑

s∈S γs(t) can be calculated using
the FB algorithm, computing L(S) requires ΣS . Denote the single Gaussian output
distribution of state s as N(o(t)|µs,Σs), and obtain it from pre-trained untied triphone
HMMs. According to Eqns (2.38) and (2.39), ΣS can be acquired as

ΣS =
∑

s∈S

(
Σs +µT

s µs

)∑T
t=1 γs(t)∑T

t=1
∑

s∈S γs(t)
−µT

S µS , (2.63)

32 Automatic Speech Recognition

where

µS =
∑

s∈S µs
∑T

t=1 γs(t)∑T
t=1
∑

s∈S γs(t)
. (2.64)

At each step, split the node with the question that can bring the highest likelihood
gain. This single tree node splitting procedure is applied to each node unless:

• There is no more questions available in the question set.

• S has only one state.

•
∑T

t=1
∑

s∈S γs(t) is smaller than a threshold.

• L(S,r∗) = max∆L(S,r) falls below a threshold.

The tree construction stops once no more tree node splits occur. Note that it is often
assumed that the alignments throughout the tree construction procedure are fixed,
which makes

∑
t γs(t), µs, and Σs constant and can reduce the computation cost. In the

final stage, the decrease in log-likelihood by merging leaf nodes with different parents is
calculated using Eqn. (2.59). Any pairs of tree leaf nodes whose log-likelihood decrease
falls below a threshold are merged. Once the trees are constructed, the triphone
states unseen in the training corpus can be classified into the existing tree leaf nodes
by answering the questions attached to the tree nodes. Moreover, this state level
tying usually results in many logical triphone HMMs with the same tied states, which
therefore, can be tied together. This leads to a more compact set of HMMs with
identical state definitions termed as physical HMMs (Young et al., 2015).

Further improvements to the standard ML based decision tree can remove the
single Gaussian distribution assumption by using GMMs (Reichl and Chou, 2000), or
adding MAP (Gauvain and Lee, 1994) based hierarchical priors (Zen and Gales, 2011).
Alternatively, entropy (Hwang et al., 1996) and minimum description length (MacKay,
2003; Shinoda and Watanabe, 2000) are also widely used as the criterion for decision
tree construction. In addition, the requirement of question set can be removed as well
(Beulen and Ney, 2000; Chou, 1991; Povey et al., 2011).

2.6 Maximum Likelihood Linear Transforms

Various linear transformations have been applied to HMM-based ASR in the past
decades by assuming that the mismatch between the original models and a particular

2.6 Maximum Likelihood Linear Transforms 33

data set is piece-wise linear (Gales, 1998). This section describes three linear transfor-
mations involved in this thesis, namely maximum likelihood linear regression (MLLR)
(Leggetter and Woodland, 1995), semi-tied covariance matrices (STC) (Gales, 1999),
and heteroscedastic linear discriminant analysis (HLDA) (Kumar, 1997; Liu et al.,
2003), all of which are estimated to maximise the likelihood of the data generated by
the HMMs.

2.6.1 Maximum likelihood linear regression

It is well known that there exist unique characteristics in speech from distinct speakers
(Choukri and Chollet, 1986). Rather than speaker independent (SI) acoustic models,
a general model set built upon many speakers’ data using speaker specific acoustic
models, is therefore considered to have a better chance to model such characteristics
well. However, constructing such a model set usually requires a large amount of
data from target speakers, which is often hard or infeasible to collect. An alternative
solution is to adapt SI models using a small portion of speaker specific data to capture
the characteristics of his/her voice, which is termed speaker adaptation (Choukri and
Chollet, 1986; Cox and Bridle, 1989; Gales, 2000; Gauvain and Lee, 1994; Leggetter
and Woodland, 1995; Woodland, 2001).

MLLR is a widely used speaker adaptation method that employs linear transforms
to adapt the mean and covariance values of Gaussian components by

µ̂ =Aµ+b (2.65)

=W

[
µ

1

]

Σ̂ =HΣHT, (2.66)

where µ̂ and are Σ̂ are the transformed mean vector and covariance matrix, and
W = [A b] and H denote their associated linear transforms. As its name suggests, the
linear transforms are estimated by maximising the likelihood of generating the speaker
specific data from the models, which is a linear regression problem. From Section 2.3.4,
this could be done using the BW algorithm. The Q function from Eqn. (2.35) applied
on HMM set Λ equals to

34 Automatic Speech Recognition

Q(Λ, Λ̂)∝−1
2

N∑

i=1

M∑

m=1

T∑

t=1
γim

[
Dim +ln |Σ̂im|+(o(t)− µ̂im)TΣ̂−1

im(o(t)− µ̂im)
]

, (2.67)

where Dim is the normalisation constant associated with the Gaussian component m

in state i. The re-estimation formulae of W can be obtained by differentiating Q(Λ, Λ̂)
with respect to W and equating to zero (Leggetter and Woodland, 1995). Note that
for each speaker, the speaker dependent (SD) linear transforms can be tied across a
number of distributions through a regression class tree to share the limited adaptation
samples (Leggetter and Woodland, 1995). W(r) is the regression matrix of the rth
class. Once W(r) is updated, H(r) is then re-estimated using a formulae obtained in
a similar way (Gales and Woodland, 1996). Note that since MLLR allows different
models to have different linear transforms, the overall transform is actually piece-wise
linear, and therefore the BW algorithm is often performed for multiple iterations.

Besides applying the linear transforms to model parameters, MLLR can also be
applied to input features. This is achieved by constraining the mean and covariance
of a Gaussian component to share the same linear transform (Digalakis et al., 1995;
Gales, 1998), i.e, let H = A. Since

N(o(t)|Aµ+b,AΣAT) =|A−1|N(A−1o(t)−A−1b|µ,Σ), (2.68)

the constrained Gaussian mean and covariance transform is equivalent to transform
the feature vector by

ô(t) =A−1o(t)−A−1b (2.69)

=W

[
o(t)

1

]
.

W can be acquired similarly using Eqn. (2.67) by replacing o(t), µ̂im, and Σ̂im with
ô(t), µim, and Σim, respectively. A major benefit of applying this constrained MLLR
(CMLLR) transform is to perform speaker adaptation without changing the model
parameters (Gales, 1998). More details of CMLLR can be found in (Gales, 1998).

In addition to applying test-time speaker adaptation, it is also of a broad interest
to apply adaptation in both training and testing (Anastasakos et al., 1996; Gales, 1998;
Pye and Woodland, 1997). At test time, SD transforms are applied to a model set
trained using the adaptation scheme instead of the SI model trained in the standard

2.6 Maximum Likelihood Linear Transforms 35

way. Therefore, this scheme is referred to as speaker adaptive training (SAT). In
this method, standard acoustic model parameters are estimated to model only the
phonetically relevant variations since the speaker variations are assumed to have been
modelled separately by the training set SD parameters. When applying SAT based
on MLLR, given SD transforms, the ML estimation of µim and Σim is achieved by
maximising Eqn. (2.67). This becomes very efficient for CMLLR since the re-estimation
formulas are equivalent to the standard ML re-estimation formulas in Eqns. (2.38) and
(2.39) with the transformed observation ô(t) (Gales, 1998).

2.6.2 Heteroscedastic linear discriminant analysis

Recall Section 2.3.2, in practice, it is often the case that GMMs with diagonal covariance
matrices are used for acoustic modelling, which assumes that all dimensions of ot are
independent variables. A solution is to decorrelate the GMM input features with a
linear Karhunen-Loève transform (KLT) (or its simplified approximation the DCT,
as for MFCC), which is a fixed transform estimated by modelling all data samples
with a single Gaussian distribution (Bishop, 2006). The KLT can find some nuisance
dimensions, which are less important in data modelling and can be discarded for data
compression purpose. However, for speech data, the nuisance dimensions found by
knowing the distribution of each class (e.g., a phonetic unit) are often different from
those found by KLT (Bishop, 2006). When each class is modelled by a Gaussian
distribution with a shared covariance matrix, a linear decorrelation transform can be
estimated by maximising the likelihood of generating the data. Equivalently, it can also
be acquired by discriminating the classes by maximising the inter-class distances while
minimising intra-class distances, and the nuisance dimensions are those useless for
class discrimination. Therefore, this approach is named as linear discriminant analysis
(LDA) (Bishop, 2006). A further improvement of LDA can be derived by allowing each
Gaussian distribution to have a distinct covariance matrix, which results in the HLDA
transform (Kumar, 1997).

Let the top d dimensions be the valuable dimensions supposed to contain the
discriminative information and the other D−d dimensions be the nuisance dimensions.
Therefore, the transformed mean vector µ̂(c) and diagonal covariance matrix Σ̂(c)

36 Automatic Speech Recognition

associated with class c are

µ̂(c) =
[

µ̂
(c)
[d]

µ̂[D−d]

]
(2.70)

Σ̂(c) =
[

Σ̂(c)
[d] 0
0 Σ̂(g)

[D−d]

]
(2.71)

=

 diag

(
A[d]Σ(c)AT

[d]

)
0

0 diag
(

A[D−d]Σ(g)AT
[D−d]

)

 ,

where N(ô[d](t)|µ̂
(c)
[d] , Σ̂

(c)
[d]) and N(ô[D−d](t)|µ̂

(g)
[D−d], Σ̂

(g)
[D−d]) are the Gaussian distribution

generating the samples of c in the valuable dimensions and a global Gaussian distribution
generating the information in the nuisance dimensions. A is the HLDA transform and

A =
[

A[d]
A[D−d]

]
. (2.72)

The transformed observation vector ô(t) is

ô(t) = Ao(t), (2.73)

and A can be estimated using the BW algorithm. By taking the equality Eqn. (2.61)
into Eqn. (2.34), the Q is positively associated with

1
2
∑

t

∑

c

γc(t) ln

 |A|2∣∣∣diag

(
A[d]Σ(c)AT

[d]

)∣∣∣
∣∣∣diag

(
A[D−d]Σ(g)AT

[D−d]

)∣∣∣

 (2.74)

and the full covariance matrices Σ(c) and Σ(g) are estimated with the samples associated
with class c and all the samples using Eqn. (2.39). Further steps for calculating A are
described in (Gales, 1998, 1999, 2002). In practice, the nuisance dimensions are often
discarded by using A[d] as the HLDA projection, which results in a subspace based on
the valuable dimensions that can be more suitable for modelling.

2.6.3 Semi-tied covariance matrices

Since it is well known that the distributions of phonetic units are not Gaussian, HLDA
still has unsatisfied assumptions. As alternative to using a fixed feature level linear

2.7 Discriminative Sequence Training 37

transform, features can also be decorrelated by transforming the GMM parameters
as shown in Eqn. (2.68). This has an important advantage that one can use many
transforms for decorrelation. STC is one of the model level approaches that associates an
independent linear transform A(r) to one of the R transform groups to decorrelate their
covariance matrices (Gales, 1999). Transform groups can be acquired by partitioning
the acoustic models in some way, for example, triphones with the same center phone,
and STC can thus find a suitable subspace for each phonetic unit. Specifically,

Σ̂(c,r) = diag
(

A(r)Σ(c,r)A(r)T)
, (2.75)

where Σ(c,r) is the full covariance matrix of the cth class in the rth group and Σ̂(c,r) is
the relevant diagonal matrix transformed by A(r). Each A(r) is separately estimated
by maximising the likelihood of generating the samples of each class with their relevant
models, which is similar to HLDA, and a class can be any Gaussian component from the
GMMs in the same group. Therefore, by setting no nuisance dimension in Eqn. (2.74),
the HLDA estimation technique can be applied to obtain each A(r) independently.
Complete STC estimation steps can be found in (Gales, 1999), which are designed to
increase the likelihood. Moreover, if R = 1, the STC transform is a global one, and is
equivalent to HLDA without nuisance dimensions. In this case, the inverse of the STC
transform can be applied to the features by Eqn. (2.68).

2.7 Discriminative Sequence Training

From Section 2.3.3, training HMMs with the BW algorithm can find a local optimum
for the acoustic model definition p(O|W), and indirectly maximise the MAP decision
rule in Eqn. (2.3) given a fixed LM. As shown in (Brown, 1987), the ML method is
actually optimal for ASR by assuming that:

• The true distribution family of p(O|λ) and the true LM are known;

• The training data set is sufficiently large;

• The system performance cannot get worse when its parameters get closer to the
true ones.

Unfortunately, as the actual p(O|λ) distribution form is unknown, a mismatch is
likely to happen with the chosen form (HMM in this thesis), not to mention the true
LM. Meanwhile, a finite training data set is often known to be inadequate (Juang

38 Automatic Speech Recognition

et al., 1997). In practice, these broken assumptions cause ML trained ASR not
necessarily to have optimal performance. Intuitively, as the ML method learns the
data generation process with a supposed distribution form, the resulting parameters
are not guaranteed to be the most effective to discriminate the subword units for
recognition. An alternative solution is discriminative training that either models the
posterior probabilities, or optimises a discriminant function that is directly associated
with the decision rules (Bishop, 2006). By contrast, approaches that model the input or
output data distributions are known as generative models, which include ML estimated
HMMs (Bishop, 2006).

2.7.1 Maximum mutual information

Maximum mutual information (MMI) is a common discriminative training criterion
that comes from information theory (MacKay, 2003; Shannon and Weaver, 1949).
This was derived based on the concept of entropy. The entropy of a random event of
communicating a word string is defined as

−
∑

W
P (W) lnP (W), (2.76)

which measures the amount of information that is missing before reception, or the un-
certainty in that random event. For spoken word recognition, the averaged uncertainty
in recovering a word string by perceiving an acoustic observation sequence is defined
as conditional entropy,

−
∑

W

∫
p(W,O) lnP (W|O)dO. (2.77)

In general, we would like to minimise the conditional uncertainty to construct a high
performance ASR (Brown, 1987). Since the equation above can be re-organised as

−
∑

W
P (W) lnP (W)−

∑

W

∫
p(W,O) ln p(W,O)

P (W)p(O) dO, (2.78)

and the first term is the entropy of the word string that is only related to the LM,
optimising the conditional entropy by refining the acoustic model is to optimise the
second term. In information theory, the negative of the second term is defined as the
mutual information, which is a measure that quantifies the amount of information
acquired about one random variable through another. Therefore, given a fixed LM,

2.7 Discriminative Sequence Training 39

the ASR with minimum conditional entropy is achieved when the mutual information
is maximised. Mutual information can also be viewed as Kullback-Leibler divergence
(KLD)(MacKay, 2003). That is,

∑

W

∫
p(W,O) ln p(W,O)

P (W)p(O)dO = D [p(W,O)||P (W)p(O)] , (2.79)

where D [p(W,O)||P (W)p(O)] is the KLD that measures the information lost when
P (W)p(O) is used to approximate p(W,O), or in other words, the information loss
caused by assuming W and O are independently generated.

Since p(W,O) is unknown, calculating mutual information by definition is infeasible.
To get rid of the joint probability, it is assumed that a particular pair of W and O is
representative (Brown, 1987) and therefore, the above function can be simplified as

ln p(W,O)
P (W)p(O) =ln p(O|W)∑

W′ p(O|W′)P (W′)
. (2.80)

Again by assuming the LM is fixed, P (W) is constant. Hence, by adding a constant
term lnP (W), it is equivalent to maximising

ln p(O|W)P (W)∑
W′ p(O|W′)P (W′)

. (2.81)

Note by applying the Bayes’ rule, this equals lnP (W|O), which is also the objective
function of the conditional maximum likelihood criterion that maximises the posterior
probabilities (Nádas, 1983). Since p(O|W) is normally computed using embedded-unit
training with a composite HMM λW, we have p(O|W) = p(O|λW). Furthermore, as
mentioned in Section 2.4.2, the LM log probability is normally scaled to match the
wide range of log-likelihoods from the HMM acoustic model. Here, alternatively, the
acoustic model log-likelihoods are scaled by an acoustic scaling factor κ, the inverse of
the LM scaling factor, for the same purpose (Woodland and Povey, 2002). This is due
to the fact that using acoustic scaling factors tends to increase the amount of confusable
data in training and improve the generalisation ability by weighting several paths fairly
similarly, while using LM scaling factors tends to make one path dominate the search
process (Woodland and Povey, 2002). By integrating the above modifications, the most
commonly seen form of the MMI objective function is (Woodland and Povey, 2002)

FMMI(O) = ln p(O|λW)κP (W)∑
W′ p(O|λW′)κP (W′)

. (2.82)

40 Automatic Speech Recognition

2.7.2 The extended Baum-Welch algorithm

For a discrete HMM parameter θ, the re-estimation formulae obtained by the BW
algorithm is in the form of

θ̂ = ∂FML(O)/∂ lnθ∑
θ

′ ∂FML(O)/∂ lnθ
′ . (2.83)

For example, when θ = aij , the re-estimation formulae is defined in Eqn. (2.36).
Analogous to the BW algorithm, it has been proven that a parameter of a discrete
density HMM θ can be re-estimated using this formulae

θ̂ = ∂FMMI(O)/∂ lnθ +Dθ∑
θ

′
(
∂FMMI(O)/∂ lnθ

′ +Dθ
′) , (2.84)

where D is a sufficiently large constant to guarantee the training convergence (Gopalakr-
ishnan et al., 1991). In order to handle continuous density HMMs, Normandin (1991)
proposed to use discrete output probabilities to arbitrarily approximate Gaussian
density functions, which results in the same re-estimation formulae as Eqn. (2.84).

To investigate the derivatives of FMMI(O) with respect to lnθ, it can be written as

∂FMMI(O)
∂ lnθ

=κ
lnp(O|λW)

∂ lnθ
−κ

∑

W′

p(O|λW′)κP (W′)∑
W′′ p(O|MW′′)κP (W′′)

∂ lnp(O|λW′)
∂ lnθ

(2.85)

=κ

∑
W′ ̸=W p(O|λW′)κP (W′)
∑

W′ p(O|λW′)κP (W′)
lnp(O|λW)

∂ lnθ
−

κ
∑

W′ ̸=W

p(O|λW′)κP (W′)∑
W′′ p(O|λW′′)κP (W′′)

∂ lnp(O|λW′)
∂ lnθ

.

∂ lnp(O|λW)/∂ lnθ is the derivative of FML(O) with respect to lnθ, and the difference
between directions of the MMI and ML derivatives actually lies in the second term of
the equation above. This reveals a fundamental difference between MMI and ML that
MMI training not only tries to increase the likelihood of the reference W, but also
tries to decrease the likelihood of every hypothesis W

′ (Brown, 1987). In particular,

2.7 Discriminative Sequence Training 41

for ∂FMMI(O)/∂ lnbi(o(t)), there is

∂FMMI(O)
∂ lnbi(o(t)) =κγi|λW(t)−κ

∑

W′

p(O|λW′)κP (W′)∑
W′′ p(O|MW′′)κP (W′′)

γi|λ
W′ (t)

=κγnum
i (t)−κγden

i (t). (2.86)

It utilises the fact that

FML(O)
∂ lnbi(o(t)) = γi(t), (2.87)

which is because

∂ lnp(O|λ)
∂ lnp(o(t)|qt = i,λ) = 1

p(O|λ)
∂
∑N

j=1 p(O, qt = j|λ)
∂ lnp(o(t)|qt = i,λ)

= p(O, qt = i|λ)
p(O|λ)

∂ lnp(O, qt = i|λ)
∂ lnp(o(t)|qt = i,λ)

= p(qt = i|O,λ). (2.88)

In Eqn. (2.86) we denote the first and second terms as γnum
i (t) and γden

i (t), as they are
derived separately from the numerator and denominator of the MMI objective function.
The Gaussian specific posterior probabilities γnum

im (t) and γden
im (t) are still obtained using

Eqn. (2.32). For LVCSR, as in the decoding process, it is computationally expensive
to calculate the exact γden

i (t) due to the number of hypotheses. Therefore, a pruned
lattice is normally used to represent the likely alternatives as an approximation to
the hypothesis space. Such lattices are referred to as denominator lattices. To make
Eqns. (2.86) and (2.87) more similar in form, an MMI state occupancy γMMI

i (t) is
defined as

γMMI
i (t) = γnum

i (t)−γden
i (t). (2.89)

Based on Eqns. (2.84) and (2.86), the estimations of the mean and covariance of
an infinite number of MMI discrete output probabilities are

µ̂im =
∑T

t=1
(
γnum

im (t)−γden
im (t)

)
o(t)+Dim µim∑T

t=1
(
γnum

im (t)−γden
im (t)

)
+Dim

(2.90)

Σ̂im =
∑T

t=1
(
γnum

im (t)−γden
im (t)

)
o(t)o(t)T +DimGim∑T

t=1
(
γnum

im (t)−γden
im (t)

)
+Dim

− µ̂imµ̂T
im, (2.91)

42 Automatic Speech Recognition

where

Gim =Σim +µimµT
im. (2.92)

These equations are used as the re-estimation formulas in MMI training (Normandin,
1991). Comparing Eqns. (2.90) and (2.91) with Eqns. (2.38) and (2.39), we can see
MMI re-estimation formulas differ from the ML re-estimation in two aspects: the use
of γMMI

im (t) instead of γim(t), and the existence of Dim. Actually if we only replace
γim(t) with γMMI

im (t) in Eqn. (2.39), the modified formulae can produce non-positive
covariance values since

∑T
t=1 γMMI

im (t) contains −
∑T

t=1 γden
im (t). Therefore, the use of

Dim should at least ensure positive covariances. That is,

Dim = max
{

E
T∑

t=1
γden

im (t),2Dmin
im

}
, (2.93)

where Dmin
im is the minimum among all Dim that ensures the variances are positive,

and E is a configurable global constant often set to 2 (Woodland and Povey, 2002).
The reason of using Gaussian dependent constants Dim instead of a global constant D

is to accelerate the learning process (Woodland and Povey, 2002), since D is found
to control the learning rate that determines both convergence and learning efficiency
(Normandin, 1991). When approximating a GMM more accurately with more discrete
probabilities, D increases and makes training slow but stable. Actually when using
infinite discrete probabilities to perfectly approximate a GMM, D becomes infinity,
and therefore, it is impossible to use D in its convergence region (Normandin, 1991).

However, it has been found that Eqn. (2.84) will cause mixture weights to be
extremely sensitive to small-valued parameters, and therefore, an alternative function
is maximised to get the following re-estimation formulae (Povey and Woodland, 1999)

ĉim =
∑T

t=1 γnum
im (t)+kim cim

∑
m

′=1

(∑T
t=1 γnum

im
′ (t)+kim

′ cim
′

) , (2.94)

where

kim = max
m

′

{∑T
t=1 γden

im
′ (t)

cim
′

}
−
∑T

t=1 γden
im (t)

cim
. (2.95)

2.7 Discriminative Sequence Training 43

As transition probabilities suffer from the same issue by using Eqn. (2.84), their re-
estimation formulas are obtained similar to cim by replacing γnum

im (t) and γden
im (t) with

ξnum
im (t) and ξden

im (t) (Povey and Woodland, 1999).

2.7.3 Minimum phone error rate

Though MMI training maximises the posterior probability of the reference by increas-
ing its discrimination ability from the hypotheses, it does not directly optimise the
evaluation standard defined in Section 2.4.4. An alternative to MMI is minimum
Bayes’ risk (MBR) that allows to integrate a function associated with the evaluation
standard explicitly into the objective function (Bishop, 2006; Doumpiotis and Byrne,
2004; Kaiser et al., 2002). Let Loss(W,W

′) be the loss function that measures a
hypothesis W

′ given the reference W, and the Bayes’ risk is defined as the expectation
with respect to the joint distribution p(W,O) of the empirical loss of a particular
utterance,

EW,O
[
EW′ |O

[
Loss(W,W

′
)
]]

=
∫

p(O)
∑

W
P (W|O)

∑

W′

P (W
′
|O)Loss(W,W

′
)dO, (2.96)

Since p(W,O) is unknown, similar to the MMI case, we assume a pair of W and O
is representative to minimise the empirical loss EW′ |O

[
Loss(W,W

′)
]

instead. This
results in the MBR criterion with the objective function defined as

FMBR(O) =
∑

W′ p(O|W′)κP (W′)Loss(W,W
′)∑

W′ p(O|W′)κP (W′)
. (2.97)

In Eqn. (2.97), the choice of the loss function determines the effect of MBR training.
As discussed before, we would like to use a function directly associated with the error
rates. If the 0-1 loss function (defined in Eqn. (2.57)) is used, by assuming the reference
W is encoded in the lattice, the Loss(W,W

′) measures the sentence correctness, and
FMBR becomes FMMI. This reveals MMI may be more suitable for systems evaluated
by SER. For LVCSR, to minimise WER, a word based loss function should be more
desirable. However, in practice, phone and HMM state based loss functions are more
commonly used due to data sparsity reasons. In this thesis, the minimum phone error

44 Automatic Speech Recognition

(MPE) criterion is used. The MPE loss is defined as a raw phone accuracy

PhoneAcc(W,W
′
) =

∑

q∈W′

max
h∈W

{
−1+2e(h,q) if h and q are the same
−1+ e(h,q) if h and q are different

, (2.98)

where e(h,q) returns the proportion of the length of a reference phone h that is
overlapped with a hypothesis phone q (Povey, 2003; Povey and Woodland, 2002). This
raw phone accuracy function is used since it removes the need for DP for accuracy
calculations. Alternatively, better approximations to the Levenshtein edit distance can
be used to replace the raw phone accuracy loss function (Povey, 2003).

Similar to MMI training, hypotheses are often presented as a denominator word
lattice for efficiency reasons in MPE training. To calculate the raw phone accuracy,
each word arc is replaced by a set of arcs associated with its constituent phones. This
is often called a phone marking procedure that produces phone lattices (Woodland and
Povey, 2002). Note that like word lattice generation, phone marking again preserves
only the high likelihood paths found by the Viterbi search. To see how MPE works,
∂FMPE(O)/∂ lnθ is investigated,

FMPE(O)
lnθ

= κ
∑

W′

p(O|W′)κP (W′)PhoneAcc(W,W
′)∑

W′′ p(O|W′′)κP (W′′)
∂ lnp(O|W′)

∂ lnθ
− (2.99)

κ

∑
W′ p(O|W′)κP (W′)PhoneAcc(W,W

′)∑
W′ p(O|W′)κP (W′)

∑

W′

p(O|W′)κP (W′)∑
W′′ p(O|W′′)κP (W′′)

∂ lnp(O|W′)
∂ lnθ

.

As in Section 2.4.3, let p(q) be the likelihood of arc q, and ∂ lnp(O|W)/∂ lnp(q) equals
to one instead of zero only if W passes through q. Denote each hypothesis including q

as Wq, and therefore,

FMPE

lnp(q) =κ

∑
W′

q
p(O|W′)κP (W′)

∑
W′ p(O|W′)κP (W′)

∑

W′
q
p(O|W′)κP (W′)PhoneAcc(W,W

′)
∑

W′
q
p(O|W′)κP (W′)

−
∑

W′ p(O|W′)κP (W′)PhoneAcc(W,W
′)∑

W′ p(O|W′)κP (W′)

)
(2.100)

=κγq(c(q)− cavg),

where γq is the occupancy passing through arc q as defined in Section 2.4.3; cavg and
c(q) are the weighted average correctness of all hypotheses and the hypotheses including
arc q. cavg and c(q) can be calculated using a procedure similar to the lattice FB

2.7 Discriminative Sequence Training 45

algorithm (Povey, 2003; Povey and Woodland, 2002). Then ∂FMPE(O)/∂ lnbi(o(t))
can be acquired by the chain rule as

∂FMPE(O)
∂ lnbi(o(t)) =∂FMPE(O)

∂ lnp(q)
∂ lnp(q)

∂ lnbi(o(t))
=κγq(c(q)− cavg)γi(t)
=κγMPE

i (t). (2.101)

Note that γMPE
i (t) is not really a posterior probability. It is defined like this only

to make ∂FMPE(O)/∂ lnbi(o(t)) more consistent in form with the γMMI(t) defined in
Eqn. (2.85), and the extended Baum-Welch (EBW) algorithm can be applied to MPE
training simply by replacing γMMI(t) with γMPE(t). A further modification is to set

{
γnum

i (t) = γMPE
i (t) and γden

i (t) = 0 if γMPE
i (t) > 0

γnum
i (t) = 0 and γden

i (t) =−γMPE
i (t) otherwise

. (2.102)

This not only guarantees γnum
i (t) ⩾ 0 and γden

i (t) ⩾ 0, like the MMI numerator and
denominator occupancies, but also allows the EBW re-estimation formulae, Eqns. (2.90)
– (2.94), to be applied to MPE training without modifications.

In addition to MMI and MBR, there are other common discriminative training
approaches for HMMs. Minimum classification error (MCE) employs a differentiable
approximation to the 0-1 loss function as the discriminant function to minimise SER
(Juang et al., 1997). Large margin GMMs maximise the distance between the speech
samples and the decision boundaries dividing the feature space into different classes
(Sha and Saul, 2006), which minimises the structural risk instead of the empirical risk
by MMI and MBR (Vapnik, 1998a). There are also other HMM large margin training
methods including modifications to MCE, MMI, and MBR (Heigold et al., 2008; Li
et al., 2006; Povey et al., 2008; Yu et al., 2006).

2.7.4 I-smoothing and percentile based variance floor

It has been found that MPE with the EBW algorithm for GMM-HMMs suffers from
a severe over-fitting issue (Povey, 2003; Povey and Woodland, 2002), that is, MPE
training can reduce the errors when recognising the training set but not those when
recognising the unseen test set. This generalisation issue also exists in other MBR
GMM-HMM training (Gibson and Hain, 2006; Povey and Kingsbury, 2007).

46 Automatic Speech Recognition

I-smoothing is a method for reducing GMM-HMM over-fitting issues, the functions
by applying a data dependent interpolation between the discriminative criterion and
the ML criterion (Povey and Woodland, 2002). It takes the data availability of each
Gaussian component into account with a component dependent coefficient

τML
im (t) = τML

γim(t) . (2.103)

The smoothed objective function can be written as

FMPE(O)+ τML
im (O)FML(O). (2.104)

Taking Eqn. (2.104) into Eqn. (2.84) and seeing τML
im (O) as a constant when differenti-

ated, we get

µ̂im =
∑T

t=1
(
γnum

im (t)−γden
im (t)

)
o(t)+Dimµim + τML µprior

im∑T
t=1
(
γnum

im (t)−γden
im (t)

)
+Dim + τML

(2.105)

Σ̂im =
∑T

t=1
(
γnum

im (t)−γden
im (t)

)
o(t)o(t)T +DimGim + τML Gprior

im∑T
t=1
(
γnum

im (t)−γden
im (t)

)
+Dim + τML

− µ̂imµ̂T
im, (2.106)

where

Gprior
im =Σprior

im +µprior
im µprior

im

T
, (2.107)

and µprior
im and Σprior

im are the prior distribution parameters estimated by ML using
the current parameter set. The term prior is used since Eqn. (2.105) can be viewed
using the MAP adaptation principle (Gauvain and Lee, 1994) and the dynamic ML
distribution serves as the same role as the prior distribution in MAP. Similarly, for
mixture weights and transition probabilities, Eqn. (2.94) is modified as

ĉim =
∑T

t=1 γnum
im (t)+kim cim + τML cprior

im∑
m

′=1

(∑T
t=1 γnum

im (t)+kim cim + τML cprior
im

) , (2.108)

and τML for Eqn. (2.108) is normally set to a different value from those for Eqns. (2.105)
and (2.106), since they are derived differently as shown in Section 2.7.2. If MMI instead
of ML is used to estimate the prior distributions, the technique is further referred to
as the dynamic MMI prior, and is found to outperform the ML prior. Furthermore,

2.8 LVCSR Acoustic Model Construction 47

since I-smoothing is found to improve MMI (Povey, 2003), I-smoothing with an ML
prior is often included in the dynamic MMI prior.

With I-smoothing and the dynamic MMI prior, MPE GMM-HMM training can
generalise well on unseen test data. However, the WER does not always consistently
reduce after each training epoch. Empirically, the use of a variance floor is beneficial to
stabilise training, and in particular, the use of percentile based variance floor is useful
(Povey, 2003; Young et al., 2015). It floors variances smaller than σ2

d(p%) after every
parameter update, where σ2

d(p%) is the value ranked at p% among all variances of each
dimension d. This requires ranking over all N variance values of each dimension with
a complexity of O(N logN).

2.8 LVCSR Acoustic Model Construction

This section briefly describes the CUED standard GMM-HMM acoustic model con-
struction procedure as well as some related methods. CD modelling, discriminative
training, and speaker adaptation are all involved.

2.8.1 HTK LVCSR silence modelling

HTK LVCSR silence models comprise two HMMs representing silence (denoted as sil)
and short pause (referred to as sp) units separately. Since there are usually more silence
samples in the training data, sil HMM has three states with each of them containing
twice as many Gaussian components as those of other HMMs. The sil HMM allows
transitions between any two states since some silence segments may be longer than
normal and contain repeated fragments. Since the first or last state is the only entry
or exit state, a minimum silence duration of two frames is guaranteed.

The sp HMM has similar transition probability constraints to the sil HMM, except
for allowing the whole model to be skipped since short pause is not guaranteed to
appear between words. The sp HMM states are tied to corresponding sil HMM states,
and are not involved in context dependent unit modification. This silence model
configuration is shown in Figure 2.4.

2.8.2 Embedded-unit training

When marking the triphone units in continuous speech, it is often observed that many
triphones do not have clear boundaries. Therefore, rather than pre-segmenting the
training utterances into triphone segments (as in Section 2.3.3), it is more sensible

48 Automatic Speech Recognition

sil sp

tied to sil states

Figure 2.4 HTK LVCSR silence model structure.

to allow the segments to be probabilistic defined, which leads to the embedded-unit
training approach (Young et al., 2015). The key idea is to synthesise a composite
HMM for each training reference by concatenating the instances of the subword HMMs
spanning the whole utterance according to the label sequence. Afterwards, the FB
algorithm can be applied to the composite HMM to find the state occupancies for
every frame, which provides “soft” boundaries for each speech segment.

2.8.3 Flat start initialisation

Besides the training method, another factor worth taking into account for acoustic
model construction is the initialisation strategy. For different HMMs, their initial
parameters can be either estimated separately using pre-segmented data, or copied
from an initial HMM estimated with all data. The second strategy is termed as a
flat start, which is equivalent to uniformly segment each utterance. Embedded-unit
training can be applied to train flat start models by performing the FB algorithm on
the composite HMMs to realign the data. Schematically, adopting a flat start implicitly
assumes that many frames are reasonably aligned even with uniform segmentation, and
therefore, the resulting models can generate better alignments to improve the following
iteration of estimation with embedded-unit training. Such a procedure is repeated
iteratively and can gradually refine the alignments. Empirically, a flat start is found to
work no worse than more careful initialisation strategies.

2.8.4 GMM-HMM system construction

With the aforementioned methods, triphone GMM-HMMs can be constructed based
on the following procedure, which is used in the standard CUED and HTK conventions
(Evermann et al., 2005; Gales et al., 2006; Hain et al., 1999; Woodland, 2002; Woodland
et al., 1997, 1995, 1994).

2.8 LVCSR Acoustic Model Construction 49

• Build a monophone GMM-HMM system with flat a start and embedded-unit
training. An HMM is constructed for every monophone in the phone set including
sil. Once the monophone system is trained, a new HMM is built for sp by sharing
the sil HMM states.

• Constructing an untied triphone HMM system whose parameters are copied from
single Gaussian monophone GMM-HMMs corresponding to their center phones.
After re-estimation, decision tree based state tying is performed to cluster the
triphone states. The generated models are then refined by adding more Gaussian
components and re-estimating the parameters.

• The final ML tied state triphone system is trained using a two-model re-estimation
method (Gales, 1995), which basically follows the same construction procedure
as the initial triphone system except for using the FB “alignments” from the
well-trained initial triphone system for decision tree clustering. Two-model
re-estimation is found to produce a better tied state set.

• For PLP and MFCC, static coefficients with their first and second order derivatives
are normally used in GMM-HMM system construction. ML GMM-HMMs are
first extended to include additional dimensions from the third order derivatives
and then projected back to the original number of dimensions using HLDA.

• SAT can be optionally applied to the ML system at this stage. CMLLRs for all
training set speakers are estimated, followed by ML re-estimation based on the
CMLLR normalised features. These steps are executed repeatedly for multiple
iterations, and an additional set of CMLLRs is trained for the final ML models.

• Discriminative training is often applied as the last stage based on the lattices
generated by the final ML GMM-HMM system. For MPE, phone marking is
carried out once the word lattices are produced. It has been found that lattice
regeneration is not important with a sufficient lattice density, and therefore, the
same lattices are used by all training iterations.

Chapter 3

Artificial Neural Networks for
Speech Recognition

3.1 An ANN Model

An artificial neural network (ANN) is a powerful model for both classification and
regression tasks. The name originates from early attempts to find mathematical
representations for biological information processing procedures (Bishop, 1995). There
is a long term interest in using ANNs in ASR (Bourlard and Morgan, 1993; Robinson,
1989; Robinson and Fallside, 1987; Waibel et al., 1989), perhaps because it is a bio-
inspired model for learning general purpose data mapping functions that makes no
prior assumptions on the input features. This section briefly introduces some basics
about ANNs.

In general, an ANN comprises a sequence of layers serving as nonlinear transfor-
mations to map an input vector xin(t) to an output vector yout(t) at time t. There
is no generally accepted single definition of a layer, but it commonly contains a fixed
number of artificial neurons. An artificial neuron j in layer l transforms its input value
a

(l)
j (t) to the jth dimension of the output vector, y

(l)
j (t), through a nonlinear function

f(·), i.e.,

y
(l)
j (t) = f(a(l)

j (t)). (3.1)

52 Artificial Neural Networks for Speech Recognition

a
(l)
j (t) and f(·) are called the activation and its activation function respectively. a

(l)
j (t)

is calculated as a linear combination of Il basis functions, that is,

a
(l)
j (t) =

Il∑

i=1
w

(l)
ji ϕ

(l)
i (t)+ b

(l)
j , (3.2)

where w
(l)
ji and b

(l)
j are the learnable weights and biases associated with j, and ϕ

(l)
i (t)

are the parametric basis functions representing the input to the layer. Figure 3.1a
depicts the above-mentioned operations and the corresponding artificial neuron. ϕ

(l)
i (t)

can either return an input value,

ϕ
(l)
i (t) = xin

d (t), (3.3)

where xin
d (t) is the dth dimension of xin(t), or return the output value from the dth

artificial neuron of layer k at time t
′ ,

ϕ
(l)
i (t) = y

(k)
d (t

′
). (3.4)

The layer producing yout(t) is often called the output layer or final layer1, and the rest
layers are hidden layers. If the input vector to a layer contains only the elements from
xin(t), it is an input layer. It is obvious that the layers are connected through ϕ

(l)
i (t)

that determines the ANN structure. In this section, only the most commonly seen
ANN structure is considered, which is a chain where the output of each layer is only
used as the input to its immediate succeeding layer, i.e., k equals to l−1 in Eqn. (3.4).
In this chain structure, the first layer is the input layer, and the other ones are hidden
layers except for the last one, which is the output layer.

If the layer has Jl artificial neurons, Eqns. (3.1) and (3.2) can be presented with
matrices and vectors as

y(l)(t) = f
(

W(l)x(l)(t)+b(l)
)

, (3.5)

where x(l)(t) and y(l)(t) are Il-dimensional input and Jl-dimensional output vectors;
W(l) and b(l) are a Jl× Il-dimensional weight matrix and a Jl-dimensional bias vector.
In the literature, layers are often labelled inconsistently that can cause confusion, while
in this thesis the layer count is defined as the weight matrix count. With this convention,

1Note that each ANN is assumed to have only one output layer since multiple output layers can
be combined by using an extra layer with appropriate identity linear transforms.

3.2 ANNs with Flexible Structures 53

w
(l)
j1 �

(l)
1 (t)

w
(l)
j2 �

(l)
2 (t) b

(l)
j

a
(l)
j (t)

y
(l)
j (t)+

w
(l)
jIl

�
(l)
Il

(t)

f(·)

(a) An artificial neuron j of layer l.

Il

8
>>>>>>>><
>>>>>>>>:

9
>>>>>>>>=
>>>>>>>>;

Jl

w
(l)
11

w
(l)
JlIl

(b) Artificial neurons re-
lated to layer l.

Il

8
>>>>>>>><
>>>>>>>>:

9
>>>>>>>>=
>>>>>>>>;

Jl

(c) An ANN layer l.

Figure 3.1 An ANN layer and artificial neurons.

a layer has two sets of artificial neurons separately shared with its immediate preceding
and succeeding layers, as shown in Figure 3.1b. In Figure 3.1c, a block is used to
represent a layer as a simplified depiction, whose left and right vertical edges are the
input and output of the layer. Based on this convention, a 3-layer chain structured
ANN model is shown in Figure 3.2a.

3.2 ANNs with Flexible Structures

In addition to the chain structure discussed in Section 3.1, an ANN model can have
other structures by allowing k to be any valid layer index in Eqn. 3.4, which can be
useful in learning more complicated feature transforms. For example, in Figure 3.2b, the
input values to the hidden layer are from two input layers, which is useful in combining
different input features. In general, an ANN model structure can be presented as a
directed graph, with each graph node representing a layer and a directed arc from k

to l representing ϕ
(l)
i (t) = y

(k)
d (t′). Therefore, the input and output layers become the

entry and exit graph nodes, and mapping xin(t) to yout(t) requires traversing all graph
nodes from the entry to the exit, given that a node can be visited only when all of its
immediate preceding nodes (the source nodes of the inbound arcs) have been visited
(Diestel, 1997). ANN models can be categorised according to the graph types.

• If the graph is a DCG, it contains at least a cycle whose ending node relies on the
output values from a succeeding node, which has been generated at a different
time t

′ . These models are also known as recurrent ANNs. When the cycle is a
self-loop with t− t

′ = 1, the associated graph node represents a recurrent layer

54 Artificial Neural Networks for Speech Recognition

Input Output

An input layer

The output layer

A hidden layer

(a) A 3-layer chain structured ANN.

Input 1

Output

Input 2

The input layers

A hidden layer

The output layer

(b) An ANN with a non-chain structure.

Figure 3.2 Examplar ANN models with different structures.

and the model is named as a recurrent neural network (RNN) (Pineda, 1987;
Robinson and Fallside, 1987; Rumelhart et al., 1986). Such a structure is also
sufficient to represent a bidirectional recurrent neural network (BRNN) (Schuster
and Paliwal, 1997), which combines a standard RNN directed cycle and another
cycle in the reverse time order.

• If the graph is a DAG, the graph traversal flows forward from the entry to the
exit, since there is no node relying on its succeeding nodes. Therefore, such a
model is called a feedforward neural network (FNN) (Bishop, 1995; Rosenblatt,
1961), and mapping its input to output is often termed as a forward propagation.
The chain structured ANN in Figure 3.2a is an FNN.

x(l)(t) consists of the returned values of ϕ
(l)
i (t), and a feature mixture, which

comprises a number of feature elements representing fragments of x(l)(t) from the same
source (input features and specific layers), is used to represent it. That is,

x(l)(t) = x(l)
e1 (t),x(l)

e2 (t), . . . ,x(l)
eEl

(t), (3.6)

where x(l)
ei (t) is the fragment produced by the ith feature element ei, and El is the

feature element number in l. Let k be the source layer of ei, whose output vector is
stacked according to a context shift set cei , which contains Ci integers indicating the
temporal context,

cei = {c1, c2, . . . , cCi
} . (3.7)

3.2 ANNs with Flexible Structures 55

x(l)
ei (t) is

x(l)
ei (t) = y(k)(t+ c1),y(k)(t+ c2), . . . ,y(k)(t+ cCi

), (3.8)

and l is an immediate succeeding layer of layer k. It is worth noting that different
immediate succeeding layers l may require the same y(k)(t+ c), and we can save such
redundant calculation by producing outputs based on a minimum context shift set
c(k)

min, which can be found through a backward graph traversal procedure from the exit
to the entry as described in Algorithm 1.

Algorithm 1 Find layer specific minimum context shift sets
1: procedure FindMinContexts()
2: cout

min←{0}
3: for each hidden layer l do
4: c(l)

min← ϕ

5: l← final (output) layer
6: while l ̸= 0 do
7: for each input feature element e in l do
8: if e is associated with a layer then
9: k← the source layer of e

10: ce← the context shift set of e

11: c(k)
min← c(k)

min∪ce

12: l← l−1
return {c(1)

min,c(2)
min, . . . ,c(L)

min}

Another important factor to the ANN layer type is parameter tying. A time delay
neural network (TDNN) employs FNN layers to initially transform narrow temporal
contexts, which are tied across time steps to learn temporal invariance (Peddinti et al.,
2015; Waibel et al., 1989). More layers are stacked upon the initial transform to operate
on a wider temporal context with a different temporal resolution. In order to learn
spatial invariance, a convolutional neural network (CNN) performs convolution using a
set of learnable filters along spatial axes of the input feature maps (Abdel-Hamid et al.,
2014; LeCun et al., 1998a; Sainath et al., 2013b; Tóth, 2014). For acoustic modelling
purposes, the input feature maps are often 2-dimensional whose spatial axes are related
to time and frequency. The filters can be spatially unfolded into a conventional weight
matrix with tied submatrices. From this perspective, a TDNN is a CNN that shares
weights along a single temporal dimension. Moreover, one can have the RNN history
truncated to a maximum time step and unfold the recurrent layer through time to
many FNN layers with their parameters tied together (Saon et al., 2014).

56 Artificial Neural Networks for Speech Recognition

Recently, besides standard weights and biases, more parameters are introduced into
recurrent ANNs to memorise more history information and manage hidden states, such
as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated
recurrent unit (GRU) models (Chung et al., 2014). In addition to these variations
based on Eqn. (3.5), sometimes other types of models that serve as continuous feature
transformations are regarded as an ANN layer as well (Bishop, 1994; Goodfellow et al.,
2013; LeCun et al., 1998a; Wu et al., 2016b). For instance, when a set of GMMs is
used as an ANN output layer, it is sometimes named a GMM layer (Variani et al.,
2015) and the whole model is a Gaussian mixture density neural network (MDNN).
The use of local average, local sampling, and logarithm function can also be viewed as
layers without any adaptive parameters.

3.3 Probabilistic Interpretations

3.3.1 Output activation function

To use ANNs in ASR for either acoustic or language modelling, an ANN model needs
to be able to assign its input samples correctly to the classes and to estimate the
corresponding likelihoods or probabilities. Each output layer artificial neuron, k, is
associated with a class Ck, and is often referred to as an output target. A common
solution is to use the softmax function as the output layer activation function to
normalise the output activations into class-conditional probabilities (Bishop, 1995;
Bridle, 1990b; Jacobs et al., 1991), i.e.,

yout
k (t) =

exp(aout
k (t))∑

k
′ exp(aout

k
′ (t)) . (3.9)

The softmax function is so named since it acts as a smoothed version of the “argmax”
function. Since

∑
k yout

k (t) = 1, yout
k (t) can be interpreted as P (Ck|x(t)), the posterior

probability of x(t) being classified as Ck. Eqn. (3.9) can be interpreted as a set of
probabilistic generative models,

P (Ck|x(t)) = p(x(t)|Ck)P (Ck)∑
k

′ p(x(t)|Ck
′)P (Ck

′) , (3.10)

3.3 Probabilistic Interpretations 57

and the output activation aout
k (t) can be viewed as

aout
k (t) = lnp(x(t)|Ck)+ lnP (Ck)+E, (3.11)

where E is a constant shared by all classes.

3.3.2 Cross entropy criterion

The above generative models are often estimated by minimising the cross entropy (CE)
criterion (Hopfield, 1987). Let Λ be the model to estimate, the CE between the output
probability distributions of Λ and the true distributions produced by Λ0 is defined as
(MacKay, 2003)

−
∑

k

P (Ck|x(t),Λ0) lnP (Ck|x(t),Λ), (3.12)

which measures the average of information amount needed to identify the feature
vectors generated by Λ0 using Λ.

Define rk0(t) as

rk0(t) = {P (C1|x(t),Λ0),P (C2|x(t),Λ0), . . . ,P (CK |x(t),Λ0)} , (3.13)

where K is the total number of classes and x(t) belongs to Ck0 . An alternative
perspective exists when a 1−of−K target coding scheme is used, which makes rk0(t)
the binary class labels where rk0k(t) = 1 if k = k0 and rk0k(t) = 0 otherwise. Assume
each class label is independently generated by a Bernoulli distribution (Gardiner, 1985),
then the conditional distribution of the targets is

P (rk0(t)|x(t),Λ) =
∏

k

P (Ck|x(t),Λ)rk0k(t) (1−P (Ck|x(t),Λ))1−rk0k(t) , (3.14)

and the CE becomes the negative log-likelihood, − lnP (rk0(t)|xt,Λ) (Bishop, 2006).
Minimising the CE is equivalent to maximising the likelihood of generating the class
labels using their associated features and the estimated model set Λ.

In practice, the minimum CE value

−
∑

k

P (Ck|x(t),Λ0) lnP (Ck|x(t),Λ0) (3.15)

58 Artificial Neural Networks for Speech Recognition

is often subtracted from the objective function to make it have a fixed minimum value
of zero, which occurs when Λ = Λ0. The final CE objective function FCE is defined as

FCE(t) =−
∑

k

P (Ck|x(t),Λ0) ln P (Ck|x(t),Λ)
P (Ck|x(t),Λ0)

=−
∑

k

rk0k(t) ln
yout

k (t)
rk0k(t) . (3.16)

However, according to the Kullback-Leibler divergence (KLD) definition in Section 2.3.5,
FCE is actually the KLD that measures the difference between two probability distri-
butions P (Ck|x(t),Λ0) and P (Ck|x(t),Λ), i.e.,

FCE(t) = D(P (Ck|x(t),Λ0)||P (Ck|x(t),Λ)), (3.17)

and the difference between CE and KLD, the minimum CE value, is the entropy of the
true distribution defined in Section 2.7.1 (MacKay, 2003).

When training acoustic models based on CE, since the 1−of−K scheme is often
used in target coding, the ANN model is often seen as a classifier rather than a
regression model. In addition to CE, MCE and minimum mean squared error (MMSE)
are also commonly seen ANN training criteria (Golik et al., 2013; Juang and Katagiri,
1992). Similar to MCE for GMM-HMMs, the MCE objective function uses the sigmoid
function to approximate a 0-1 classification error so that it can be differentiated. The
MMSE criterion, on the other hand, learns real valued target vectors for regression
purposes1.

3.3.3 Sigmoid hidden activation function

In addition to the configurations discussed above, another important factor in ANN
model design is the choice of hidden layer activation functions. Traditionally, the
most commonly seen hidden activation function is the sigmoid function defined as
(Rumelhart et al., 1986)

y
(l)
j (t) = 1

1+exp(−a
(l)
j (t))

. (3.18)

The name “sigmoid” means “S-shaped” that depicts its curve shape as shown in
Figure 3.3. It can be seen that the sigmoid is a “smoothed” version of the 0-1 loss

1MMSE is sometimes used to train classifier as well, such as in (Golik et al., 2013).

3.3 Probabilistic Interpretations 59

-3 -2 -1 0 1 2 3

1

2

3
sigmoid

ReLU

soft ReLU

f(a)

a

Figure 3.3 Sigmoid, ReLU, and soft ReLU functions.

function defined in Eqn. (2.57) that is differentiable to be learned through gradient
based optimisation approaches. The function defined by Eqns. (3.1) and (3.2) with a
linearly transformed 0-1 loss function is termed a perceptron1. Therefore, the chain
structured FNN with x(1)(t) = xin(t), x(l+1)(t) = y(l)(t), and sigmoid hidden activation
functions, is named a multi-layer perceptron (MLP)2 (Minsky and Papert, 1969). It
has been proven that any continuous mapping function can be represented arbitrarily
accurately by a two layer MLP with enough hidden layer artificial neurons (Hornik
et al., 1989). An MLP is illustrated in Figure 3.2a.

A biological interpretation of the sigmoid function relies on a spike-rate coding
strategy that encodes the average spike rate of a single neuron within a time window
(Ham and Kostanic, 2000). Let a

(l)
j (t) be the accumulated stimulus intensity within a

time step, then f(a(l)
j (t)) is the cumulative spike rate. By assuming the spike rates

follow logistic distributions with zero mean and π2/3 variance, f(·) is sigmoid since it
resembles the cumulative distribution function (CDF) of that distribution in shape
(Gardiner, 1985). Alternatively, by viewing the activation as

ln p(x(t)|C1)P (C1)
p(x(t)|C2)P (C2) ,

1For perceptron, f(a) returns 1 if a ⩾ 0, and −1 otherwise, which equals to have the 0-1 loss
multiplied by 2 and then subtracted by 1.

2Another commonly seen hidden activation function in MLP is the hyperbolic tangent function,
which is equivalent to multiplying the sigmoid output by 2 and then subtracting by 1. These changes
can be integrated into the weights and biases to generate an equivalent sigmoid MLP.

60 Artificial Neural Networks for Speech Recognition

the sigmoid function becomes a two-class case of the softmax function,

P (C1|x(t)) = p(x(t)|C1)P (C1)
p(x(t)|C1)P (C1)+p(x(t)|C2)P (C2) . (3.19)

This interprets the sigmoid function output values as posterior probabilities.
Finally, an important property of the sigmoid can be seen by taking its derivatives

with respect to the input activation

∂y
(l)
j (t)

∂a
(l)
j (t)

=
exp(−a

(l)
j (t))

(
1+exp(−a

(l)
j (t))

)2

=y
(l)
j (t)

(
1−y

(l)
j (t)

)
. (3.20)

Since 0 < y
(l)
j (t) < 1, Eqn. (3.20) reveals that sigmoid can reduce the magnitude of the

derivatives with respect to W(l), b(l), and x(l)(t) by the chain rule.

3.3.4 ReLU hidden activation function

Recently, the rectified linear unit (ReLU) function,

y
(l)
j (t) =

{
a

(l)
j (t) if a

(l)
j (t) ⩾ 0

0 otherwise
, (3.21)

has become a widely used hidden activation function, which has a “hinge” like shape
and keeps the positive part of the activations (Glorot et al., 2011; Hahnloser, 1998;
Nair and Hinton, 2010; Salinas and Abbott, 1996). The ReLU activation function is
also presented in Figure 3.3 to show a comparison with the sigmoid function. Instead
of the class-conditional probabilities generated by the sigmoid, the ReLU function
produces real values that can serve as approximations to the activation functions in
some biological neurons (Dayan and Abott, 2001).

Taking the derivatives of the ReLU with respect to the input activation, we have

∂y
(l)
j (t)

∂a
(l)
j (t)

=
{

1 if a
(l)
j (t) ⩾ 0

0 otherwise
. (3.22)

Note that ReLU is not differentiable when a
(l)
j (t) = 0, and we set the derivative to one

in Eqn. (3.22). In contrast to the sigmoid function, the ReLU function is shown to be

3.4 Error Backpropagation 61

helpful to maintain the magnitudes of the derivatives with respect to the parameters
in the layer. Furthermore, when the network learns to always produce a negative or
zero activation as the input to a ReLU artificial neuron1, its output y

(l)
j (t) will always

be zero, which learns a sparse representation of the data and is robust to small input
changes (Glorot et al., 2011).

Finally, the soft ReLU function (Dugas et al., 2001; Glorot et al., 2011) is

y
(l)
j (t) = ln

(
1+exp(a(l)

j (t))
)

. (3.23)

From Figure 3.3, it can be seen that the soft ReLU is actually a “smoothed” ReLU
function that is differentiable when a

(l)
j (t) = 0. Taking the derivative of y

(l)
j (t) with

respect to a
(l)
j (t), we have

∂y
(l)
j (t)

∂a
(l)
j (t)

= 1
1+exp(−a

(l)
j (t))

, (3.24)

which is a sigmoid function.

3.4 Error Backpropagation

Since estimation of ANN parameters has no analytical solution, they are often learned
through stochastic gradient descent (SGD), an iterative optimisation approach. In this
section, the error backpropagation (EBP) algorithm is introduced for efficient gradient
evaluation (Rumelhart et al., 1986; Werbos, 1974), which is modified to apply to ANNs
with the generic structure defined in Section 3.2. The SGD method will be described
in the next section.

When training an ANN model using gradient based approaches, the first order
partial derivatives with respect to its parameters are required. For a layer defined by
Eqn. (3.5), the partial derivatives of some objective function F are

∂F

∂w
(l)
ji

= ∂F

∂a
(l)
j (t)

∂a
(l)
j (t)

∂w
(l)
ji

(3.25)

∂F

∂b
(l)
j

= ∂F

∂a
(l)
j (t)

∂a
(l)
j (t)

∂b
(l)
j

, (3.26)

1This becomes true when, for example, a large negative bias is learned with the artificial neuron.

62 Artificial Neural Networks for Speech Recognition

which rely on the partial derivatives with respect to the activations of the corresponding
layer. These can be efficiently computed by the EBP algorithm. This section starts by
explaining the terms error and backpropagation that give the algorithm its name.

Consider training a 2-layer MLP based on FCE. In the softmax output layer, the
derivatives of FCE with respect to the output of a target k

′ is

∂FCE

∂yout
k

′ (t) =−
rk0k

′ (t) lnyout
k

′ (t)− rk0k
′ (t) lnrk0k

′ (t)
∂yout

k
′ (t)

=−
rk0k

′ (t)
yout

k
′ (t) . (3.27)

Now differentiating the softmax output of k
′ with respect to the input of k gives

yout
k

′ (t)
aout

k (t) = 1∑
k

′′ exp(aout
k

′′ (t))
exp(aout

k
′ (t))

aout
k (t) −

exp(aout
k

′ (t))
∑

k
′′ exp(aout

k
′′ (t))

exp(aout
k (t))∑

k
′′ exp(aout

k
′′ (t))

=δkk
′ yout

k
′ (t)−yout

k
′ (t)yout

k (t), (3.28)

where δkk
′ is the Kronecker delta function defined in Section 2.4.4. The signal generated

by the objective function passing through k is

∂FCE

∂aout
k (t) =

∑

k
′

∂FCE

∂yout
k

′ (t)
yout

k
′ (t)

aout
k (t)

=
∑

k
′

rk0k
′ (t)yout

k (t)−
∑

k
′

rk0k
′ (t)δkk

′

=yout
k (t)− rk0k(t), (3.29)

which uses the the reference distribution property
∑

k
′ rk0k

′ (t) = 1. Eqn. (3.29) can
be viewed as an “error signal” generated by subtracting the reference value from its
corresponding output value. Actually training an output layer with a linear activation
function

yout
k (t) = aout

k (t) (3.30)

according to the MMSE criterion can result in error signals of the same form.

3.4 Error Backpropagation 63

In the first layer, the error signal ∂F/∂a
(1)
j (t) is calculated by the chain rule as

∂F

∂a
(1)
j (t)

=
∑

k

∂F

∂aout
k (t)

∂aout
k (t)

∂a
(1)
j (t)

=
∂f(a(1)

j (t))

∂a
(1)
j (t)

∑

k

∂F

∂aout
k (t)wout

kj . (3.31)

That is, the first layer error signals rely on those from its succeeding layer, which
is required to compute ∂F/∂w

(1)
ji and ∂F/∂b

(1)
j according to Eqn. (3.2). Since the

error signals flow backward through the network during training, the algorithm is
therefore referred to as backpropagation. Eqn. (3.31) also shows that ∂F/∂aout

k (t) and
∂F/∂a

(1)
j (t) are common in calculating all ∂F/∂w

(l)
ji and ∂F/∂b

(l)
j , and are stored to

save redundant computation. This reduces the standard number of O((I +1)J2(3K−1))
calculations to O((I + 2K)J +K) when computing ∂F/∂w

(1)
ji and ∂F/∂b

(1)
j . This idea

is the key point in EBP, with which all ∂F/∂a
(l)
j (t) are computed only once and shared

by all derivative calculations.
Next, EBP is generalised to the flexible DCG ANN structure described in Section 3.2.

First, let us consider only FNNs. For each layer k, let s(k) be the collection constituting
of all immediate succeeding layers of k. For each layer l ∈ s(k), let c(l)

k be the context
shift set of the feature element associated with k in l, then the derivatives with respect
to some parameter θ(k) of layer k are computed by

∂F

∂θ(k) =
∑

l∈s(k)

∑

c∈c(l)
k

∑

j

∑

i

∂F

∂a
(l)
j (t+ c)

∂a
(l)
j (t+ c)

∂y
(k)
i (t+ c)

∂y
(k)
i (t+ c)

∂a
(k)
i (t+ c)

∂a
(k)
i (t+ c)
∂θ(k) , (3.32)

where ∂F/∂a
(k)
j (t+c) is found by EBP, ∂y

(k)
i (t+c)/∂a

(l)
i (t+c) and ∂a

(l)
j (t+c)/∂y

(k)
i (t+

c) are computed by Eqns. (3.1) and (3.2), and ∂y
(k)
i (t+ c)/∂θ(k) is computed by either

Eqn. (3.25) or Eqn. (3.26) depending on whether θ is a weight or bias. Note that
besides explicit ANN parameter tying, the flexible ANN structures can also give rise
to shared structures, such as to use a layer’s output in multiple layers. In these cases,
the partial derivatives are summed over all contributions to the shared structures, and
need to be normalised in SGD. Let pθ be the collection of layers that contain the same
parameter θ, and the normalisation term is computed by

∑

k∈pθ

∑

l∈s(k)

|c(l)
k |,

64 Artificial Neural Networks for Speech Recognition

where |c(l)
k | denotes the number of items in c(l)

k . For recurrent ANNs, the directed
cycles are unfolded through time into an FNN before calculating the gradients using
Eqn. (3.32), which is the common strategy used in the BPTT algorithm for standard
RNN training (Pineda, 1987; Robinson and Fallside, 1987).

3.5 Gradient Descent

GD is the simplest iterative method for optimising differentiable variables (Gill et al.,
1981). By viewing the training objective function F as a surface sitting above a model
space Θ, an error surface is constructed which is a scalar field with each point in
the surface serving as a particular value of the model parameters. In vector calculus,
the gradient at a point is the vector of the first order partial derivatives with respect
to the model parameters, which points in the direction of the steepest slope at that
point. Therefore, iteratively updating the parameters by moving in the direction of
the negative gradient can lead to a fast decrease of the objective function value.

3.5.1 Full batch based gradient descent

In practice, ANN training can be performed using the full batch based GD algorithm,
which treats the entire training set as a full batch. For each update n, the averaged
gradient values ▽F are computed over all samples in the full batch. At each point
Θ[n] in the error surface, a short distance, which is obtained by scaling the gradient
▽F|Θ[n] by the learning rate ηΘ[n], is moved to get to the next point Θ[n+1], i.e.,

Θ[n+1] = Θ[n]−ηΘ[n]▽F|Θ[n], (3.33)

and the short distance is referred to as the update value. Each parameter update
occurs at the end of one training epoch (i.e., using all training samples to calculate the
gradients). If the learning rates are small enough, the objective function will decrease
in each succeeding iteration and eventually converge to a local optimal point Θ∗ that
satisfies

▽F|Θ∗ = 0. (3.34)

Interestingly, with some modifications, the GMM re-estimation formulas derived
from the BW and EBW algorithms, Eqns. (2.37) – (2.39) and Eqns. (2.90) – (2.94),
can be viewed in the GD framework (Schlüter et al., 2001; Sha and Saul, 2008). The

3.5 Gradient Descent 65

“learning rates” used in BW and EBW algorithms are carefully chosen to guarantee
that the objective function value will not decrease after each epoch.

In addition, it is often useful to normalise the input features by 0-MN and 1-VN for
GD based ANN training. For global normalisation, in principle it is a redundant linear
transform that can be combined with standard model parameters by transforming
weights and biases associated with the input. However, since feature normalisation can
ensure all input and output dimensions to be of order unity, it can also help achieve
order unified model parameters that are useful in applying unified random initialisation
priors and learning rates etc. (Bishop, 1995; LeCun et al., 1998b). Note that variance
normalisation is not as important in GMM training since BW and EBW are guaranteed
to find almost equivalent variances with only a constant difference in log-likelihoods
(see Eqn. (2.68)).

Alternative optimisation methods to GD often use more information from the
derivatives (Gill et al., 1981), which include other first order methods, e.g., the conjugate
gradient method, as well as second order methods, such as the Newton’s method and the
Quasi-Newton method etc. These methods are generally more powerful than GD that
are often possible to converge to better local optima using fewer parameter updates
(Bishop, 1995; Martens, 2010), while requiring more computation and storage.

3.5.2 Stochastic gradient descent

When the training set is large, the amount of computation required to process the
entire set for each parameter update using the full batch based GD becomes too high.
A more efficient modification is the on-line version of GD, also known as SGD, which
has proven very useful in training ANNs on large data sets (Bottou, 2010; Robbins and
Monro, 1951). Instead of updating the parameters once per epoch, SGD samples a small
portion of data from the full batch known as a minibatch, and updates the parameters
based on the averaged gradients computed over the samples in the minibatch. This
process is repeated by cycling through the entire training set to accomplish a complete
training epoch. That is, for a parameter θ ∈Θ,

θ[n+1] = θ[n]+ δθ[n], (3.35)

where δθ[n] is the update value applied to θ[n]. δθ[n] can be obtained by

δθ[n] =−ηθ[n]
∂F[n]|Θ[n]

∂θ
, (3.36)

66 Artificial Neural Networks for Speech Recognition

and ∂F[n]/∂θ is the averaged partial derivative computed over the samples from the
nth minibatch1. Therefore, compared to full batch based GD, SGD uses many more
parameter updates along “less accurate” steepest slope directions on the error surface
to accelerate optimisation. Another property of SGD is the possibility of escaping from
local optima, since the optima with respect to the error surface for the whole data set
may not be the optima for each individual minibatch (Bishop, 2006). Note that for
speaker independent (SI) acoustic modelling, it is rather important to use approprately
sized minibatches and to randomly select their contents from the complete training
set. As discussed in Section 2.6.1, speech samples contain unique characteristics from
a particular speaker, and performing many SGD updates with a small minibatch or
without shuffling the data from many speakers can cause the acoustic models to be
biased to some speakers rather than modelling all speakers in general.

As shown in Eqn. (3.35), SGD requires each parameter update to be executed in a
serial manner, and thus it is not easy to be parallelised to allow applying to very large
scale problems. Some of recent studies have focused on removing this restriction in
different ways (Chen and Huo, 2016; Dean et al., 2012; Povey et al., 2015; Seide et al.,
2014). Finally, SGD has been shown to converge to a local optimum when certain
conditions are satisfied (Robbins and Siegmund, 1971). In the following section, the
choice of learning rates will be discussed.

3.6 Practical Solutions to SGD Issues

3.6.1 Learning rate scheduler

Generally speaking, the GD method is rather sensitive to appropriate learning rate
values. If the learning rate is too large, the parameter update may always skip local
optima and result in training divergence; if the learning rate is not sufficiently large,
the training can be slow to converge. Actually the learning rates ηθ[n] can be both
parameter dependent and adjusted individually at each parameter update, and various
learning rate schedulers have been proposed to improve GD performance (Senior et al.,
2013).

• The most naïve learning rate scheduler is to use a pre-determined learning
rate shared by all parameters and fixed during an epoch or the entire training
procedure, which is denoted as the List scheduler.

1In the experiments, if the minibatch is of size M , the learning rate is actually set to ηθ[n]/M ,
since the gradients are accumulated but not averaged in HTK.

3.6 Practical Solutions to SGD Issues 67

• A simple improvement to the List scheduler is to evaluate model performance
after multiple updates (e.g., an epoch), and modify the learning rate accordingly.
The NewBob scheduler is an example (see Section 3.10.1 for details) (Renals et al.,
1992), and this kind of scheduling is sometimes called performance scheduling.

• Some researchers have reported that the shared learning rate can be gradually
reduced after each update (Bottou, 2010; Senior et al., 2013; Xu, 2011).

• Alternative algorithms associate an individual learning rate with each parameter
and adjust them according to various rules (Duchi et al., 2010; Riedmiller and
Braun, 1993; Senior et al., 2013).

3.6.2 Momentum

In some cases, there exist some regions of pathological curvature on the error surface,
where the steepest slope directions do not point towards any local optima, and SGD
can cause oscillations in searching and result in slow convergence (Bishop, 1995).
Momentum is a method that adds some inertia to the update direction on the error
surface to smooth successive parameter updates, and can help avoid oscillations (Polyak,
1964). The classical form of momentum is implemented by modifying the update value
defined in Eqn. (3.36) as

δθ[n] =−ηθ[n]
∂F[n]|Θ[n]

∂θ
+ρδθ[n−1], (3.37)

where ρ is the momentum coefficient. Besides the classical momentum used in this
thesis, there exist other types of momentum (Nesterov, 1983), and the momentum
coefficient can be adjusted during training (Sutskever et al., 2013).

3.6.3 Gradient and update value clipping

When evaluating the SGD gradients, it is often observed that there exist some derivatives
which are much larger than the others (Bengio et al., 1994). This can be caused by
some abnormal data or data sampling noise in a minibatch. Such derivatives are
calculated at some particular point on the error surface for some minibatches that have
some dimensions with exceptionally large derivatives. The resulting large derivatives
can even dominate a parameter update and make it ineffective.

This issue is termed as gradient explosion in the literature (Bengio et al., 1994),
and can be addressed by a simple gradient clipping method, i.e. to clip the derivatives

68 Artificial Neural Networks for Speech Recognition

whose absolute values are bigger than a threshold in each minibatch (Mikolov, 2012).
In practice, it is often more effective to clip the update values instead, since they
contain not only the gradient information, but also the influences from momentum and
weight decay etc. More specifically, update value clipping can be presented as

δ̂θ[n] =
{

sgn(δθ[n])υ if |δθ[n]|> υ

δθ[n] otherwise
, (3.38)

where sgn(·) returns the sign and υ is the clipping threshold.
Furthermore, a problem related to gradient explosion is gradient vanishing (Bengio

et al., 1994), which causes the derivative values to vanish. A solution is to scale up a
vector formed from derivatives or update values, if its L2 norm falls below a threshold
(Povey et al., 2011). This method is also useful in scaling down the exploding gradients.

3.6.4 Batch normalisation

It is known that the minibatch level mean and variance normalisations of the input to
an ANN layer are often helpful in SGD (LeCun et al., 1998b; Wiesler and Ney, 2011;
Wiesler et al., 2014b). Recently, a method called batch normalisation has drawn much
attention (Ioffe and Szegedy, 2015). In this method, the input vector to layer l, x(l)(t),
is first normalised in each batch n,

ẋ(l)(t) = x(l)(t)−µ(l)[n]
σ(l)[n]2

, (3.39)

where µ(l)[n] and σ(l)[n]2 are the mean and variance of x(l) estimated by maximum
likelihood (ML) in that batch. Afterwards, in order to maintain the input range, the
input vector ẋ(l)(t) is transformed linearly again by

ẍ(l)(t) = γ(l)ẋ(l)(t)+β(l). (3.40)

ẍ(l)(t) is the input to the original layer defined by Eqn. (3.5), and γ(l) and β(l) are
layer dependent parameters learned through network training. Similar to input feature
normalisation, γ(l) and β(l) are again redundant parameters since they can not only be
combined with weights and biases, but also cancel out the effect of batch normalisation

3.7 Regularisation 69

if

γ(l) =σ(l)[n]
2

(3.41)

β(l) = µ(l)[n]
σ(l)[n]2

. (3.42)

By alleviating the problem of layer specific input distribution changes, batch
normalisation can be seen to smooth the error surface for each minibatch. It is found to
reduce the difficulty of SGD based ANN training, which is reflected in enabling much
larger learning rates, less careful initialisation, and less requirement for regularisation
(Ioffe and Szegedy, 2015).

3.7 Regularisation

In machine learning, regularisation can refer to any modifications to the learning
algorithm that help alleviate over-fitting (Goodfellow et al., 2016). A common regular-
isation strategy is to smooth the non-linear mapping function learned by the model,
for example, by adding an extra term to the training objective function to penalise
mappings that are not smooth, such as the I-smoothing method (see Section 2.7.4).

Here L2 regularisation is mainly discussed, which adds a squared L2 norm term
ε/2
∑

θ θ2 to the objective function F, and ε is the L2 coefficient. Assume that
the parameters θ have a Gaussian prior N(θ|0,σ2), and it can be shown that L2
regularisation can be obtained by imposing such Gaussian prior, and ε = 1/σ2 (Bishop,
2006).

An alternative view of L2 regularisation is to check the modified update value based
on Eqn. (3.36), which is

δθ[n] =−ηθ[n]
∂F[n]|Θ[n]

∂θ
−ηθ[n]εθ. (3.43)

Since the extra term −ηθ[n]εθ reduces the increase of |θ| and can cause θ to decay in
the long term, L2 regularisation is also termed as weight decay when applied to ANNs1.
An empirical explanation is that relatively large weights are more likely to generate
mapping functions with large curvatures that over-fit (Bishop, 1995; Woodland, 1989),
and therefore, weight decay can help alleviate over-fitting.

1The bias parameter can be seen as an extended weight value, and the input value to the associated
dimension is constant one.

70 Artificial Neural Networks for Speech Recognition

In addition to explicitly adding a regularisation term as used later in this thesis,
there are other machine learning methods that take the regularisation effect without
changing objective functions (Goodfellow et al., 2016). Examples include the early
stopping method that suggests model training should stop early to avoid over-fitting
(Bishop, 1995), the dropout method that regularises by randomly inhibiting some
hidden artificial neurons in training (Scrivastava et al., 2014), and multi-task learning
(Caruana, 1993; Goodfellow et al., 2016) etc. Multi-task learning is a method that
requires some generic model parameters shared across several tasks, and it pools the
task related samples to put more pressure on the parameters towards values that
generalise well. For acoustic modelling, the tasks are often either training criteria of the
same targets (Kim et al., 2016; Povey et al., 2016) or the same criterion with different
targets (Ghoshal et al., 2013; Heigold et al., 2013; Huang et al., 2013; Swietojanski
et al., 2012).

3.8 Deep Learning

In machine learning, a narrow sense of deep learning often refers to a class of approaches
that use many ANN layers to extract high-level, abstract features from raw data,
which belongs to a broader class of representation learning (Goodfellow et al., 2016).
Each layer provides a simple concept of things serving as a step for the computer to
capture more complex concepts. Examples include using deep ANN models for image
classification (Hinton et al., 2006), language modelling (Mikolov, 2012), and acoustic
modelling (Hinton et al., 2012). Though the development of deep learning is perhaps
the most important trend in machine learning and artificial intelligence in recent years,
rather than a new technology, it is actually a resurgence of a classic technology that
used to be named cybernetics and connectionism1. Many important concepts, ideas,
and methods can be traced back several decades, but now they are used with more
layers or at a larger scale, which is the reason why this resurgence is termed “deep”
(Goodfellow et al., 2016). There are two key issues to deep learning:

• How to design a model to learn better data presentations for the task.

• How to design an ANN to better model the data for a specific task.

Meanwhile, nowadays the term “deep learning” also goes beyond the scope of ANN
models. It also refers to a general principle of learning multiple levels of composition

1Note cybernetics mainly concerned with systems with feedback loops while connectionism systems
are usually EBP trained MLPs or RNNs.

3.8 Deep Learning 71

in frameworks based on a single objective function (Goodfellow et al., 2016). For
instance, LeCun et al. (1998a) introduced the training of an entire system composed
by multiple heterogeneous modules using EBP, and Bahdanau et al. (2015) implicitly
and jointly learnt the different components in a machine translation system using
an encoder-decoder model, and the same ideas have been applied to ASR as well
(Bahdanau et al., 2016; Lu et al., 2015). In this thesis, deep learning is used in both
senses. In Chapter 4 and Chapter 5, it refers to a DNN model, while in Chapter 6, it
means the joint learning of both feature extraction and acoustic model modules. In
the following section, some deep learning methods will be briefly introduced.

3.8.1 Deep ANN models

Intuitively, ANNs with more layers are able to produce more abstracted high-level
features that are often useful in modelling. Early researchers worked on RNNs in
the late 80s that could be viewed as a deep FNN with many layers unfolded through
time and tied together (Robinson, 1989; Rumelhart et al., 1986). Meanwhile, with
increasing device computational power and knowledge, researchers also gradually used
more hidden layers in MLPs (with up to four hidden layers) (Ellis and Morgan, 1999;
Grézl et al., 2007; Zhu et al., 2005). However, it was often found that adding more
layers is not only computational intensive at that time but also unstable in training.
Until a decade ago, there was no known commonly used training procedure for deep
neural networks (DNNs), which referred to deep MLPs with more than four hidden
layers (Bengio, 2009). The standard random initialisation and an SGD training setup
often result in convergence to very poor local optima (Glorot and Bengio, 2010).

The current resurgence of deep learning started from the successful training of DNNs,
which relied on a two stage training procedure comprising of layer-wise pretraining
(PT) and fine-tuning (FT) (Hinton and Salakhutdinov, 2006). PT is actually a sensible
parameter initialisation method that gradually trains more complicated mapping
functions with more hidden layers, and FT is the normal training with the final DNN
structure. Initially, PT was carried out by stacking restricted Boltzmann machines
(RBMs) (Hinton, 2010; Hinton et al., 2006). Shortly afterwards, it was found that this
procedure could be altered to stacking MLPs (Bengio et al., 2007). Analysis showed
that the difficulty of DNN training was caused by the positive mean value of the
sigmoid which could drive hidden layers into saturation (Glorot and Bengio, 2010). In
other words, sigmoid outputs are stuck around zero or one and inhibit the training due
to the vanishing gradients probably caused by the quickly increasing bias values (based
on Eqn. (3.20)). Glorot and Bengio (2010) has also shown that PT can be replaced

72 Artificial Neural Networks for Speech Recognition

by a more appropriate random initialisation method without much performance loss,
which is

W(l) ∼ U

[
− 4

√
6√

Il +Jl
,

4
√

6√
Il +Jl

]
(3.44)

b(l) = 0 (3.45)

for the sigmoid activation function, where U denotes the uniform distribution. This
method is named after its author as Xavier’s initialisation, and is used throughout
this thesis by all sigmoid Actually a very similar parameter initialisation approach was
found more than a decade earlier (LeCun et al., 1998b). More solutions were proposed
in later studies, such as second order optimisation (Martens, 2010), better momentum
setting (Sutskever et al., 2013), and batch normalisation (Ioffe and Szegedy, 2015).
Moreover, ReLU DNNs were found to be easier to optimise and had no need to pretrain.
Comparing Eqn. (3.20) with Eqn. (3.22), the ReLU does not decrease the derivatives
and is more useful to overcome the gradient vanishing problem in training very deep
models.

Furthermore, RNNs and deep CNNs can be converted to special DNNs by unfolding
their tied parameters (see Section 3.1 and 3.2 for details). Both RNN and CNN have
been applied to different tasks for a long time and recent research has improved their
performance and training stability (Bengio et al., 2012; Graves and Schmidhuber, 2005;
He et al., 2015b; Pascanu et al., 2013; Simonyan and Zisserman, 2015). Nowadays,
researchers are paying a great deal of attention to even deeper models, such as RNNs
with internal memory functions, ReLU based very deep CNNs, along with their
combinations, and significant improvements have been observed by using these models
(Bi et al., 2016; He et al., 2015a; Qian and Woodland, 2016; Saon et al., 2016; Sercu
et al., 2016; Xiong et al., 2016). These models are called deep ANNs in this thesis,
while the term DNN only refers to deep MLPs. More interestingly, RNNs are extended
to manage external memory to mimic some of the human brain’s short-term working
memory (Graves et al., 2014).

Although the PT and FT approach is no longer necessary in DNN construction, it
is reviewed next in the section since it is still useful in small scale tasks and is related
to some proposed methods in this thesis.

3.8 Deep Learning 73

3.8.2 Generative PT

The RBM is a generative probabilistic model that consists of a set of disconnected
hidden units h and a set of visible units v, where v and h are random variables (Hinton,
2010). Each hidden unit is connected and only connected with all visible units. The
parameter set Θ is {a,b,W}, where a, b, and W are the visible unit bias vector,
hidden unit bias vector, and weight matrix, respectively. The probabilities of the input
feature is calculated by summing over the joint distribution of v and h,

p(v|Θ) =
∑

h
p(v,h|Θ)

=
∑

h

exp(−E(v,h|Θ))∑
v′
∑

h′ exp(−E(v′
,h′ |Θ))

, (3.46)

where for real-valued input data, the energy function E(v,h|Θ) is

E(v,h|Θ) =−||v−a||2−hTb−hTWv, (3.47)

and ||v−a|| is the 2-norm of the vector v−a. An RBM is often trained by maximising
p(v|Θ) using an iterative contrastive divergence algorithm (Hinton et al., 2006), which
is an unsupervised training approach since no labels are required.

The generative PT approach is carried out by stacking RBMs. Initially an RBM is
trained on the input features, and its output values from the hidden units are

p(h|v,Θ) = f(Wv +b), (3.48)

where f(·) is sigmoid. Next, in each step a new RBM is trained by taking the outputs
from the last RBM as the visible unit inputs, until the desired number of hidden
layers is reached, and each new RBM can improve the variational bounds on the log
probability. Finally, a randomly initialised output layer is put on top of all RBMs
to complete the PT procedure (Hinton and Salakhutdinov, 2006). This procedure
follows a greedy strategy that each RBM is estimated by freezing all preceding RBMs.
It restricts parameter searching only to a subset of the model space and thus can only
lead to sub-optimal solutions. After PT, the resulting model is seen as an initial DNN
and all of its parameters are optimised jointly through EBP and SGD, which is the FT
stage. Note that when viewing the pretrained model as a DNN, all visible biases a are
discarded; each hidden unit vector h becomes the artificial neurons of each layer and
no longer represents any random variables.

74 Artificial Neural Networks for Speech Recognition

3.8.3 Discriminative PT

In the literature, discriminative PT often refers to PT by stacking 2-layer MLPs
(Bengio et al., 2007). Analogous to the layer-wise procedure in generative PT, in each
step a 2-layer MLP is discriminatively trained for multiple epochs to convergence and
added on top of the existing model. Each MLP is trained to discriminate the same
set of targets as the final DNN, and its output layer is removed when stacking the
next MLP. It is obvious that this PT approach is also a greedy algorithm since the
parameter search is still restricted to a subset of the model space.

An improved algorithm is proposed in (Seide et al., 2011a) that all existing layers,
instead of just the newly added 2-layer MLP, are fully trained to convergence at each
step, which allows more dimensions in the model space to be searched and alleviates
the sub-optimal problem. Note that in PT when the hidden layer number grows to
more than four, it is no longer a shallow MLP but a DNN. Later experiments have
shown lower WERs can be obtained from the final DNN if the model is only trained for
one epoch in each discriminative PT step (Hinton et al., 2012). This is perhaps because
training the model to convergence can over train the hidden layer parameters with the
intermediate model error surfaces and cause the FT stage to find sub-optimal solutions.
Since the last version in (Hinton et al., 2012) was found to work consistently well, it is
used as the default discriminative PT algorithm thereafter in the thesis without any
distinction.

Besides the aforementioned advantages, replacing generative PT with discriminative
PT can simplify DNN training from both conceptual and implementation perspectives,
since only one class of models and one training approach are required. Furthermore,
discriminative PT is often based on a criterion F that better matches the FT criterion.
However, this can also generate a side-effect that the discriminatively pretrained DNN
more easily over-fits the objective function, especially when the data set is small. A
solution to this issue will be discussed later in Section 4.4.1.

3.9 Integrating ANNs into ASR

Though ASR can be constructed solely using ANNs (Bahdanau et al., 2016; Graves
and Jaitly, 2014; Lu et al., 2015; Miao et al., 2015; Robinson, 1989; Waibel et al.,
1989; Woodland, 1992; Zhang et al., 2016), ANNs can also be integrated into different
modules of HMM based ASR systems, which provides a convenient way to combine
their advantages. When ANNs are used to extract features for GMM-HMM acoustic
models or to produce HMM output probabilities, the resulting systems are called

3.9 Integrating ANNs into ASR 75

tandem systems or hybrid systems, respectively. ANNs can also be applied to language
modelling (Liu et al., 2016; Mikolov, 2012), which is beyond the scope of this thesis
and is not discussed here. Particularly, training hybrid systems using a sequence level
objective function is also briefly reviewed here, which is a key difference between ANN
acoustic modelling and other applications. Note that none of the tandem, hybrid, or
ANN LM approaches is new, but all of them benefit from the development of deep
learning by simply replacing traditional shallow ANNs with deep ANNs and produce
state-of-the-art results.

3.9.1 Tandem system

Originally, a tandem system comprised an MLP system and a GMM-HMM system
(Hermansky et al., 2000). The MLP is trained to classify phonetic units whose posterior
probabilities are used as the input to the following GMM-HMMs. The word “tandem”
means that the MLP and GMM-HMM systems work together at the same time. Since
the MLP output vector dimension is often too high to be modelled by GMMs, it is
first compressed by Karhunen-Loève transform (KLT) or LDA and then combined
with standard acoustic observations such as MFCC or PLP. These transforms linearly
decorrelate the posterior features at the same time, in order to model them with
GMMs with diagonal covariance matrices. The final input features to GMM-HMMs
are referred to as tandem features in this thesis.

An alternative tandem system configuration is to train a bottleneck (BN) MLP,
which has a reduced dimension hidden layer, i.e., a BN layer (Grézl et al., 2007).
Since the BN layer is normally much smaller in size than the other hidden layers, its
output vector ybn(t) is very compact and suitable to be used as features in GMMs.
The training procedure for BN MLPs is usually the same as for normal MLPs. Once
the model is trained, the activation function of the BN layer is changed to a linear
activation function defined by Eqn. (3.30), making its output values ybn(t). There are
different ways of using the BN features. Following the standard CUED approach (Park
et al., 2011), conventional tandem features in this thesis employ a single class STC to
decorrelate ybn(t) and concatenate it with PLP D A T projected by HLDA. Therefore,
the tandem feature z(t) is

z(t) =
[

AHLDAo(t)
ASTCybn(t)

]
. (3.49)

76 Artificial Neural Networks for Speech Recognition

CMLLR

STC

H
L

D
A

Pitch

Tandem Feature
PLP

BN DNN

Bottleneck Feature

Figure 3.4 The tandem feature generation procedure. The pitch feature can be included
in the SI tandem features.

The tandem GMM-HMM training uses z(t) instead of o(t) in likelihood calculations,
ML and discriminative training, as well as speaker transform adaptation, and z(t)
replaces o(t) in the HLDA transform estimation stage in the procedure in Section 2.8.
The tandem feature generation procedure is illustrated in Figure 3.4.

Deep ANNs have been applied to tandem systems by taking the place of MLPs. It
was shown BN DNN tandem features outperformed posterior DNN tandem features
(Tüske et al., 2012), and therefore, only the BN tandem system configuration is studied
in this thesis. Yan et al. (2013) also found KLT projected normal hidden layer outputs
could be used by high performance tandem systems. Other commonly seen deep models
such as CNN, RNN, and LSTM have been used to produce BN features as well (Sainath
et al., 2015a).

3.9.2 Hybrid system

Traditional acoustic models use GMMs to model HMM output probabilities. Therefore,
replacing GMMs with MLPs is seen as “hybrid” of ANNs and HMMs (Bourlard and
Morgan, 1993). In such hybrid systems, MLPs are used directly to provide state log-
likelihoods for the HMM acoustic models, as shown in Figure 3.5, and the MLP posterior
probabilities P (Ck|xin(t)) are converted to the log-likelihood of xin(t) generated by
the HMM state k relevant to Ck using Bayes’ rule as

lnp(xin(t)|k) = lnP (Ck|xin(t))+ lnp(xin(t))− lnP (k), (3.50)

3.9 Integrating ANNs into ASR 77

DNN HMMs

Figure 3.5 A sketch map of a hybrid system.

where,

P (k) = count(k)/
∑

k
′ count(k

′
), (3.51)

and count(k) is the number of frames aligned to the state k, P (k) and p(xin(t)) are the
prior probabilities of the output target k and the input frame respectively, and p(xin(t))
is independent of the HMM state. For triphone hybrid systems, GMM-HMM decision
tree tying is used to generate the tied triphone states. An MLP which uses the resulting
tied states as the output targets is denoted as a context-dependent (CD) MLP since
triphones are the only type of CD units considered in this thesis. The MLP is often
trained based on the frame level criterion FCE using the state to frame alignments
produced by an existing system. It is worth noting that unlike GMM-HMMs, the MLP
and HMMs are trained separately due to the fact that the HMM transition probabilities
make minor differences to hybrid system performance (Dahl et al., 2012).

Besides using a single MLP, the hybrid system can also use individually trained
MLPs stacked in different ways (Morgan, 2012). Using a hybrid system with a DNN
model was the first successful deep learning instance in ASR (Dahl et al., 2012; Seide
et al., 2011b). Separately trained DNNs can be stacked to form a stacked DNN hybrid
system (Knill et al., 2013). Deep hybrid systems can also be constructed with deep
CNNs, RNNs, LSTMs, and even the convolutional long short-term memory deep neural
network (CLDNN) constructed by stacking a CNN, an LSTM, and a DNN together
(Sainath et al., 2015a). Furthermore, recent progress has shown that hybrid systems
can be trained using the FB algorithm and without relying on any fixed alignments
(Graves et al., 2006; Povey et al., 2016).

78 Artificial Neural Networks for Speech Recognition

3.9.3 Sequence training for hybrid systems

As introduced in Chapter 2, training acoustic models based on a sequence level
criterion is often very important in high performance ASR construction. There is
a long-term interest in applying sequence training to ANN acoustic models, often
through a connection to HMMs (Bengio, 1991; Bridle, 1990a; Niles and Silverman,
1990). “Alpha-nets” was an RNN architecture that incorporates the alignment step
based on the forward variable α(t)s from the forward-backward algorithm (FB) (see
Section 2.3.2), which has an exact interpretation in terms of HMMs (Bridle, 1990a).
Similarly, Niles and Silverman (1990), Bengio (1991), Bengio et al. (1992), and Yan
et al. (1997) directly calculated the FB variables based on HMMs and trained a set of
ANNs for output probability estimation with these variables through EBP. Note that
the ANN output distributions are often single Gaussians, and the resulting ANN-HMM
hybrid system can be viewed as a tandem system as well (Bengio, 1991; Bengio et al.,
1992; Bridle, 1990a). Furthermore, an RNN-HMM hybrid system was developed for
handwritting recognition, and the entire model was trained at the sequence level also
using FB (Senior, 1994).

For LVCSR, Bourlard et al. (2016) performed an interleaved procedure of maximum
a posteriori (MAP) based alignment and the hybrid acoustic model training. With the
increasing of computational power, lattice based sequence training for MLP-HMMs
based on maximum mutual information (MMI) or minimum Bayes’ risk (MBR) criterion
also becomes possible (Kingsbury, 2009; Valtchev, 1995). For DNN-HMMs, Kingsbury
et al. (2012) extended the latticed based MMI/MBR training to use the second order
optimisation method; alternatively, Veselý et al. (2013), Su et al. (2013), Wiesler et al.
(2015), and Zhang and Woodland (2015a) investigated the same training methods
using SGD. The detailed approach will be discussed later in Section 6.1. Nowadays,
it has been demonstrated that lattice free MMI training for LVCSR is also possible
(Povey et al., 2016).

3.10 Baseline Configurations

In this section, some configurations for building tandem and hybrid systems are
presented, which include the learning rate scheduler, silence modelling, the tandem
system BN layer size and position, hybrid system input features, and a tandem and
hybrid system combination approach, known as joint decoding.

3.10 Baseline Configurations 79

3.10.1 An improved NewBob scheduler

The improved NewBob scheduler, NewBob+, modifies a learning rate shared by all
model parameters based on the changes of a criterion F. For training ANN acoustic
models based on CE, F is normally the frame classification accuracy. To have better
evaluation of F, a cross-validation (CV) set is often held out from the training set1, and
F is calculated on the CV set with the parameters frozen at the end of each training
epoch.

The actual NewBob+ procedure is presented as Algorithm 2. N and η[N] are the
current epoch index and learning rate, and ramp is a Boolean flag indicating whether
the algorithm is in the ramp state. At the beginning, the current criterion value
change ∆F[N] is calculated. If the criterion is not improved, the previous best model
is reloaded. The training stops if the algorithm is in the ramp state and ∆F[N] is
smaller than the threshold ∆Fstop. If ∆F[N] is smaller than the ramp state threshold
∆Framp, the learning rate is reduced by half since F[N] decreases more slowly than
expected and may indicate that the model is close to convergence; the algorithm enters
the ramp state if the training has lasted for more epochs than a minimum number,
Nmin. Once it is in the ramp state, to avoid the local optimum being skipped by using
a large step size, the learning rate is reduced by half in every consequent epoch.

Algorithm 2 NewBob+ learning rate scheduler
1: procedure NewBob+(N , η[N],ramp)
2: ∆F[N] = F[N]−Fmax[N −1]
3: if ∆F[N] ⩽ 0.0 then
4: reload the model that produced Fmax[N −1]
5: Fmax[N] = Fmax[N −1]
6: else
7: Fmax[N] = F[N]
8: if ramp and ∆F[N] < ∆Fstop then
9: stop training

10: if ramp then
11: η[N +1] = 0.5 ·η[N]
12: else if ∆F[N] < ∆Framp then
13: η[N +1] = 0.5 ·η[N]
14: if N ⩾ Nmin then
15: ramp = TRUE

1It is really a held-out validation rather than CV, since it learns and tests on only one data
division.

80 Artificial Neural Networks for Speech Recognition

The NewBob+ is an improvement to the standard NewBob algorithm, which has
been very successful in MLP acoustic model training (Renals et al., 1992). The
difference between the NewBob+ and NewBob is the introduction of the minimum
epoch number, Nmin. In the standard NewBob, the algorithm can enter the ramp
state as soon as the criterion value change is smaller than expected (∆Framp). Then in
the ramp state, the learning rate decreases by half at the end of each epoch and the
training normally stops quite quickly. This is supported by the early stopping strategy
(see Section 3.7). However, in acoustic modelling, since even a small training set can
have millions of frames, and is usually sufficient to allow a more aggressive training
strategy. This issue is solved in this thesis by adding Nmin > 0 to delay the entering
of the ramp state. (Wiesler et al., 2014b) changed NewBob for the same reason, and
made the training more aggressive by using a smaller learning rate reduction rate.

An experiment was carried out to compare NewBob+ with NewBob schedulers on
the Babel Cantonese FLP data set (see Appendix A.1 for details). Minimum phone
error (MPE) tandem systems were constructed with 1000 tied states and 16 Gaussian
components/state on the full training set1. Both tandem features were generated by
monophone BN DNNs with a structure of 468×1000×1000×1000×1000×26×126,
trained separately using the NewBob and NewBob+. The learning rate settings for PT
and FT are listed in Table A.1. From Table 3.1, NewBob+ used Nmin = 12 and the
training stopped at the 16th epoch, while the NewBob training ended with only 10
epochs. It is clear that NewBob+ outperformed NewBob in both frame classification
accuracy and CER2.

Table 3.1 Comparison between the NewBob and NewBob+ schedulers on Babel Can-
tonese FLP data set. The table show the frame level classification correctness and the
recognition CER with a trigram LM.

Scheduler n Epoch %Corr. %CER
Train CV Test

NewBob 10 78.6 77.2 56.1
NewBob+ 16 80.2 78.3 55.0

1Since the CV set is held-out from training, all training data and training data apart from the
CV data are denoted as the full training set and training set, respectively. The CV set is formed by
randomly selecting 10% of the data from the full training set throughout this thesis.

2Note that though confusion network decoding (Evermann and Woodland, 2000; Mangu et al.,
2000) is widely used in many CUED HTK systems, none of the results presented in this thesis used it.

3.10 Baseline Configurations 81

Table 3.2 Babel Cantonese FLP BN GMM-HMM system trigram LM CERs with
different BN CD-DNN silence modelling methods.

DNN Structure sil %CER
468×1000×1000×1000×1000×26×429 30 55.5
468×1000×1000×1000×1000×26×402 3 54.5
468×1000×1000×1000×1000×26×400 1 54.0

3.10.2 Tandem baseline system

Silence modelling

When extending the monophone BN DNN system in Section 3.10.1 to use triphone
output targets, as shown in the 1st system in Table 3.2, the CER increased rather than
decreased, compared to the 2nd system in Table 3.1. The issue lies in the non-speech
model (that is seen as the silence model for convenience) used by the BN DNNs, which
consists of 30 HMM states and is used by some recent CUED GMM-HMM systems
(Gales et al., 2015; Knill et al., 2013; van Dalen et al., 2015; Wang et al., 2015), where
different types of non-speech exist in the data. Generally speaking, the difference
between the frames aligned with different sil states should be smaller than those
aligned with the phone states. Therefore, in the training, there can be many silence
frames assigned to incorrect sil states (according to the training alignments), which
causes the DNN parameters more focused on correctly classifying the sil frames. For
the monophone BN DNN, it has 126 targets associated with 90 monophone HMM
states and 30 sil states. The monophones are rather different from each other and
easier to distinguish. For the triphone BN DNN, however, the 399 triphone tied states
are more similar to each other and require more training effort, but the 30 sil states
distract the training from this goal. Two alternative sil models are compared, one
is 3 sil targets corresponding to the 3 states of the HTK LVCSR silence model in
Section 2.8, and the other is to keep only one sil target. From the results presented
in Table 3.2, one sil target worked best that matches the analysis presented above.
Therefore, the single sil target is used by all BN DNNs thereafter.

BN layer settings

When training a BN DNN for use in a tandem system, the BN layer position and size
also matter. Different BN layer sizes have been investigated in previous studies, and
two configurations, 26-dimensional and 39-dimensional, were commonly used (Grézl
and Fousek, 2008; Park et al., 2011). (Grézl et al., 2007) suggested to put the BN

82 Artificial Neural Networks for Speech Recognition

Table 3.3 Babel Cantonese FLP BN GMM-HMM system trigram LM CERs with
different BN layer positions and sizes.

DNN Structure sil targets %CER
468×1000×1000×26×1000×1000×126 30 55.9
468×1000×1000×1000×26×1000×126 30 55.1
468×1000×1000×1000×1000×26×126 30 55.0
468×1000×1000×1000×1000×39×126 30 54.7

Table 3.4 MGB 200h BN GMM-HMM system 64k word 4-gram LM WERs on Dev.sub
with different BN layer positions and sizes.

DNN Structure %WER
468×1000×1000×1000×1000×1000×26×6027 33.2
468×1000×1000×1000×1000×26×1000×6027 32.8
468×1000×1000×1000×1000×39×1000×6027 32.2

layer as the middle hidden layer. This BN layer position is compared with alternative
positions using the Babel Cantonese FLP data, and the configuration used is the same
as in Section 3.10.1. The results in Table 3.3 show that it is better to use the BN layer
as the last or second to the last hidden layer, which is probably because these layers are
closer to the output layer and are more discriminantive for classifying the monophone
targets. Furthermore, 39-dimensional BN features worked better than 26-dimensional,
but also gave rise to more parameters in both BN DNN and GMMs. Further increasing
the BN layer size resulted in no obvious improvements.

Similar experiments were conducted using the multi-genre broadcast (MGB) 200h
tandem systems. The systems were tested on the Dev.sub test set with a trigram
LM based on the 64k vocabulary, and the GMM-HMMs had 6052 tied states and 16
Gaussian mixture components/state. Details of the MGB 200h data set, test set, LM,
dictionary, and DNN training configuration are listed in Appendix A.2. From the
results in Table 3.4, it can be seen for the tied state targets, it is better to keep a
hidden layer after the BN layer, which is probably because classifying 6000 targets
requires more information than that can be represented by a 26-dimensional vector.
Note that the BN layer position change resulted in a large increase in the number of
DNN parameters, from 4.7M to 9.5M. When increasing the BN layer size from 26 to
39, like in Table 3.3, the WER is also decreased. Therefore, the BN layer setting of
the 3rd system in Table 3.4 is used in the rest of the thesis.

3.10 Baseline Configurations 83

Table 3.5 Babel Cantonese FLP CD-DNN-HMM system trigram LM CERs with
different non-speech modelling methods.

DNN Structure sil targets %CER
504×1000×1000×1000×1000×1000×6082 30 46.8
504×1000×1000×1000×1000×1000×6055 3 46.5
504×1000×1000×1000×1000×1000×6053 1 47.4

3.10.3 Hybrid baseline system

Silence modelling

In Section 3.10.2, it is shown that the choice of silence modelling is important to CD
BN DNN training. Here, the same question is investigated with Babel Cantonese FLP
hybrid systems. The CD DNNs were trained with 30, 3, and 1 sil targets, respectively.
The 30 sil targets and 3 sil targets are associated with the HMM states in the 30
state silence model and the 3 state HTK LVCSR silence model. The 1 sil target
DNN is used with a modified HTK LVCSR silence model with the 3 sil states tied
together. Table 3.5 shows that the DNN with 3 sil targets had the lowest CER. It
is different to the BN DNN conclusion for tandem systems in Section 3.10.2. This is
perhaps because maintaining 3 distinct states is important to both sil and sp HMMs
to model different types of non-speech events. It is not an issue to BN DNNs since it
is handled by the tandem GMM-HMMs. In the rest of this thesis, all DNN acoustic
models have 3 sil targets. It is worth noting that in Table 3.5, the DNN input layer
size is 504 rather than 468 since it is based on tandem features. These systems are
called stacked hybrid systems since they stack a BN DNN for feature extraction and a
CD DNN acoustic model.

Input features

Next, hybrid systems with different input features are investigated on the Babel
Cantonese FLP data set. In Table 3.6, both PLP input hybrid systems and stacked
hybrid systems are compared. It is not surprising that stacked hybrid system worked
better than using PLP input features since tandem features were shown to be more
useful than PLP features for GMM-HMMs. Furthermore, using CMLLR to normalise
the speaker variations resulted in clear improvements to both features1, and the BN

1When CMLLR is applied to the hybrid systems, HLDA and STC are also used to decorrelate the
PLP and BN features first.

84 Artificial Neural Networks for Speech Recognition

Table 3.6 Babel Cantonese FLP CD-DNN-HMM system trigram LM CERs with
different input feature transforms.

Input Feature %CER
o(t) ybn(t) CMLLR
√

× × 50.8√ √
× 48.9√

×
√

47.0√ √ √
46.5

Table 3.7 MGB 200h 64k word 4-gram LM WERs on Dev.sub, produced by BN
GMM-HMMs, CD-DNN-HMMs, and their combination via joint decoding.

System %WER
BN GMM-HMMs MPE 29.5
CD-DNN-HMMs MPE 28.6
BN GMM-HMMs ⊗ CD-DNN-HMMs (0.4,1.0) 27.4

DNN and CMLLR transforms brought reductions in CER since the hybrid system with
tandem speaker adaptive training (SAT) features had the minimum CER.

3.10.4 Joint decoding system

A joint decoding system has been developed to linearly combine the log-likelihoods
from many acoustic models. For example, when combining a tandem acoustic model,
Λtan, and a hybrid acoustic model, Λhyb, the combined score is

ctan lnp(O|Λtan)+ chyb lnp(O|Λhyb), (3.52)

where (ctan, chyb) is the pre-determined combination weight pair1. The score is treated
as the acoustic model log-likelihood in the normal first pass decoding. The same
method has been applied to multi-level LM combination (Liu et al., 2010).

The results of an example of SI tandem and SI hybrid system combination are
presented in Table 3.7. Both systems were built with 200h MGB data. The system
construction configuration is listed in Appendix A.2. The decoding uses the Dev.sub
test set with a 4-gram LM built on a 64k vocabulary.

1In joint decoding, the weighted sums according to (ctan, chyb) of the grammar scaling factors and
pruning beam widths of the component systems are used.

3.11 Joint Training Methods 85

3.11 Joint Training Methods

3.11.1 ASR system joint training

As the final part of this chapter, ASR training is reviewed from a deep learning
perspective. To train an ASR system, the feature extraction module is often built first.
Afterwards, the acoustic models are trained based on the pre-generated features which
is equivalent to freezing all feature extraction module parameters in training. Next,
independent from the other ASR modules, the LM is often trained based on its own
text-only corpus, in order to use as much data as possible. Based on this procedure,
three weaknesses of the classical ASR approach can be drawn.

• The three modules are individually trained with different criteria and approaches,
which is often not a good match to the ASR evaluation criterion, e.g., WER.

• The acoustic model is trained based on features extracted from a pretrained
model. Similar to generative PT, this is again a greedy strategy and can result
in sub-optimal solutions.

• It is assumed that there is no dependency between the low level acoustic infor-
mation and high level language information in modelling, which is obviously not
true since the decoder combines them both to make decisions.

In order to overcome these issues, an ASR system level joint training approach is
proposed to optimise the feature extraction and acoustic model modules together in
an established system, and MPE is used as the joint training criterion to reduce the
mismatch between the training and evaluation criteria. In joint training the feature
extraction models and acoustic models are viewed as a single deep ANN with flexible
structures, as proposed in Section 3.2 and 3.4. Analogous to DNN training, the
conventional module-by-module ASR construction procedure serves as the PT stage
while the joint training is the FT stage. Note that the LM module is not involved in
joint training in this thesis and is proposed for future work.

3.11.2 DNN acoustic model joint training

Joint training can be applied within a module as well, which removes factors that
impose biases in searching the model space and count against finding the optimal
solution. Considering a standard CD-DNN acoustic model, the tied state targets are
normally derived from the decision trees of a GMM-HMM system, and the training

86 Artificial Neural Networks for Speech Recognition

data alignments are produced by another system. In Chapter 4, standalone training is
proposed as an attempt to remove dependencies on the additional systems for decision
tree and alignments. Furthermore, DNNs usually have pre-determined forms of hidden
activation functions, which is also a factor that results in biased model training. As
proposed in Chapter 5, this factor can be removed by introducing additional parameters
into a DNN to control the hidden activation function shapes. Both of these methods
can be seen as joint training instances.

3.11.3 Related work

There are many other studies related to ASR system level joint training. Pioneering
work based on GMM-HMM acoustic models included applying MCE to train both
FBANK scaling factors and acoustic model parameters (Biem et al., 2002), MPE for
feature transform learning (Povey et al., 2005), as well as SAT with CMLLR (Gales,
1998). For ANN based approaches, (Veselý et al., 2011) trained two MLPs for feature
extraction and acoustic model jointly based on the CE criterion. (Gao et al., 2015)
applied a similar approach to DNNs, with the feature extraction DNN initialised to
enhance noisy speech. CLDNN-HMM acoustic model could be seen as to use the
CNN layers to extract better features for succeeding layers (Sainath et al., 2015a,b).
Furthermore, (Sainath et al., 2015b; Tüske et al., 2014) showed the CNN layers could
even learn data representations similar to the standard filterbank features directly
from the raw waveform input. More recently, efforts have been made to jointly train
more than feature extraction and acoustic model modules. CTC end-to-end training
uses RNNs with character output targets to attempt to remove the dictionary and
LM (Graves and Jaitly, 2014). Alternatively, the encoder-decoder approach “encodes”
acoustic information into segment level context vectors using an encoder RNN, and
then decodes the information into words or characters with a decoder RNN, and the
phonetic and language knowledge are implicitly modelled by the decoder (Bahdanau
et al., 2016; Lu et al., 2015). Note that these end-to-end approaches in some cases
are beyond the stochastic ASR framework. Moreover, instead of a single criterion,
training towards multiple objectives multi-task learning has also been applied in joint
training. (Qian et al., 2016; Yin et al., 2016) generated factors to represent speaker and
environment etc., and trained the factor extractors together with the acoustic model
on different objectives. In the encoder-decoder approach, (Kim et al., 2016) smoothed
the encoder training by CTC to improve the alignments in noisy data.

It should be noted that, in this thesis, ASR system level joint training relies
on initial values from the traditional individually constructed ASR modules. It is

3.11 Joint Training Methods 87

debatable whether having such an initialisation stage is important. On one hand,
(Sainath et al., 2015b) has reported that with thousands of hours of training data
that, random initialisation can be effective for deep ANN training. Actually, in a
similar way to the difference between the second and third discriminative PT methods
mentioned in Section 3.8.3, initialisation based on over trained sub-optimal models can
give rise to smaller joint training improvements. On the other hand, the importance of
initialisation for training using a small amount of data should be noted (Glorot and
Bengio, 2010; LeCun et al., 1998b; Sutskever et al., 2013). Some parameters, such
as the CD states, are even hard to initialise randomly. Therefore, the parameters
obtained through standard ASR construction procedures can be used as initial values
for joint training. Furthermore, real world ASR systems normally rely on rather
complicated pipelines comprising of extra pre-processing and post-processing stages,
and it is possible to view an existing pipeline as an initialised system and apply joint
training to it. Therefore, the conventional ASR construction stage is used prior to joint
training for the aforementioned reasons, but each module is not individually trained
to maximise its performance to avoid reducing the effectiveness of subsequent joint
training.

Chapter 4

DNN Acoustic Model Standalone
Training

This section introduces a method for cross entropy (CE) DNN training that can
produce the data alignments and tied context-dependent (CD) state targets itself, and
is therefore termed standalone training. The motivation for standalone training is to
remove the reliances on additional systems to make the DNN training self-contained.
Compared to other alignment integrated training methods (Graves et al., 2006; Povey
et al., 2016), standalone training is easy to implement as it depends on separate Viterbi
alignment procedures rather than an integrated forward-backward algorithm (FB), but
will perhaps result in worse WERs. Actually alignment integrated training approaches
often require a large amount of training data to outperform the traditional method
with the alignments from a high performance system, due to the difficulty in alignment
learning (Pundak and Sainath, 2016).

This section is organised as follows: At first, context-independent (CI) target
DNN training is presented that starts with uniformly segmented alignments and then
gradually improves them during the entire training procedure. For CD standalone
training, the GMM based decision tree tying is modified to fit in with DNN models
and produce the desired tied CD states. As seen in Section 3.11.2, these proposed
algorithms remove the dependencies on additional systems in CD-DNN construction,
and can be seen as a DNN acoustic model joint training approach. Moreover, a method
that initialises CD-DNN with a CI-DNN is found useful in standalone training, which
is then investigated and applied to standard CD-DNN construction as an alternative
PT method.

90 DNN Acoustic Model Standalone Training

4.1 CI-DNN-HMM Standalone Training

CE DNN training depends on the availability of labels for all frames, often acquired
by forced alignment with a high performance GMM-HMM system (Dahl et al., 2012;
Hinton et al., 2012). To eliminate such reliance, DNN-HMMs should be able to align
the reference transcriptions themselves.

4.1.1 Initial alignment refinement

To train CI-DNN-HMMs, the CI state level transcriptions are generated from the
word transcriptions. This is done by expanding every word to CI phones according to
its first pronunciation in the dictionary, and then replacing every CI phone with the
corresponding HMM states.

In order to align the CI state transcriptions without relying on an existing GMM-
HMM system, an idea analogous to the flat-start initialisation strategy used in GMM-
HMM training (see Section 2.8) is employed, i.e., every state in an utterance is assigned
an equal duration in the initial alignment. During the DNN-HMM training procedure,
the data are repeatedly realigned based on the word transcriptions. These initial
uniformly segmented transcriptions are called flat initial alignments.

Since the states and frames are usually poorly aligned in the flat initial alignments,
the alignments are refined by the following steps:

1. train a 2-layer MLP with flat initial alignments for one epoch using error back-
propagation (EBP);

2. use the current MLP to realign the training set;

3. use the realignments to train a new 2-layer MLP from scratch for one epoch
using EBP;

4. repeat steps 2-4 for a number of iterations.

The above steps are similar to those used to obtain iterative Viterbi alignments in
(Bourlard and Morgan, 1993). A major difference is that 2-layer MLPs are trained
from scratch in order to avoid the problem caused by bad initial alignments (Trentin
and Gori, 2003). After refinement, the alignments are used for discriminative PT.

4.1.2 Discriminative PT with realignment

Instead of the conventional layer-wise discriminative PT (as described in Section 3.8.3),
discriminative PT with realignment is proposed to build CI-DNNs. With this method,

4.2 Target Clustering for CD-DNN-HMMs 91

the data are realigned each time a new hidden layer is trained with EBP, to refine the
training labels and to increase their match with the specific hidden layers. The steps
are:

1. train a 2-layer MLP with the initial alignments for one epoch, and use the MLP
to realign the data;

2. replace the current output layer with a hidden layer along with a new output
layer;

3. train the modified MLP with the latest alignments for one epoch;

4. use the MLP to realign the training data transcriptions;

5. repeat steps 2-5 until the planned DNN structure is realised.

After PT, all DNN layers are jointly trained by EBP to fine-tune the model
parameters. After these steps, the required CI-DNN is trained. It was found that
realigning the data and retraining new CI-DNN-HMMs from scratch with conventional
PT and FT methods could further improve the performance (Dahl et al., 2012).

4.2 Target Clustering for CD-DNN-HMMs

After the estimation of CI-DNN-HMMs, the resulted models are used to produce HMM
state to frame alignments, whose monophone state labels can be modified to triphone
state labels. In order to construct a CD-DNN acoustic model with tied state targets
without relying on any additional systems, the CD states, either seen or unseen in the
training set, should be tied based on DNN-HMMs rather than GMM-HMMs.

4.2.1 Class-conditional distribution interpretation

Since decision tree tying clusters the output probability density functions of the states,
to modify the algorithm for DNN-HMMs, the equivalent class-conditional distributions
from the DNN are needed. Like the original GMM-HMM based algorithm described
in Section 2.5, here the class-conditional distributions p(x(t)|Ck) are assumed to be
Gaussian1. If all untied Gaussian distributions have the same covariance matrix, i.e.,

1Note that x(t) in this subsection specifies the input vector to the output layer, xout(t), and the
superscript is omitted to save space.

92 DNN Acoustic Model Standalone Training

p(x(t)|Ck) = N(x(t)|µk,Σ), from Eqn. (3.10), we have

p(Ck|x(t)) =
exp

(
−0.5x(t)TΣ−1x(t)+µT

k Σ−1x(t)−0.5µT
k Σ−1µk +lnP (Ck)

)

∑
k

′ exp
(
−0.5x(t)TΣ−1x(t)+µT

k
′ Σ−1x(t)−0.5µT

k
′ Σ−1µk

′ +lnP (Ck
′)
)

=
exp

(
µT

k Σ−1x(t)−0.5µT
k Σ−1µk +lnP (Ck)

)
∑

k
′ exp

(
µT

k
′ Σ−1x(t)−0.5µT

k
′ Σ−1µk

′ +lnP (Ck
′)
) . (4.1)

Meanwhile, by taking Eqn. (3.2) into Eqn. (3.9), we can get

p(Ck|x(t)) =
exp

(
wT

k x(t)+ bk

)
∑

k
′ exp

(
wT

k
′ x(t)+ bk

′

) . (4.2)

Consequently, the relationship between parameters of the Gaussian distributions (means
and variances) and those of the DNN output layer can be obtained as

αwT
k =µT

k Σ−1 (4.3)
αbk =−0.5µT

k Σ−1µk +lnP (Ck), (4.4)

where α is any non-zero real number. Eqns. (4.3) and (4.4) can be used to generate a
DNN layer from known distributions. This relation between equal covariance Gaussian
distributions and the linear discriminant function was first described in (Duda and
Hart, 1973).

Since the output densities are estimated based on xout, the DNN-HMM based
method clusters in the space of xout, Ωxout , while the GMM-HMM based decision tree
state tying method clusters in the space of the original observations o, Ωo.

4.2.2 DNN-HMM based decision tree target clustering

With the CI-DNN-HMM system obtained in Section 4.1, the CD states are clustered
in the space of xout(t) generated by the last hidden layer of the CI-DNN, ΩCI

xout . The
major steps of the modified method include

1. Realign the training set with CI-DNN-HMMs.

2. Estimate Gaussian distributions for the CD targets based on the output vectors
xout(t) from the last CI-DNN hidden layer.

4.2 Target Clustering for CD-DNN-HMMs 93

3. Convert the Gaussians obtained in the last step to a new CD output layer using
Eqns. (4.3) and (4.4), and add it onto the CI-DNN hidden layers.

4. Train the new CD output layer and use the resulted model to realign the training
set.

5. Perform FT over the CD-DNN obtained in step 4 according to the new alignments
it produced.

The other parts of the method follow the standard GMM-HMM based state tying,
as introduced in Section 2.5. Compared to the traditional GMM decision tree state
tying based on the standard acoustic feature, the DNN based decision trees perform
clustering based on the output vectors from the last CI-DNN hidden layer. Though
the output vectors from the last hidden layer of the CI-DNN still mismatch with those
from the last CD-DNN hidden layer due to the difference in the targets and training
alignments, but they might be better approximations than the acoustic feature vectors
since the CI and CD hidden layers are similarly configured. Approaches to estimate
the Gaussian distributions in step 2 are going to be presented next.

4.2.3 Distribution estimation based on hidden activations

To obtain the input to the decision tree clustering, the output densities for the untied
states are required. The untied states together with their training labels are obtained
by expanding the CI states with their neighbouring phones, using the alignments
generated by the CI-DNN-HMMs. Then the parameters of the distributions, i.e., the
mean vectors and the common covariance matrix, are estimated based on the maximum
likelihood (ML) criterion. Eqns. (2.38) and (2.39) are modified to

µk =
∑

t γk(t)xout(t)∑
t γk(t) (4.5)

Σ =
∑

k

∑
t γk(t)(xout(t)−µk)(xout(t)−µk)T

∑
k

∑
t γk(t) . (4.6)

Note that for alignments, γk(t) are 0-1 valued hard probabilities which are assigned
according to the frame label, and the statistics for Σ are summed over all targets.

Since Σ is usually a large full matrix, its determinant, used to get the log-likelihood
by Eqn. (2.62), is hard to compute. Therefore, Σ is transformed to a diagonal matrix
using a rotation, i.e., the orthonormal matrix A whose columns are the eigenvectors of
Σ. According to Eqn. (2.68), A transforms the untied Gaussians to have a common

94 DNN Acoustic Model Standalone Training

diagonal covariance matrix by

p(xout(t)|Ck)∝N(ATxout(t);ATµk,ATΣA). (4.7)

Furthermore, to reduce the dimension of ATΣA and speed up computation, some
columns of A with very small eigenvalues can be discarded.

4.2.4 Statistics collection and CD-DNN construction

After the parameters of the class-conditional distributions have been determined, they
are converted into an output layer with untied state targets using Eqns. (4.3) and
(4.4). This new output layer is then added in place of the original output layer of
the CI-DNN-HMM, and used to collect the statistics

∑
t P (Ck|xin(t)), serving as the

term of
∑

t γk(t) used for decision tree clustering in Eqns. (2.62) and (2.63). If the
new output layer is converted from diagonal Gaussians transformed by A, then to take
decorrelated inputs, AT with a zero bias vector should be treated as an extra layer
with the linear hidden activation function and interposed between the output layer
and the existing hidden layers.

After clustering, the output layer with the newly clustered targets is added to the
hidden layers of the CI-DNN-HMMs. The hidden layer weights are fixed and only the
new output layer is trained. After this step, the resulting CD-DNN-HMMs are used to
realign the training set, and FT is applied according to the realignments. The resulting
CD-DNN-HMMs are the required models.

If we denote ΩCD
xout as the space of input vectors to the output layer of the final

CD-DNN-HMMs, the DNN-HMM based target clustering makes predictions about the
best targets of ΩCD

xout in ΩCI
xout . In contrast, the GMM-HMM based state tying predicts

CD state targets in Ωo.

4.3 Standalone Training Experiments

This section presents comparisons between the standard CE DNN training and stan-
dalone training methods. The experiments are conducted using the WSJ corpus with
the SI-284 setup. Details of the corpus and DNN system configurations are listed in
Appendix A.3.

4.3 Standalone Training Experiments 95

Table 4.1 WSJ SI-284 setup baseline systems with a 65k word trigram LM.

ID System Alignments %WER
Dev Eval

G1 ML GMM-HMMs 9.1 9.5
G2 MPE GMM-HMMs 8.0 8.7
I1 CI-DNN-HMMs G2 10.5 12.0
I2 CI-DNN-HMMs I1 10.7 13.7
D1 CD-DNN-HMMs G2 6.7 8.1

4.3.1 Baseline system performance

CI-DNN-HMM (I1) and CD-DNN-HMM (D1) baseline systems were built with conven-
tional discriminative PT using the labels derived from the alignments generated by an
HLDA minimum phone error (MPE) GMM-HMM system (G2), which have the DNN
structures of 351× 1000× 1000× 1000× 1000× 1000× 138 and 351× 1000× 1000×
1000×1000×1000×5981, respectively. The triphone tied state targets were generated
by the GMM-HMM based decision tree tying approach, and the GMM-HMM system
had 5,981 tied states and 12 Gaussian components/state. I1 was used to realign the
data and another CI-DNN-HMM baseline (I2) with the same configuration was trained
from scratch based on the realignments. The baseline performance is listed in Table 4.1.
Results of GMM-HMMs are also included as a comparison to previous work (Povey,
2003; Woodland et al., 1995).

4.3.2 CI system standalone training

The flat initial alignments were first refined for 20 iterations. Afterwards, several
CI-DNN-HMM systems were trained with different PT and conventional FT based on
the alignments generated. One system (I3) was built using discriminative PT with
realignment, and another (I4) was later built with conventional discriminative PT
based on the alignments generated by I3. For comparison, one CI-DNN-HMM system
(I5) was trained with conventional discriminative PT, whose realignments were used
to build another set of CI-DNN-HMMs (I6) from scratch. The performance of above
systems is presented in Table 4.2.

Comparing I3 with I5 and I4 with I6, we can see that systems with discriminative
PT with realignment gave on average a 2.3% and a 4.0% relative reduction in WER (on
Dev and Eval combined). Retraining the systems from scratch for more passes caused
the performance to fluctuate. As for I4 and I1, although I4 performed more poorly than

96 DNN Acoustic Model Standalone Training

Table 4.2 WSJ SI-284 system results of CI-DNN-HMMs with conventional PT or PT
with realignment, using a 65k word trigram LM. The “PT Procedure” column listed
the PT methods used in system construction.

ID PT Procedure %WER
Dev Eval

I3 Realignment 12.2 14.3
I4 Realignment + Conventional 11.7 13.8
I5 Conventional 12.2 15.0
I6 Conventional + Conventional 12.0 14.6

I1, its results were achieved without information from T features, HLDA transforms,
and CD modelling embedded in the alignments. This conclusion is also supported by
system I2. I2 suffered from an 8% averaged relative WER increase compared to I1,
since it excluded the above information.

4.3.3 CD system standalone training

The difference between GMM-HMM and DNN-HMM based decision tree state tying
is now investigated. The experiments started from the best standalone CI-DNN-
HMMs, I4. A total of 68,172 untied triphone states occurred in the alignments
generated by I4, in contrast to 68,034 untied states involved in GMM-HMM based
state tying. The new output layer converted from the Gaussians estimated using the
I4 alignments gave a CD frame classification accuracy of 35.3% on the combination
of the training and held out sets. The common covariance matrix was decorrelated
with a rotation and kept 300 dimensions (accounting for 96% of the variance) with
the largest eigenvalues in the transformed diagonal covariance matrix. 5,996 tied
states were generated by DNN-HMM based decision tree clustering. These clustered
targets were added to the I4 hidden layers. The effect of different clusterings was
examined by using EBP either through all layers or through the output layer only,
based on the training labels derived from I4 alignments. The results are given in
Table 4.3, where the structures of the CD-DNNs clustered by the GMM-HMM and
DNN-HMM based approaches are 351×1000×1000×1000×1000×1000×5981 and
351×1000×1000×1000×1000×1000×5996, respectively.

From the results, D2 slightly outperformed G3 (1% averaged relative WER reduc-
tion), which indicates that the tied states clustered in ΩCI

xout (of I4) match the existing
I4 hidden layers better than those clustered in Ωo. Meanwhile, if all layers were trained

4.4 CI Discriminative PT 97

Table 4.3 WSJ SI-284 system comparison between GMM-HMM and DNN-HMM based
state tying using a 65k word trigram LM.

ID Clustering EBP Layers %WER
Dev Eval

G3 GMM-HMM Output Layer 7.6 9.0
G4 GMM-HMM All Layers 6.8 7.9
D2 DNN-HMM Output Layer 7.7 8.7
D3 DNN-HMM All Layers 6.8 7.8

by EBP, D3 only outperformed G4 by 0.6% relative WER. The performance difference
between G4 and D3 is reduced, compared to that between G3 and D2, due to the
power of FT, which not only changes the output layer weights but also changes their
input features xout(t). The small WER difference is possibly the reason why GMM
instead of DNN based decision trees are still commonly used, since the GMM based
decision tree software is widely used and it is an essential component for building initial
CD-GMM-HMM.

Compared to the baseline CD-DNN-HMMs D1, the CD-DNN-HMMs trained in a
standalone fashion, D3, performed 1.5% relatively poorer on Dev but 3.7% relatively
better on Eval in terms of WER. As a result, the task of training a state-of-the-art
CD-DNN-HMM system without relying on any GMM-HMMs has been accomplished.
In addition, the proposed training procedure is efficient since training and aligning the
data with CI-DNN-HMMs can be much faster than with CD-DNN-HMMs.

4.4 CI Discriminative PT

In this section, an approach to pretrain CD-DNN models discriminatively with CI state
targets is proposed, which serves as a regulariser to prevent the DNN hidden layers
from over-fitting to a specific CD target set. Furthermore, the CI state classification
accuracy based on CD state conversion is used to compare DNNs with different target
sets at the frame level.

4.4.1 CI initialisation for CD-DNNs

Studies have shown that a key advantage of using deep models is to have multiple layers
of non-linear feature transforms with different functions (Mohamed et al., 2012). For
speech recognition, it is found that lower DNN layers model low level characteristics,

98 DNN Acoustic Model Standalone Training

for example, partially eliminating the speaker dependencies from phones, while higher
layers capture highly non-linear structures, for instance, those useful for phoneme
discrimination (Mohamed et al., 2012). Therefore, when training a DNN, it is desirable
to keep lower layers more general and higher layers more target specific. One way to
achieve this is to use hybrid PT, which can be seen as a linear interpolation between
jointly optimised generative and discriminative RBM stacks (Sainath et al., 2013a).
Alternatively, one can use a CI-DNN to initialise a CD-DNN, which is termed as the
CI initialisation method.

The steps of using CI initialisation for CD-DNNs are as follows:

1. Discriminative PT with CI Targets
Discriminative PT to generate an initial DNN with CI state targets;

2. FT with CI Targets
Train the initial CI-DNN for multiple epochs;

3. Target Swap
Replace the CI state output layer with a randomly initialised output layer with
desired CD targets;

After PT, the initial CD-DNN model is trained to full convergence by FT as usual. In
the above procedure, step 1 and 2 are standard CI-DNN discriminative PT and FT,
which results in far more updates of the initial models compared to CD discriminative
PT. This is appropriate since a CI-DNN usually has far fewer parameters and is less
likely to over-fit to the training data. Actually, as shown later in the experiments in
Section 4.5.1, step 2 is not essential for CI initialisation to outperform the standard
methods.

It is worth noting that the idea of using layers from a CI-DNN to initialise a
CD-DNN is similar to the hidden layer sharing approach used by multi-lingual tandem
and hybrid systems (Ghoshal et al., 2013; Heigold et al., 2013; Huang et al., 2013;
Swietojanski et al., 2012). However, the multi-lingual studies share the limited training
data across different languages by using common hidden layers and language specific
output layers, while CI initialisation is to ensure that the hidden layers are generic
enough for low level data transformations. All these methods actually fall into the
multi-task learning framework, which has been introduced in Section 3.7.

4.5 CI Initialisation Experiments 99

4.4.2 CI state classification accuracy

A problem arising from CI initialisation is that the commonly used DNN acoustic
model performance indicator, the frame classification accuracy, is not available during
the complete DNN training process since different target sets are involved. To solve
this problem, each CD state is associated with a CI state by stripping its contexts, and
the CD state results and labels are converted at the CI state level. Let Cl be a set of
CD states, and Ck ∈Cl means that Ck’s center phone and state index constitute the
CI state that Cl represents. Therefore, the posterior probability for the CI state Cl is
found by summing over all of the CD instances Ck

P (Cl|xin(t)) =
∑

Ck∈Cl

P (Ck|xin(t)). (4.8)

Then in classification, the CI state that gives the maximum accumulated posterior
probability is chosen and compared to its reference label.

Applying Bayes’ rule to Eqn. (4.8) leads to,

p(xin(t)|Cl) =
∑

Ck∈Cl

P (Ck)
P (Cl)

p(xin(t)|Ck). (4.9)

As in Section 4.2.1, both p(xin(t)|Cl) and p(xin(t)|Ck) are generated through softmax
functions that have equivalent Gaussian distributions. Therefore, the conversion
actually regards the single Gaussian model for each CD state as a mixture component
in the GMM for its corresponding CI state, and P (Ck)/P (Cl) is the mixture weight
with

∑

Ck∈Cl

P (Ck)
P (Cl)

= 1. (4.10)

4.5 CI Initialisation Experiments

In this section, experiments are first carried out on the WSJ data set to compare CI
initialisation with the standard generative and discriminative PT methods. On the
Aurora-4 data set, the regularisation effect of CI initialisation is studied by comparing
it to weight decay.

100 DNN Acoustic Model Standalone Training

Table 4.4 WSJ SI-84 DNN-HMM system recognition and classification results with a
65k word trigram LM.

ID System PT %WER CI State
Dev Eval CV %Acc.

S1 CI-DNN-HMMs CI 14.6 16.6 67.2
S2 CD-DNN-HMMs RBM 9.4 10.9 68.9
S3 CD-DNN-HMMs CD 9.6 11.3 68.7
S4 CD-DNN-HMMs CI (no FT) 8.9 10.3 69.7
S5 CD-DNN-HMMs CI 8.4 10.0 70.2

4.5.1 WSJ SI-84 DNN-HMM system performance

The first experiments were conducted with the WSJ SI-84 setup, which has a fairly
limited number of training samples. The CI-DNN, S1, had 138 CI states, which
were associated with 46 phones, while all CD-DNN-HMMs, S2-S5, had 3,007 tied
states produced by the GMM-HMM based decision tree state tying approach. The
DNNs had 5 hidden layers all with 1,000 artificial neurons. Baseline CD-DNN-HMM
systems, S2 and S3, were initialised by generative and traditional CD discriminative
PT, respectively. S5 was the model initialised by the proposed CI discriminative PT,
whose starting point was actually S1. S4 differed from S5 by removing the CI-DNN
FT step from CI discriminative PT (step 2 listed in Section 4.4.1). Performance of
these systems is presented in Table 4.4.

From Table 4.4, S5, the CD-DNN-HMMs initialised by the proposed CI initialisation,
had the lowest WER among all SI-84 systems. Compared to the baselines with
generative and CD discriminative PT, S2 and S3, S5 gave on average a 9.4% and
a 12.0% relative reduction in WER (on Dev and Eval combined). Furthermore, by
comparing S4 to S5, removing the CI-DNN FT step degraded the performance, but S4
still outperformed S2 and S3, which had the same total number of epochs in training,
by an average of 5.7% and 8.1% relative reduction in WER. These results reveal that
although the CI-DNN FT step could help reduce WER, performing more epochs of
training is not the only reason for CI initialisation to outperform CD discriminative
PT. Moreover, the CI state accuracies of the CD-DNNs, computed by Eqn. (4.8) on
the CV set, are also included. These numbers are consistent with WERs across all
SI-84 systems.

4.5 CI Initialisation Experiments 101

Table 4.5 Standard deviations of DNN layer output values on the WSJ SI-84 CV set.

ID Averaged Standard Deviation
1st Hidden Layer Output Layer

S2 4.19×10−1 9.71×10−3

S3 4.23×10−1 9.46×10−3

S4 4.09×10−1 1.08×10−2

4.5.2 Investigation of DNN layer output values

When classifying CI rather than CD targets, there would be only CI errors generated
and backpropagated to the first layer. Therefore, only the CI low level characteristics are
modelled. Specifically, if the first layer handles the task of, for instance, low-level feature
normalisation, these features can be learned from CI speaker characteristics. After
swapping CI targets with CD targets for FT purpose, the CD low level characteristics,
e.g., CD pronunciation changes caused by the accent of a particular speaker, will not
be modelled by the first layer and can be used by higher layers for better CD target
discrimination. Intuitively, if this assumption is true, then for the final CD-DNN with
CI discriminative PT, the first layer should produce more general features with smaller
variances, while the output layer posterior probabilities should be more discriminative.
This assumption is validated using SI-84 trained systems and the corresponding CV
set, as shown in Table 4.5.

In Table 4.5, for each system, the standard deviations of the output of each node
in the first hidden layer and the output layer were calculated and averaged. First, the
baseline with generative PT, S2, had smaller first hidden layer and larger output layer
standard deviations than S3 with CD discriminative PT. This matches the fact that
generative PT has more general first hidden layers than CD discriminative PT (Hinton
et al., 2012; Mohamed et al., 2012). S5 had the smallest first layer and the largest
output layer standard deviations, which indicated that CI discriminative PT produced
the most generic first hidden layer and the most discriminative output layer, among
the three methods.

4.5.3 WSJ SI-284 DNN-HMM system performance

Finally, CI initialisation was applied to the larger data set with the WSJ SI-284
configuration, which contains about 4.5 times more data than SI-84. The CD output
layer size is increased from 3,007 to 5,981, making the DNNs have 1.5 times more

102 DNN Acoustic Model Standalone Training

Table 4.6 WSJ SI-284 DNN-HMM system recognition and classification results using a
65k word trigram LM. The time cost in terms of seconds of different PT methods is
also included.

ID System PT %WER CI State
Method n Epoch Time Dev Eval CV %Acc.

S11 CI-DNN-HMMs CI 11.6 12.6 70.5
S12 CD-DNN-HMMs RBM 8 4562.6 6.9 8.1 73.4
S131 CD-DNN-HMMs CD 4 8617.1 6.7 8.1 72.5
S14 CD-DNN-HMMs CI (no FT) 4 1703.1 6.3 7.4 73.4
S15 CD-DNN-HMMs CI 16 9794.5 6.3 7.4 72.9

parameters. As a result, every DNN parameter has three times more training samples
on average. The SI-284 DNN-HMM systems and their performance are presented in
Table 4.6.

From Table 4.6, CD-DNN-HMMs with CI initialisations, S14 and S15, still out-
performed the baseline systems S12 and S13 by a margin of 8.7% and 7.4% relative
reduction in WER. To make the CI state accuracies comparable between Table 4.4
and 4.6, the CI state accuracies in Table 4.6 were still on the SI-84 CV set, since
it was included in the SI-284 CV set. The CI state CV accuracies of S12-S15 are
appropriate compared to the accuracy of S11, but are not all consistent with their
WERs. Furthermore, S14 and S15 had identical WERs, which reveals that CI-DNN
FT with sufficient training samples is not as important as when using less data, since
the first few hidden layers may have been updated a sufficient number of times to
model the low level characteristics well during the CI-DNN PT phase. In this case,
CI initialisation not only improves the CD-DNN performance, but also considerably
reduces the required amount of training time, as shown in Table 4.6. The experiments
in Table 4.6 used a single NVIDIA K20c GPU card, and the RBM time cost was not
strictly comparable to the others, since it was trained with a different software, TNet
(BUT, 2013).

4.5.4 Aurora-4 DNN-HMM system performance

Next, the regularisation effect of CI initialisation is investigated on the Aurora-4 task.
The data set description and system configuration are presented in Appendix A.4.
All CD-DNN-HMM systems have a structure of 720× 2000× 2000× 2000× 2000×
2000×3066. The CE training alignments were produced by a tandem system trained

4.6 Summary and Conclusions 103

Table 4.7 Aurora-4 CD-DNN-HMMs results with different regularisation setups and a
5k bigram LM.

PT Weight Decay %WER
A B C D Avg.

CD 0.0 4.2 7.7 9.0 20.2 12.9
CD 0.001 3.6 7.3 7.4 18.3 11.8
CI 0.0 3.8 7.2 8.3 19.5 12.3
CI 0.001 3.8 7.2 7.3 18.0 11.6

with multi-condition data. In Table 4.7, systems were constructed with different
combinations of weight decay and discriminative PT. From the results, we can see
that regularisation, either by weight decay or by CI initialisation, is necessary for
DNN-HMMs to perform well on this data set. The weight decay coefficient was set to
0.001, which was tuned to give the lowest WER and outperformed CI initialisation. In
addition, CI initialisation is complementary to weight decay to some degree.

4.6 Summary and Conclusions

Three algorithms were proposed in this chapter: DNN-HMM standalone training
based on discriminative PT with realignment, a DNN-HMM based decision tree tying
approach, as well as the CI initialisation for CD-DNNs.

CI-DNN-HMM standalone training has the CI-DNN trained in an interleaved
fashion by updating the model parameters with the reference labels and updating
the labels by realigning the training set. DNN-HMM decision tree tying adapts
GMM-HMM decision tree tying by estimating a Gaussian distribution with a common
covariance matrix for every untied CD state based on the CI-DNN’s last hidden layer
output vectors. The clustered CD states can be converted to a CD-DNN output layer.
Experiments on the SI-284 training setup for the WSJ corpus have shown that the
combined CD-DNN-HMM standalone training procedure gives comparable performance
to the standard approach. CI initialisation pretrains the CD-DNNs discriminatively
with CI state targets, and serves as a regulariser complementary to the weight decay
method. Experiments on WSJ and Aurora-4 data sets have shown that CI initialisation
resulted in systems with lower WERs than CD discriminative PT with the training
data size up to 65h, and is also more efficient in computation.

An interesting finding worth more discussion lies in the decision tree tying methods.
In Table 4.3, it was shown though the DNN-HMM based method outperformed the

104 DNN Acoustic Model Standalone Training

traditional GMM-HMM based one, their performance was actually quite close. This is
a bit surprising since the traditional method clusters states without taking any factors
from DNNs into account. This indicates perhaps the power of CD-DNNs mainly comes
from additional parameters and dependencies with the surrounding phones, compared
to the CI-DNN. The specific state tying relationship is not crucial as long as the
clustering is appropriate and the resulted tied state sets are similar in size, since later
DNN training can adjust the hidden layers to fit the output targets. Meanwhile, there
are also invalid assumptions in the method that could be further improved. When
the decision tree nodes are split, the covariances of the Gaussian distributions are
individually estimated while the softmax output layer requires one covariance matrix
shared by all Gaussians. Furthermore, the alignments are not fixed in the clustering
procedure and ML may not be the most suitable criterion. In general, it should be
better to increase the matching degree between the CD targets and the final DNN
model, which can probably be achieved by integrating tree construction into the DNN
training procedure (Jernite et al., 2016).

4.7 Related Work

There are different DNN-HMM based decision tree tying methods (Bacchiani and
Rybach, 2014; Gosztolya et al., 2015; Li and Wu, 2014a; Senior et al., 2014; Zhu et al.,
2015). In (Imseng et al., 2013), minimum KLD was used to cluster MLP-HMM states.
Zhang and Woodland (2014) and Senior et al. (2014) proposed to use the DNN hidden
layer output vectors to estimate Gaussian distributions for ML decision tree tying at
the same time. Zhang and Woodland (2014) used full covariance Gaussians connected
with the softmax output layer, while Senior et al. (2014) used diagonal Gaussians for
both data-driven (Chou, 1991) and manually generated question sets (Young et al.,
1994). Shortly afterwards, minimum KLD (Gosztolya et al., 2015), entropy (Zhu et al.,
2015), and mean squared error (Li and Wu, 2014a) criteria were also used for DNN
decision tree construction, which removes the need for explicit assumptions of the
output distributions of the states. Zhu et al. (2015) also found DNN decision trees
outperformed GMM decision trees when producing more than 10k clustered states.

Recently, sequence deep ANN training without relying on any pre-existing align-
ments has drawn much attention. Senior et al. (2014) used the same flat-start and
realignment strategy as the method proposed in this chapter, but applied realignment
at each minibatch without a PT method. Like GMM-HMMs, Yan et al. (1997), Li
and Wu (2014b), and Tüske et al. (2015a) have applied the FB algorithm to find the

4.7 Related Work 105

state occupancies for ML training from scratch. Alternatively, CTC training maximises
posterior probabilities and has been extended to take the hypotheses and their error
rates into account (Graves et al., 2006; Graves and Jaitly, 2014). Similar ideas have also
been applied to maximum mutual information (MMI) training as well (Gosztolya et al.,
2016; Povey et al., 2016; Zhou et al., 2014), and the results obtained were superior to
those of the traditional training methods on both small and large training sets (Povey
et al., 2016). Moreover, CI initialisation has been extended to a DNN training method
with both CI and CD classification (Bell and Renals, 2015a,b). Besides the normal
CD target output layer, an additional CI target output layer was aslo added upon the
final hidden layer, and both output layers were used in CE training in an interleaved
fashion in each minibatch, which trains the shared hidden layers for both CI and CD
classification as a multi-task learning. The same method was also applied to speaker
adaptation (Swietojanski et al., 2015).

Chapter 5

Learning Hidden Activation
Functions

As reviewed in Section 3.8.1, the activation function plays an important role in deep
learning, since it has a significant influence on the model optimisation procedure and
thus impacts on deep ANN design. Besides the very successful application of sigmoid
and ReLU functions in DNN acoustic modelling (Dahl et al., 2013, 2012; Hinton et al.,
2012; Maas et al., 2013; Seide et al., 2011b; Tóth, 2013; Zeiler et al., 2013), some more
recent research work has studied learning the speaker independent (SI) parameters
associated with activation functions (Delcroix et al., 2016; He et al., 2015b; Siniscalchi
et al., 2010; Yoshioka et al., 2016; Zhang and Woodland, 2015b). This section proposes
generic parameterised forms of sigmoid and ReLU functions, namely the p-Sigmoid
and p-ReLU functions, and applies them to construct SI DNN acoustic models. As
discussed in Section 3.11.2, this can be seen as jointly training the hardwired activation
functions in standard training along with other DNN parameters. Furthermore, both
p-Sigmoid and p-ReLU functions are also used for speaker adaptation later in this
chapter (Zhang et al., 2016), which falls into the learning hidden unit contribution
(LHUC) framework that applies speaker dependent (SD) activation function output
amplifiers transformed by various functions to both adaptation and adaptive training
(Swietojanski et al., 2016; Swietojanski and Renals, 2014).

108 Learning Hidden Activation Functions

5.1 Training Parameterised Activation Functions
with error backpropagation (EBP)

In order to distinguish hidden activation functions with differing parameters, Eqn. (3.1)
is rewritten as

y
(k)
i (t) = f

(k)
i (a(k)

i (t)), (5.1)

for artificial neuron i of layer k, and Θ(k)
i is the parameter set of f

(k)
i (·). Like other

DNN parameters, activation function parameters can be shared in different ways,
although this has not been investigated in this thesis.

As for other ANN parameters, SGD is used for training activation function parame-
ters. Therefore, calculations of the associated gradient values using the EBP algorithm
are required. If θ(k) is a standard DNN parameter, the derivatives of F with respect to
θ(k) are obtained by taking Eqn. (5.1) into Eqn. (3.32), and

∂y
(k)
i (t+ c)

∂a
(k)
i (t+ c)

= ∂f
(k)
i (a(k)

i (t+ c))
∂a

(k)
i (t+ c)

(5.2)

needs to be calculated; if θ(k) is an activation function parameter, we can get

∂F

∂θ(k) =
∑

l∈s(k)

∑

c∈c(l)
k

∑

j

∑

i

∂F

∂a
(l)
j (t+ c)

∂a
(l)
j (t+ c)

∂y
(k)
i (t+ c)

∂f
(k)
i (a(k)

i (t+ c))
∂θ(k) , (5.3)

and

∂y
(k)
i (t+ c)
∂θ(k) = ∂f

(k)
i (a(k)

i (t+ c))
∂θ(k) (5.4)

is needed, in order to obtain the gradient values with respect to the activation function
parameters.

It should be noted that from Eqn. (5.1), activation function parameters can be
more effective than weights and biases of the same layer, since they directly impact
on y

(k)
i (t). However, this also indicates they are more sensitive than other parameters

as their value changes may have a bigger influence on the rest of the network. One
solution is to constrain and control the learning by non-linearly transforming these
parameters (Swietojanski and Renals, 2014). Alternatively, update value clipping can
be used (see Section 3.6) to prevent gradient explosion causing training instability.

5.2 Parameterised Activation Functions 109

5.2 Parameterised Activation Functions

5.2.1 Parameterised sigmoid functions

Functions from the sigmoid family have been widely investigated as ANN hidden
activation functions for many ASR tasks. Example uses include smoothed forms of
the 0-1 classification error (Juang et al., 1997) and for making soft decisions on data
selection according to the noise estimation error (Barker et al., 2000).

In this section, the form of sigmoid functions is generalised to become

f(a) = α · 1
1+exp(−βa+γ) , (5.5)

which is actually the logistic function, and α, β, and γ are the learnable parameters.
This generalised form is denoted as defining the p-Sigmoid(α, β, γ).

In the p-Sigmoid function, α, β, and γ have different effects on the curve f(a).

• Among the three parameters, α can make the largest change to the function by
scaling f(a) linearly. |α| is the maximum value of |f(a)|. Since there is not a
constraint imposed on the parameters, α can be any real number. If α > 0, α

indicates the contribution of the corresponding hidden layer artificial neuron; an
artificial neuron is disabled if α = 0. It is possible that an artificial neuron can
make a negative contribution by allowing α < 0.

• β controls the steepness of the curve. When |β| increases, f(a) can arbitrarily
approximate a step function. When β → 0, f(a) makes less difference to the
input around 0, and outputs constant values if β = 0.

• γ applies a horizontal displacement to f(a). γ/β is the x-value of the midpoint
of the p-Sigmoid function curve, if β is non-zero.

It is well-known that the p-Sigmoid, or logistic functions, can be used for piecewise
approximations to other functions. Figure 5.1 illustrates different shapes of the p-
Sigmoid functions for a ∈ [−3,3], by varying α, β, and γ. p-Sigmoid(1,30,0) is similar
to the 0-1 loss function. The illustrated fragment of p-Sigmoid(4,1,2) has a similar
shape to that of the soft ReLU activation function. p-Sigmoid(3,−2,3) approximates
ReLU, although the approximation is poor around zero. Therefore, if all parameters are
learned appropriately, p-Sigmoid units can behave like other commonly used activation
functions.

110 Learning Hidden Activation Functions

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

1

2

3
p-Sigmoid(1,1,0)

p-Sigmoid(1,30,0)
p-Sigmoid(4,1,2)

p-Sigmoid(3,-2,3)

p-Sigmoid(2,2,0) -1

a

f(a)

Figure 5.1 Piecewise approximation by p-Sigmoid functions.

An alternative viewpoint is based on the spike-rate coding framework introduced in
Section 3.3.3, which views each activation value as the accumulated stimulus intensity
within a time step, and the corresponding output value of that artificial neuron can be
seen as the cumulative spike rate. By using a sigmoid activation function, it is assumed
that the spike rates follow logistic distributions. p-Sigmoid(1,β,γ) can be rearranged as

f(a) = 1

1+exp(−a−γ/β

1/β
)
, (5.6)

which is the CDF of a logistic distribution with the mean and variance equal to γ/β

and π2/(3β2). Scaling the artificial neuron output values by α changes the mean and
variance of the logistic distribution of the following sigmoid layer. Therefore, if an
individual set of parameters is associated with each hidden layer artificial neuron, using
the hidden activation function p-Sigmoid(α(k)

i ,β
(k)
i ,γ

(k)
i) allows each artificial neuron k

to use a different distribution to model its spike rates.
Note that p-Sigmoid(2,2,0)−1 is the hyperbolic tangent activation function (Bishop,

1995), as shown by the grey dashed line in Figure 5.1. However, there is not a learnable
parameter of the p-Sigmoid function that controls the vertical shift in this thesis.

As seen in Section 5.1, it is necessary to calculate the partial derivatives of f
(k)
i (·)

with respect to its input activation a
(k)
i , and also to each of its parameters α

(k)
i , β

(k)
i ,

5.2 Parameterised Activation Functions 111

and γ
(k)
i . For the p-Sigmoid, the derivatives are computed by

∂f
(k)
i (a(k)

i)
∂a

(k)
i

=
{

0 if α
(k)
i = 0

β
(k)
i f

(k)
i (a(k)

i)
(

1−f
(k)
i (a(k)

i)/α
(k)
i

)
if α

(k)
i ̸= 0

, (5.7)

∂f
(k)
i (a(k)

i)
∂α

(k)
i

=

(
1+exp(−β

(k)
i a

(k)
i +γ

(k)
i)
)−1

if α
(k)
i = 0

f
(k)
i (a(k)

i)/α
(k)
i if α

(k)
i ̸= 0

, (5.8)

∂f
(k)
i (a(k)

i)
∂β

(k)
i

=
{

0 if α
(k)
i = 0

a
(k)
i f

(k)
i (a(k)

i)
(

1−f
(k)
i (a(k)

i)/α
(k)
i

)
if α

(k)
i ̸= 0

, (5.9)

∂f
(k)
i (a(k)

i)
∂γ

(k)
i

=
{

0 if α
(k)
i = 0

−f
(k)
i (a(k)

i)
(

1−f
(k)
i (a(k)

i)/α
(k)
i

)
if α

(k)
i ̸= 0

. (5.10)

From Eqns. (5.8) and (5.9), the input activation, a
(k)
i , needs to be used in calculating

the gradients. This is a different requirement from the sigmoid function in Eqn. (3.20),
where a

(k)
i does not need to be kept for EBP, and it gives rise to extra cost for both

computation and storage. The computational cost is negligible if a GPU is used in
training. Furthermore, when β

(k)
i is not involved in training, it has been found that

using ∂f
(k)
i (a(k)

i)/∂α
(k)
i = 0 for the α

(k)
i = 0 case in Eqn. (5.9) makes only a little

difference1, which can simplify the implementation.

5.2.2 Parameterised ReLU functions

For the ReLU function with a hinge-like shape, the most straightforward way to make
it a parameterised form is to individually associate a scaling factor with either part of
the function, i.e., to enable the two ends of the hinge to rotate separately around the
“pin”, as illustrated in Figure 5.2. This function is denoted as p-ReLU,

f(a) =
{

α ·a if a > 0
β ·a if a ⩽ 0

, (5.11)

where α, and β are real-valued scaling factors of the positive and negative parts.
The parametric ReLU function proposed in (He et al., 2015b) is a simplified form
of p-ReLU(α,β), by fixing α = 1. Similarly, another simplified form of interest is
p-ReLU(α,0).

1Note that this approximation was not used in the experiments reported in this thesis.

112 Learning Hidden Activation Functions

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

1

2

3

4
p-ReLU(1,0)

p-ReLU(2,0.2)

p-ReLU(-0.5,-3)
Rotate

Rotate

f(a)

a

Figure 5.2 The rotation of the positive and negative parts of p-ReLU functions around
the origin of the coordinate system.

In a similar way to the p-Sigmoid, the function parameters depend on each hidden
layer artificial neuron. Therefore, the derivatives of p-ReLU with respect to a

(k)
i , α

(k)
i ,

and β
(k)
i for EBP are

∂f
(k)
i (a(k)

i)
∂a

(k)
i

=
{

α
(k)
i if a

(k)
i > 0

β
(k)
i if a

(k)
i ⩽ 0

, (5.12)

∂f
(k)
i (a(k)

i)
∂α

(k)
i

=
{

a
(k)
i if a

(k)
i > 0

0 if a
(k)
i ⩽ 0

, (5.13)

∂f
(k)
i (a(k)

i)
∂β

(k)
i

=
{

0 if a
(k)
i > 0

a
(k)
i if a

(k)
i ⩽ 0

. (5.14)

Since the values of α
(k)
i and β

(k)
i are not constrained, the sign of a

(k)
i cannot be inferred

from f
(k)
i (a(k)

i). Therefore, it is necessary to keep a
(k)
i with extra memory usage for

backpropagation. As for the p-Sigmoid case, for p-ReLU(α(k)
i ,0), a

(k)
i does not need to

be kept by not updating the zero-valued α
(k)
i .

Moreover, it may be argued that, for unbounded activation functions like ReLU,
scaling them with factors of absolute values bigger than one is unsafe. However, in
the experiments performed in this thesis, it has not been found to cause any issues.
This indicates that though scaling up ReLU outputs may cause gradient explosion
(Bengio et al., 1994), it is also possible that the automatically learned scaling factors

5.3 Speaker Independent Modelling Experiments 113

can prevent explosion from occurring by scaling down ReLU outputs. In addition, even
if the gradient does get overly large, this issue can be fixed using gradient clipping, as
mentioned in Section 5.1, or ReLU function output clipping.

5.3 Speaker Independent Modelling Experiments

The use of the p-Sigmoid and p-ReLU for standard SI DNN acoustic model training is
investigated in this section. All CD-DNN-HMMs were constructed using the Mandarin
CTS data following the configurations described in Appendix A.5. If not explicitly
defined, for p-Sigmoid, α

(k)
i , β

(k)
i , and γ

(k)
i were initialised as 1.0, 1.0, and 0.0, re-

spectively; the initial values of α
(k)
i and β

(k)
i for p-ReLU were set to 1.0, and 0.25,

respectively. There are two things of interest: which activation function parameters to
select and how to train these parameters appropriately. For clarity, only the Dev04
test set was used for investigation, and the other test sets were kept for validation in
the end.

5.3.1 Training p-Sigmoid and p-ReLU parameters

For the p-Sigmoid CD-DNN-HMM systems, care needs to be taken in training activation
function parameters from the PT step, since some parameters, e.g., α

(k)
i , can change the

p-Sigmoid outputs rapidly and can affect the convergence of other model parameters.
Starting to train p-Sigmoid parameters from the FT step is preferred since all weights
and biases are already reasonably initialised. Therefore, training of α

(k)
i , β

(k)
i , and γ

(k)
i

individually were compared when either PT and FT, or only FT is applied. The results
are listed in Table 5.1.

Comparing S1+, S2+, and S3+ to S1, S2, and S3 respectively, we can see all
p-Sigmoid systems that started to learn their parameters from FT only outperformed
their counterparts that learned all the parameters together since PT. These results
coincide with our above mentioned inference. This was also tested with the p-ReLU
CD-DNN-HMM systems. Since PT was not used in ReLU DNN training, the p-ReLU
parameters were kept fixed in the first epoch to prevent them affecting other parameters.
The resulting systems were R1− and R2−. From Table 5.2, it is clear that training α

(k)
i

from the first epoch makes R1 outperform R1−, while doing this for β
(k)
i has no impact

on WERs. This reveals that since ReLU DNNs have unbounded activation functions,
their parameters can be more robust to the fluctuation of activation function outputs,
and it is not necessary to avoid the impact on other parameters at the beginning.

114 Learning Hidden Activation Functions

Table 5.1 Dev04 WERs with a trigram LM produced by the p-Sigmoid Mandarin CTS
CD-DNN-HMM systems.

ID Activation Function PT FT %WER

S1+ p-Sigmoid(α(k)
i ,1,0)

√ √
27.6

S2+ p-Sigmoid(1,β
(k)
i ,0)

√ √
27.7

S3+ p-Sigmoid(1,1,γ
(k)
i)

√ √
27.7

S1 p-Sigmoid(α(k)
i ,1,0) ×

√
27.1

S2 p-Sigmoid(1,β
(k)
i ,0) ×

√
27.5

S3 p-Sigmoid(1,1,γ
(k)
i) ×

√
27.4

S4 p-Sigmoid(α(k)
i ,β

(k)
i ,0) ×

√
27.2

S5 p-Sigmoid(1,β
(k)
i ,γ

(k)
i) ×

√
27.2

S6 p-Sigmoid(α(k)
i ,1, θ

(k)
i) ×

√
27.4

S7 p-Sigmoid(α(k)
i ,β

(k)
i ,γ

(k)
i) ×

√
27.3

Table 5.2 Dev04 WERs with a trigram LM produced by the p-ReLU Mandarin CTS
CD-DNN-HMM systems.

ID Activation Function First Epoch Rest Epochs %WER

R1 p-ReLU(α(k)
i ,0)

√ √
26.8

R2 p-ReLU(1,β
(k)
i)

√ √
27.0

R3 p-ReLU(α(k)
i ,β

(k)
i)

√ √
27.1

R1− p-ReLU(α(k)
i ,0) ×

√
27.4

R2− p-ReLU(1,β
(k)
i) ×

√
27.0

In summary, it was found to be helpful to keep the p-Sigmoid parameters frozen at
the beginning of training, but unnecessary or even harmful for p-ReLU systems.

5.3.2 Selecting p-Sigmoid and p-ReLU parameters to train

DNN-HMM WERs with all choices of p-Sigmoid and p-ReLU functions are shown in
Table 5.1 and 5.2. From the results, none of the p-Sigmoid and p-ReLU systems with
multiple learned parameters has outperformed S1 and R1, the two systems with only
the linear scaling factors estimated. Though the WER difference between p-Sigmoid
and p-ReLU with different parameters are not obvious, output value amplifier α

(k)
i

are selected to produce the full results on all test sets in Table 5.3 since it not only
results in the lowest WERs for both p-Sigmoid and p-ReLU, but also has been proved

5.4 p-Sigmoid and p-ReLU for Speaker Adaptation 115

Table 5.3 Mandarin CTS CD-DNN-HMM system WERs with a trigram LM on Eval97,
Eval03, and Dev04 test sets.

ID Activation Function Eval97 Eval03 Dev04
S0 sigmoid 34.1 29.7 27.9
S1 p-Sigmoid(α(k)

i ,1,0) 32.9 28.6 27.1
R0 ReLU 33.3 29.1 27.6
R1 p-ReLU(α(k)

i ,0) 32.7 28.7 26.8

useful as both SI and SD parameters for CNN, DNN, and RNN (Goh and Mandic,
2003; Swietojanski et al., 2016; Swietojanski and Renals, 2014; Trentin, 2001). Other
p-Sigmoid and p-ReLU parameters may also be the choice according to the situation,
such as in (He et al., 2015b).

Full results on the three test sets are presented in Table 5.3. S0 and R0 are the
baseline systems with standard sigmoid and ReLU functions. Comparing S1 to S0, and
R1 to R0, p-Sigmoid and p-ReLU resulted in on average 3.4% and 2.0% relative WER
reduction, by increasing the number of parameters by only 0.06% (6,000 among 10M)
in training, which illustrates the important role of parameterised activation functions.
Of course, an equivalent model without any activation function parameters can be
obtained by replacing p-Sigmoid(α(k)

i ,1,0) or p-ReLU(α(k)
i ,0) with sigmoid or ReLU,

and scaling the corresponding weights of the following layer by α
(k)
i s. Furthermore,

although on this task, p-ReLU outperformed p-Sigmoid, the relative improvement is
small. This shows that improvement from p-Sigmoid using α

(k)
i may already contain

some benefits from making sigmoid more similar to ReLU, but more improvements
were from the extra flexibility to allow the contribution of each hidden artificial neurons
to be automatically and individually weighted.

5.4 p-Sigmoid and p-ReLU for Speaker Adaptation

This section introduces another application of the p-Sigmoid and p-ReLU functions:
speaker adaptation. Both functions are first modified to use SD parameters; then the
adaptation criterion and procedure used in this thesis are introduced.

5.4.1 SD p-Sigmoid and p-ReLU parameters

Adaptation can be viewed as a special model training approach using two data sets that
are asymmetric in size. That is, a relatively small set of adaptation data is available

116 Learning Hidden Activation Functions

for either training or testing, which has a mismatch with the existing model and is
insufficient to construct a new model. Adaptation aims to reduce such mismatch by
retraining existing model parameters using the adaptation data.

Like other training problems, the choice of parameters, training criteria, and
optimisation methods are important for adaptation. It is worth taking into account the
properties of the adaptation data when designing an adaptation method. For example,
in the MLLR/CMLLR approach described in Section 2.6.1, the use of linear transforms
as parameters, the maximum likelihood (ML) criterion, as well as the regression trees to
cluster transforms, are all designed to use the limited adaptation data more efficiently.

Applying the p-Sigmoid and p-ReLU to the adaptation task requires adapting their
parameters. This is an appropriate choice since activation function parameters can be
more efficient in training than standard weights and biases, as mentioned in Section 5.1.
The p-Sigmoid and p-ReLU parameters can be combined with various different criteria
and optimisation procedures for adaptation, but in this thesis only one possible solution
presented later in Section 5.4.2 is used. Furthermore, SD parameter estimation can
rely on either true reference word labels or ASR output hypotheses, often called the
supervised or unsupervised adaptation mode. All experiments with p-Sigmoid and
p-ReLU adaptations in this thesis use test-time adaptation (see Section 2.6.1) with the
unsupervised mode.

The best configurations found for SI acoustic model training in Table 5.1 and 5.2
were used for adaptation, which scale the sigmoid and ReLU output values linearly.
The scaling factor is made to be dependent on each speaker s, i.e., α

(k,s)
i , and the

functions in use are p-Sigmoid(α(k,s)
i ,1,0) and p-ReLU(α(k,s)

i ,0). Both functions can
be rewritten as

f
(k,s)
i (a(k)

i) = α
(k,s)
i ·f(a(k)

i), (5.15)

which fall into the LHUC speaker adaptation framework (Swietojanski and Renals,
2014). The EBP training uses Eqns. (5.7) and (5.8), or (5.12) and (5.13), by replacing
SI linear scaling with SD scaling. All α

(k,s)
i s are initialised to 1.0 so that the initial SD

model is equivalent to the SI model. A major difference between this work and the
initial LHUC adaptation work (Swietojanski and Renals, 2014) is that a linear scaling
factor α

(k,s)
i rather than a sigmoid function constraint scaling factor is used. It falls

into the LHUC framework extended later that allows different functions (Swietojanski
et al., 2016), including a linear function, to be applied to transform the amplifiers.

5.5 Speaker Adaptation Experiments 117

5.4.2 Adaptation criteria and the layer-wise scheme

In this thesis, the α
(k,s)
i s for all p-Sigmoid and p-ReLU functions are trained with the

standard cross entropy (CE) criterion using the EBP algorithm and speaker specific
adaptation data. If the supervision is provided as frame-state alignments, each class
label follows the Bernoulli distribution and Eqn. (3.16) becomes

FCE(t) =− lnP (Ck0 |x
in(t)) (5.16)

∝− lnp(xin(t)|Ck0),

where k0 is the reference target at time t. Therefore, minimising CE maximises the
per frame log posterior probability, and is equivalent to maximising the per frame
log-likelihood. This follows a similar idea to both MAP and ML adaptation methods
(Gauvain and Lee, 1994; Woodland, 2001). Alternatively, other criteria and learning
methods can also be applied to adapt the p-Sigmoid and p-ReLU parameters (Huang
et al., 2015; Liao, 2013; Yu et al., 2013).

It should be noted that learning α
(k,s)
i is equivalent to using standard activation

functions with all SD weights associated with node i in the following layer scaled by
1/α

(k,s)
i (if α

(k,s)
i ̸= 0), which if learned directly would require more parameters to be

changed. This gives an insight of the power of the parameterised sigmoid and ReLU
methods.

While adaptation with an unconstrained scaling factor may be unsafe, in the exper-
iments performed, a layer-wise adaptation approach that simulates the discriminative
PT and FT method (see Section 3.8.3), has been found sufficient to stabilise adaptation.
That is, once adaptation of a hidden layer has completed for a single epoch, the
following hidden layer is jointly adapted with all α

(k,s)
i associated with previous layers.

This procedure starts from the input layer and can be continued until a desired number
of hidden layers have been adapted. The final step is FT of all the α

(k,s)
i s in the whole

network which are adapted together for multiple epochs.

5.5 Speaker Adaptation Experiments

The SD DNN parameters were updated once per adaptation utterance, with the
updates averaged over all frames in the utterance. Based on the α

(k,s)
i , the parameters

of both p-Sigmoid and p-ReLU were learned using the layer-wised adaptation method
described in Section 5.4.2. The FT step in adaptation was performed for 6 epochs. A

118 Learning Hidden Activation Functions

fixed learning rate was used throughout adaptation with 1.0×10−2 for p-Sigmoid and
2.5×10−3 for p-ReLU.

Three different sets of experiments were performed to evaluate the proposed adap-
tation methods on the 200h MGB data set (see Appendix A.2). First, the standard
sigmoid and ReLU DNN-HMMs were adapted using p-Sigmoid and p-ReLU. Second,
adaptation was applied to bottleneck (BN) DNN features for use in GMM-HMMs.
Finally, BN DNN and DNN-HMM adaptation methods were combined based on stacked
DNN-HMM systems. The supervision hypotheses for adaptation were generated by
joint decoding of SI tandem and DNN-HMM systems. For p-Sigmoid and p-ReLU
methods, the DNNs had sigmoid and ReLU activation functions accordingly, and the
resulting WERs of the hypothesis supervisions were 28.2% and 27.8%. Furthermore,
the proposed methods are compared with baseline adaptation methods, such as DNN
layer bias adaptation, MLLR, and CMLLR. Note that only test-time p-Sigmoid and
p-ReLU adaptation is used in this section, so it is not used in any DNN or GMM-HMM
training. At the end of this section, 150h TED CD-DNN-HMM systems were adapted
with the supervision produced by the target systems themselves.

5.5.1 MGB hybrid system adaptation

Sigmoid and ReLU SI DNN-HMM systems were built to evaluate the hidden activation
function adaptation approaches. The DNN structure was 720×1000×1000×1000×
1000×1000×6001. Configurations with different hidden layers adapted were evaluated
in Table 5.4, to show the role of each hidden layer in speaker adaptation. With the
comparison of different adaptation configurations, more hidden layers were progressively
involved in adaptation, from the input to the output of the DNN. The SD parameters
of all different layers involved in adaptation, the α

(k,s)
i s, are jointly adapted.

From Table 5.4, although adapting more hidden layers with p-Sigmoid and p-ReLU
consistently reduces the WER, the improvement from extra layers decreases as the newly
adapted hidden layer is closer to the DNN output layer. This coincides with previous
findings that the low level characteristics of speech, such as speaker dependencies, are
mainly modelled by the input layer, which makes them more important for speaker
adaptation (Mohamed et al., 2012; Swietojanski and Renals, 2014). For the MGB data
set, both p-Sigmoid and p-ReLU gave the lowest WERs by adapting all hidden layers.
Meanwhile, compared to adapting the bias values of each hidden layer, p-Sigmoid and
p-ReLU gave consistently better performance since their parameters were more effective
as discussed in Section 5.4.1. Adapting hidden layer biases is also a commonly used

5.5 Speaker Adaptation Experiments 119

Table 5.4 MGB 200h CD-DNN-HMM system WERs with a 160k word 4-gram LM on
Dev.sub test set. The parameters of p-Sigmoid, p-ReLU, and the biases of sigmoid and
ReLU systems from the first n layers were adapted. The 6th layer is the output layer.

n Layers p-Sigmoid Bias (sigmoid) p-ReLU Bias (ReLU)
0 30.6 30.6 29.9 29.9
1 28.9 30.1 28.2 29.3
2 28.5 29.4 28.0 29.1
3 28.4 28.9 28.0 29.0
4 28.3 28.8 27.8 29.0
5 28.3 28.8 27.8 28.7
6 29.0 28.4

method (Yao et al., 2012), which adapts the same number of parameters as p-Sigmoid
and p-ReLU.

5.5.2 MGB tandem system adaptation

The use of the p-Sigmoid and p-ReLU in tandem BN DNN adaptation for GMM-HMMs
is explored in this section. The input features to BN DNNs were FBANK D, and the DNN
structure was 720×1000×1000×1000×1000×39×1000×6001. For BN DNNs, only
hidden layers preceding the BN layer were involved in p-Sigmoid and p-ReLU speaker
adaptation, as the SD parameters of the last two hidden layers were not involved in
BN feature generation.

Two BN DNNs were trained separately for the sigmoid and ReLU. The BN DNN
systems were constructed following the standard recipe described in Section 3.9.1 and
their adaptation results are listed in Table 5.5. If CMLLR was used, BN GMM-HMMs
were trained by applying CMLLR-based speaker adaptive training (SAT), which had
the GMM-HMMs and the per speaker CMLLR transforms estimated iteratively. Both
SAT and non-SAT GMM-HMMs finally used minimum phone error (MPE) training.
Extra model-based MLLR transforms were also used for SAT-based models. Note
that once BN features were changed due to BN DNN adaptation, CMLLR and MLLR
transforms were re-estimated to accommodate these changes.

Table 5.5 gives the results of applying p-Sigmoid and p-ReLU for test-time adapta-
tion of BN DNNs. It can be seen that the BN GMM-HMM system performance was
improved, as it improved the overall quality of testing features. Comparing p-Sigmoid
and p-ReLU adaptation with the joint use of CMLLR and MLLR, although p-Sigmoid
adaptation resulted in smaller WER reductions, it only adapted BN features at test

120 Learning Hidden Activation Functions

Table 5.5 MGB 200h BN GMM-HMM system WERs with a 160k word 4-gram LM on
Dev.sub using different BN DNN and adaptation methods.

p-Sigmoid CMLLR MLLR %WER
× × × 29.3√

× × 28.3
×

√ √
27.8√ √ √
27.6

p-ReLU CMLLR MLLR %WER
× × × 29.5√

× × 27.6
×

√ √
27.6√ √ √
27.3

time, while CMLLR transforms were also estimated during GMM-HMM training.
Meanwhile, CMLLR transformed features matched GMM-HMMs better due to the
CMLLR based SAT, which was more computationally expensive than test-time only
adaptation. In addition, it can also be seen that both p-Sigmoid and p-ReLU adaptation
were complementary to CMLLR and MLLR transforms. It should be noted that if BN
features are adapted, it is better to re-compute the mean and variance normalisation,
as BN features can have a large change in range caused by adaptation.

5.5.3 MGB stacked hybrid system adaptation

A combination of the adaptation methods is finally investigated based on stacked
DNN-HMM systems. The BN tandem features described in Section 5.5.2 were used to
train the stacked hybrid DNN-HMMs. The DNN acoustic model structure was the
same as that used in Section 5.5.1, except for the input vector size. If the decorrelation
matrix and CMLLRs were used to transform the BN tandem features, the DNN input
size was 702; otherwise, it was 819.

Table 5.6 contains results of the stacked DNN-HMM systems. The 1st, 2nd, and
3rd columns in the table show if adaptation was applied to the BN DNN, the BN
tandem features, or to the DNN-HMM acoustic models. From the results, it is clear
that all of the three adaptation methods can reduce the WER. It is not surprising
that for BN DNN adaptation, p-Sigmoid and p-ReLU clearly performed better than
CMLLR, since adaptation was applied to multiple hidden layers and should be more
powerful than using just linear transforms. Meanwhile, p-Sigmoid and p-ReLU resulted
in slightly lower WERs when they were used for BN DNN adaptation than for DNN-

5.5 Speaker Adaptation Experiments 121

Table 5.6 MGB 200h stacked DNN-HMM system WERs with a 160k word 4-gram LM
on Dev.sub using different BN features and adaptation methods.

BN p-Sigmoid CMLLR p-Sigmoid %WER
× × × 28.9
× ×

√
28.1

×
√

× 28.2√
× × 28.0√ √

× 27.9√ √ √
28.1

BN p-ReLU CMLLR p-ReLU %WER
× × × 28.6
× ×

√
27.4

×
√

× 27.8√
× × 27.1√ √

× 26.8√ √ √
27.4

HMM adaptation. Perhaps ideally, the opposite would be expected since both BN and
PLP features can be involved in acoustic model adaptation. Therefore, this indicates
that the stacked DNN adaptation is more prone to over-fitting than the BN DNN.
Furthermore, p-Sigmoid and p-ReLU are complementary to CMLLR, as the joint use
of these methods further improved the performance. Finally, if the input vectors are
already well adapted, test-time only DNN-HMM adaptation is no longer useful, perhaps
due to over-fitting. However, SAT training may improve performance further, as in
Table 5.5, p-Sigmoid with CMLLR based SAT achieves a WER of 27.6%, which is
better than the 27.9% shown in Table 5.6.

5.5.4 TED hybrid system adaptation

The speaker adaptation experiments in all previous sections used supervisions from
other systems. Though this does not affect comparisons between different adaptation
methods with the same supervisions and is closer to common real word situations, the
absolute improvements are not a perfect measure of how much the proposed methods
could gain from the speaker specific data, since system complementarity embedded in
the supervision may also contribute to the improvements. Therefore, all TED system
adaptation experiments used supervisions produced by the same SI systems. Details of
the TED data and the system configurations can be found in Appendix A.6.

122 Learning Hidden Activation Functions

Table 5.7 TED CD-DNN-HMM system 4-gram LM WERs on Dev2010, Tst2010, and
Tst2011 test sets.

Activation Function Adaptation Dev2010 Tst2010 Tst2011
sigmoid None 16.4 15.0 12.5
sigmoid p-Sigmoid 15.9 13.9 11.8
ReLU None 16.2 14.4 12.3
ReLU p-ReLU 15.4 13.1 11.2

The TED CD-DNN structure was 720×1000×1000×1000×1000×1000×6024,
and CE hybrid system results are listed in Table 5.7. From the results, p-Sigmoid and
p-ReLU adaptation can consistently reduce WERs with the supervision produced by
corresponding SI systems. On Dev2010, Tst2010, and Tst2011, p-Sigmoid adaptation
gave a relative WER reduction over the SI sigmoid system of 3.0%, 7.3%, and 5.6%,
respectively, while p-ReLU adaptation gave WER reductions by 4.9%, 9.0%, and 8.9%,
respectively.

The results in Table 5.7 were obtained by adaptation using all test data, which is
more than generally could be collected in practice. Therefore, it is interesting to see if
these methods can be applied to the case when fewer speaker specific data are available
for SD parameter estimation. The p-Sigmoid and p-ReLU adaptation performance with
different amounts of speaker specific data on Tst2010 is presented in Figure 5.3. From
the figure, it can be observed that both methods require far fewer than 600 seconds
per speaker to take effect, but more speaker specific data is often helpful to further
improve performance.

5.6 Summary and Conclusions

In this chapter, the use of general parameterised forms of sigmoid and ReLU activation
functions was studied. It has been found that a linear scaling factor α

(k)
i with no

constraint imposed is the most useful for both sigmoid and ReLU. Experimental results
on a challenging CTS Mandarin task showed that DNNs trained with parameterised
sigmoid and ReLU functions resulted in 3.4% and 2.0% relative reductions in WER,
respectively. This reduction in WER requires an increase in the number of parameters
in training by only 0.06%.

Once an SI DNN with p-Sigmoid(α(k)
i ,β

(k)
i ,γ

(k)
i) is trained, α

(k)
i , β

(k)
i , and γ

(k)
i can

be implemented by scaling the outbound weights, inbound weights, and bias value
associated with artificial neuron i by α

(k)
i , β

(k)
i , and (b(k)

i + β
(k)
i)/b

(k)
i . Similarly, a

5.6 Summary and Conclusions 123

 0sec. 15sec. 30sec. 60sec. 120sec.

14.0

13.2

13.6

14.4

14.8

Speaker specific data duration

T
st

20
10

 %
W

E
R

600sec.

p-Sigmoid(⍺,1,0)

p-ReLU(⍺,0)

240sec.

Figure 5.3 p-Sigmoid and p-ReLU adaptation results on TED Tst2010 test set with
different amounts of speaker specific data.

p-ReLU(α(k)
i ,0) DNN can also be converted to an equivalent ReLU DNN, by scaling

the outbound weights of i by α
(k)
i . These reveal that extra parameters (except for

β
(k)
i for p-ReLU) do not change the form of functions learned through training. It

may be argued whether these redundant activation function parameters are useful.
However, common deep learning techniques, such as using more hidden layers (e.g.,
DNNs) and sharing parameters in different ways (e.g., CNNs), are not about “what
mappings to learn”, but about “how to learn the mappings”, since a 2-layer MLP with
the sigmoid activation function can arbitrarily accurately represent any continuous
mapping function, as mentioned in Section 3.3.3. Actually these p-Sigmoid and p-ReLU
parameters, such as α

(k)
i and β

(k)
i , scale a vector of weights together by the same factor

and impose correlations within each such vector, which cannot be achieved by normal
GD or SGD training.

A technique that has a similar effect to p-Sigmoid and p-ReLU SI modelling is the
batch normalisation method introduced in Section 3.6.4, which employs two vectors to
linearly transform the input to each layer normalised at the batch level. These vectors
have the same effect as α

(k−1)
i and γ

(k)
i for p-Sigmoid, and α

(k−1)
i for p-ReLU. The

original explanation for adding these two vectors is to maintain the input value range
changed by batch level normalisation (Ioffe and Szegedy, 2015). From a parameterised
activation function perspective, the improvements from batch normalisation comprises

124 Learning Hidden Activation Functions

gains from both reducing layer specific input distribution changes and adding activation
function parameters.

The p-Sigmoid(α(s,k)
i ,1,0) and p-ReLU(α(s,k)

i ,0) were also applied to speaker adap-
tation in this chapter. Several thousands of parameters from DNN-HMM, BN GMM-
HMM, and stacked DNN-HMM systems were adapted for each speaker using the
proposed methods at test time. A layer-wise adaptation scheme was used to stabilise
the multi-layer SD hidden activation function parameter learning. It has been found
that learning activation function parameters is an effective method for speaker adapta-
tion, which is not only complementary to standard CMLLR feature transforms, but
also more powerful in DNN adaptation scenarios.

5.7 Related Work

There has been a long-term interest in studying sigmoid activation function parameters.
The widely used hyperbolic tangent function actually associates an input value scale
2 and output value bias −1 to the sigmoid (Bishop, 1995). Han and Moraga (1995)
further investigated different logistic functions with fixed parameters, and found some
of them could lead to faster convergence. Trentin (2001) and Goh and Mandic (2003)
showed output value amplifiers could be learned in training. Since then, there have been
several studies on learning parameterised activation functions. In (Siniscalchi et al.,
2013, 2010), Hermite polynomial activation functions with a number of coefficients were
learned in SI MLP acoustic models, and the coefficients were made SD by adapting
to a particular speaker during testing. Similarly, Swietojanski and Renals (2014)
associated each hidden artificial neuron with a weight constraint by sigmoid functions,
and the DNN was adapted by LHUC, learning a sigmoid constraint scaling factor
for each hidden artificial neuron. An advantage of LHUC is that it does not rely on
the choice of hidden activation functions. The p-Sigmoid and p-ReLU with only α

(k)
i

became variations of LHUC (Zhang and Woodland, 2016). Zhao et al. (2015) also used
parameterised sigmoid functions for adaptation, which did not contain the output value
scaling factor. The parametric ReLU was proposed as a general activation function, and
applied to a very deep CNN for image classification (He et al., 2015b). This method
had the coefficients of its negative part adaptively learned and allowed automatic
learning of rectification. Shortly afterwards, Sivadas et al. (2015) and Yoshioka et al.
(2016) applied the same method to DNN and SI CNN acoustic modelling for Aurora-4
noisy speech recognition. Moreover, the softmax function was parameterised as well,

5.7 Related Work 125

which had equivalent terms to GMMs with a shared covariance matrix (compared to
equivalent terms to the normal softmax function in Section 3.3.1) (Tüske et al., 2015a).

DNN adaptation is also a problem drawing more attention nowadays, since it is less
mature compared to GMM-HMM adaptation methods. A convenient way of adapting
DNNs is to use existing GMM-HMM adaptation methods such as CMLLR to create SD
input features (Karafiát et al., 2014; Knill et al., 2013; Seide et al., 2011b). Alternatively,
different DNN oriented adaptation techniques have also been developed, which usually
use a discriminative criterion, sometimes with additional regularisation (Huang et al.,
2015; Liao, 2013; Swietojanski et al., 2015; Wu et al., 2016a; Yu et al., 2013). Besides
the hidden activation parameters (Siniscalchi et al., 2013; Swietojanski et al., 2016;
Swietojanski and Renals, 2014; Woodland et al., 2015; Zhang and Woodland, 2016;
Zhao et al., 2015), there are other choices as to which DNN parameters to adapt,
which include the weights and biases of standard DNN layers (Doddipatla et al., 2014;
Gemello et al., 2007; Li and Sim, 2010; Liao, 2013; Neto et al., 1995; Ochiai et al.,
2014; Yao et al., 2012; Yu et al., 2013), extra input transforms (Cui and Goel, 2015; Li
and Sim, 2010; Seide et al., 2011b), and combination weights of several speaker cluster
based DNNs (Tan et al., 2015; Wu and Gales, 2015). Another set of approaches is to
supply the DNN with additional inputs to make a speaker-conditioned model such as
the use of additional i-vectors (Karanasou et al., 2014; Miao et al., 2014; Saon et al.,
2013; Senior and Lopez-Moreno, 2014) and speaker codes (Abdel-Hamid and Jiang,
2013; Ström, 1996) as input features.

Chapter 6

Hybrid and Tandem System Joint
Training

In this chapter, ASR system level joint training, which is introduced in Section 3.11.1,
is investigated with applications to both hybrid and tandem configurations. For hybrid
systems, DNN-HMMs are constructed based on CMLLR normalised features, and
CMLLR initialised transforms and DNN-HMMs are optimised together according to
the minimum phone error (MPE) criterion. For tandem systems, the bottleneck (BN)
DNN and GMMs combine to form a Gaussian mixture density neural network (MDNN)
model, and the joint training is actually MDNN-HMM discriminative sequence training,
still based on MPE. Note that both applications jointly train the feature extraction
and acoustic model modules, while the LM and decoding parameters are kept fixed
during the procedure.

6.1 Hybrid System MPE Training

MPE training for standard DNN-HMM acoustic models is reviewed in this section,
as a precondition for hybrid system joint training. To calculate the gradients using
error backpropagation (EBP) according to Eqn. (3.32), ∂FMPE(O)/∂aout

i (t) is required.
Applying the chain rule to Eqn. (2.101) yields

∂FMPE(O)
∂ lnyout

k
′ (t) = ∂FMPE(O)

∂ lnP (qt = k
′|o(t),Λ)

lnp(o(t)|qt = k
′
,Λ)+ lnP (qt = k

′|Λ)− lnp(o(t)|Λ)
lnp(o(t)|qt = k

′
,Λ)

=κγMPE
k

′ (t), (6.1)

128 Hybrid and Tandem System Joint Training

and therefore,

∂FMPE(O)
∂aout

k (t) =
∑

k
′

∂FMPE(O)
∂ lnyout

k
′ (t)

1
yout

k
′ (t)

∂yout
k

′ (t)
∂aout

k (t)

=κγMPE
k (t)−yout

k (t)κ
∑

k
′ γMPE

k
′ (t), (6.2)

according to Eqn. (3.28). Using Eqn. (2.99),
∑

k
′ γMPE

k
′ (t) can be arranged as

∑

k
′

γMPE
k

′ (t) = κ
∑

W′

p(O|W′)κP (W′)PhoneAcc(W,W
′)∑

W′′ p(O|W′′)κP (W′′)
∑

k
′

γk
′ |λ

W′
(t)− (6.3)

κ

∑
W′ p(O|W′)κP (W′)PhoneAcc(W,W

′)∑
W′ p(O|W′)κP (W′)

∑

W′

p(O|W′)κP (W′)∑
W′′ p(O|W′′)κP (W′′)

∑

k
′

γk
′ |λ

W′
(t),

which equals to zero using
∑

k
′ γk

′ |λ
W′

(t) = 1, and hence Eqn. (6.2) becomes

∂FMPE(O)
∂aout

k (t) = κγMPE
k (t). (6.4)

Similarly, based on Eqns. (2.86), (2.87), and (3.28), we have
∑

k
′ γMMI

k
′ (t) = 0,

∂FMMI(O)
∂aout

k (t) = κγMMI
k (t) (6.5)

for maximum mutual information (MMI) sequence training, and

∂FML(O)
∂aout

k (t) = κ
(
γk(t)−yout

k (t)
)

(6.6)

for maximum likelihood (ML) sequence training.
Unlike frame level training such as cross entropy (CE), sequence training processes

each whole utterance O to calculate γk(t), from Eqns. (6.4) – (6.6). Therefore, it is less
efficient to conduct SGD based sequence training with frame level data shuffling, since
it requires too much utterance processing for each minibatch. Utterance level data
shuffling is often used in sequence training where only one utterance is processed in
each minibatch, and each parameter update can be based on the gradients accumulated
on multiple utterances. In this thesis, all parameters are updated once per minibatch,
and thus sequence training usually uses a smaller learning rate than CE training to

6.2 MPE Training Experiments 129

avoid overly large parameter changes when the data in the minibatch are not well
sampled.

6.2 MPE Training Experiments

This section only contains DNN-HMM MPE training results, since MMI and ML
training are not directly applied to joint training later in this chapter. The results
on both a small data set, 15h Babel Tamil LLP CTS data (see Appendix A.1), and a
large data set, 200h MGB broadcast data (see Appendix A.2), are presented.

The Tamil LLP context-dependent (CD) DNN acoustic model structure is 504×
1000×500×500×500×500×1002. The CE DNN training configuration is listed in
Table A.1. The first experiment investigated the use of denominator lattices with
different densities. The learning rates were fixed to 2.0× 10−5 for four epochs in
these experiments. From the results in Table 6.1, the denominator lattice density
APS= 2000.0 (see Section 2.4.3) is sufficient for DNN-HMM MPE training, and is
used throughout the thesis. Next, the impact of learning rates on MPE training was
investigated. From Table 6.1, it can be seen that a sufficiently large learning rate is
important for the model to converge to a good local optimum, but the performance
will dramatically decrease once the learning rate exceeds a limit. In line with the
discussion in Section 6.1, this learning rate limit is much smaller than those for normal
frame level training. Note that the optimal learning rate found in Table 6.1 is much
larger than those reported in other publications (Kingsbury, 2009; McDermott et al.,
2014; Su et al., 2013; Veselý et al., 2013; Wiesler et al., 2015). This is perhaps partly
because Tamil LLP contains only 15h data and is insufficient to use smaller learning
rates. However, in practice, it is often observed that using large learning rates are
helpful in improving MPE training performance, and all results presented later in this
chapter were based on learning rates tuned for each individual system to perform well.
DNN-HMM MPE training can also be conducted without tuning the learning rates,
for instance, by using second order optimisation methods (Kingsbury et al., 2012).

The MGB 200h CD-DNN acoustic model structure is 720×1000×1000×1000×
1000×1000×5973, and the learning rate used for MPE training is 4.0×10−5. The
WER for each MPE epoch is shown in Figure 6.1. The WER is consistently reduced
across all four MPE epochs, and in the end a 9.2% relative WER reduction is obtained.
Lattice regeneration is also evaluated. Initially, lattices were produced by the CE
DNN-HMMs and used in all epochs, which were assumed to be a good approximation
to the hypothesis space regardless of model changes. This assumption can be improved

130 Hybrid and Tandem System Joint Training

Table 6.1 Babel Tamil LLP DNN-HMM system CERs on Dev set with a trigram LM,
and different lattice pruning settings.

Criterion Learning Rate APS %CER
CE 2.0×10−3 79.1
MPE 2.0×10−5 1000.0 78.3
MPE 2.0×10−5 2000.0 78.1
MPE 2.0×10−5 4000.0 78.1
MPE 2.0×10−5 6000.0 78.1
MPE 4.0×10−5 2000.0 77.9
MPE 8.0×10−5 2000.0 77.9
MPE 1.6×10−4 2000.0 77.5
MPE 3.2×10−4 2000.0 77.4
MPE 6.4×10−4 2000.0 78.4

by regenerating lattices using the model produced by the first epoch, and a 0.2%
absolute WER reduction was acquired. Lattice regeneration by later models did not
result in any performance improvement. Though lattice regeneration can improve MPE
training by a small amount, it is not used in following experiments in this chapter,
since it is very expensive for both computation and storage.

6.3 Discriminative Joint SAT

As introduced in Section 2.6.1, speaker adaptive training (SAT) applies speaker adap-
tation in both acoustic model training and testing, to obtain acoustic models that
are more focused on modelling phonetically relevant variations. Meanwhile, instead
of MAP or MLLR, GMM-HMM adaptation can be conducted based on MPE or
MMI (Povey et al., 2003a; Wang and Woodland, 2008), which can generate more
discriminative speaker dependent (SD) parameters. This section combines both ideas
by performing SAT for DNN-HMMs to optimise a discriminative sequence criterion.
Specifically, the DNN-HMM is constructed based on CMLLR normalised features,
and both CMLLR initialised input feature transforms and CD-DNN acoustic model
parameters are concurrently updated in MPE training, which falls into the ASR system
level joint training framework for both feature extraction and acoustic model modules.
Therefore, the proposed method is denoted as discriminative joint SAT.

Figure 6.2 depicts the DNN model structure for discriminative joint SAT. Since
the CMLLR initialised input transform is used for each frame o(t) which is stacked

6.3 Discriminative Joint SAT 131

40 1 2 3

30

31

32

Epoch Number

D
ev

.s
ub

 %
W

E
R

CE DNN-HMMs

32.6

30.3 30.2
29.9

29.6

29.6
29.4

MPE DNN-HMMs

MPE DNN-HMMs + Lat. Regen.

Figure 6.1 MGB 200h DNN-HMM MPE training performance on Dev.full test set with
a 64k word 4-gram LM. CE DNN-HMMs generated the initial lattices for MPE; lattices
can be regenerated after 1st MPE epoch.

according to a particular context shift set (c = {−4,−3,−2,−1,0 + 1,+2,+3,+4}
in this thesis) to form the DNN acoustic model input xin(t), the extended DNN
structure is different from the standard one. Not only does the original first layer take
inputs from multiple layers, but also those layers have their parameters tied together.
Calculating the gradients with EBP for such a structure requires the extended formulae
in Eqn. (3.32), with the shared input transform replaced according to the current
speaker.

For supervised adaptation, some data from a testing speaker are available with
their true reference, possibly generated through an enrolment session. In this case,
it is possible to model the speaker specific characteristics better with discriminative
training. For unsupervised adaptation, discriminative sequence adaptation can cause
SD parameters to over-fit the hypotheses that serve as the supervision rather than
the correct references. Since this thesis focuses only on unsupervised adaptation, a
regularisation method is required for discriminative sequence training. The training
and decoding procedure is as follows.

• On the training data, the standard MPE criterion is used in joint SAT. The
CMLLR initialised transforms are concurrently updated with the CD-DNN
acoustic model based on true references.

132 Hybrid and Tandem System Joint Training

DNN HMMs

CMLLR initialised linear transform

-4
-3

+4

-4

-3

+4

-4,-3,…,+4 Context shifts

Figure 6.2 The DNN structure for discriminative joint SAT. A CMLLR transform is
used to initialise an input layer shared by all context shifts of the frames from the
same speaker.

• At test time, the original CD-DNN acoustic model parameters are kept frozen and
only CMLLR transforms of testing speakers are trained through the discriminative
sequence training according to the supervision.

One possible way to regularise unsupervised discriminative sequence training is to
use the F-smoothing method in testing SD parameter estimation, which is a special case
of the H-criterion (Gopalakrishnan et al., 1991) smoothing a discriminative sequence
objective function with frame level CE (Su et al., 2013),

FMPE(O)+H
∑

t
FCE(t), (6.7)

since CE training is found to be effective in unsupervised adaptation (see Section 5.4).
This method has also been applied to discriminative sequence adaptation by other
researchers (Huang et al., 2015). Alternatively, we can assume that the difference
between all discriminatively trained SD transforms and their CMLLR initialisations
can be modelled by a linear transform. An extra linear transform is imposed between
CMLLR transforms and the first hidden layer, which is learned through joint SAT and
applied to testing speakers without modification. Note that no CMLLR initialised
transform is updated in this joint training procedure. This method is denoted as

6.4 Discriminative Joint SAT Experiments 133

DNN HMMs

CMLLR transform initialised layer

-4
-3

+4

-4,-3,…,+4 Context shifts

linear transform layer LinXForm

-4

-3

+4

Figure 6.3 The DNN structure for discriminative joint SAT with LinXForm. A CMLLR
transform is viewed as an input layer shared by all context shifts of the frames from
the same speaker. The LinXForm layer is shared by all frames.

LinXForm and does not need test-time discriminative training. The DNN structure is
shown in Figure 6.3.

6.4 Discriminative Joint SAT Experiments

This section starts with experiments on the WSJ0 SI-84 setup (see Appendix A.3) and
the resulting method is applied to Mandarin CTS data (see Appendix A.5) as validation
later. The SI-84 system results are listed in Table 6.2. The H parameter associated
with the MPE criterion is the F-smoothing coefficient in Eqn. (6.7), which has been
tuned to generate the lowest WER. When H = 0.0, the standard MPE criterion is used.
The CD-DNN structure is 351× 1000× 1000× 1000× 1000× 1000× 3007, the same
as the SI-84 speaker independent (SI) CD-DNNs used in Section 4.5.1. The SAT CE
DNN-HMM system J0 was constructed using context-independent (CI) initialisation,
which reduced the WER on average by 9.1% relative compared to the SI system S5 in
Table 4.4. Four epochs of MPE training with a learning rate of 1.6×10−4 improved
the performance with a further 3.0% relative WER reduction, which is similar to
that obtained from the Tamil LLP system in Table 6.1. J2 was constructed using

134 Hybrid and Tandem System Joint Training

Table 6.2 SI-84 MPE SAT DNN-HMM system performance with a 65k word trigram
LM.

ID Criterion Parameters to Update %WER
CD-DNN LinXForm CMLLR Dev Eval

J0 CE
√

× 7.8 8.9
J1 MPE H = 0.0

√
× 7.6 8.6

J2 MPE H = 0.0
√ √

7.4 8.3
J3 MPE H = 0.2

√ √
7.2 8.3

J4 MPE H = 0.0
√ √

× 7.5 8.5

Table 6.3 72h Mandarin CTS MPE SAT DNN-HMM system performance with a
trigram LM on Eval97, Eval03, and Dev04 test sets.

ID Criterion Parameters to Update %WER
CD-DNN CMLLR Eval97 Eval03 Dev04

S01 CE (Baseline) 34.1 29.7 27.9
J5 MPE H = 0.0

√
× 31.2 27.3 25.7

J6 MPE H = 1.2
√ √

31.2 27.0 25.5

discriminative joint SAT based on the standard MPE criterion, and performed better
than the CE and MPE SAT baseline system J0 and J1. A further improved system, J3,
was obtained by using F-smoothing in joint SAT with H = 0.2 that outperformed J1
by 4.4%. However, it was found that F-smoothing did not improve the SI DNN-HMM
MPE training performance, perhaps due to differences in lattice design and silence
modelling compared to those used in (Su et al., 2013). The LinXForm method, J4,
also produced the lowest WER when no F-smoothing was used. J4 performed better
than the baseline J1 but worse than both J2 and J3.

Four epochs of MPE training with a learning rate of 4.0×10−3 were applied to the
CMLLR based CE DNN-HMMs in Table 5.3, and the results are presented in Table 6.3.
Compared to the sigmoid baseline system S0 in Table 5.3, the MPE SAT DNN-HMM
system J5 produced lower WER by 8.2% relative on average. The discriminative
joint SAT system, J6, only outperformed J5 by 0.5%, and the improvements were not
consistent across all three test sets. This is perhaps because the over-fitting issue by
discriminative adaptation is more severe on this data set than on WSJ, and therefore,
it requires a fairly large F-smoothing coefficient H = 1.2 to regularise the unsupervised
discriminative input transform learning, which is not helpful in training SI parameters.

6.5 Training GMMs using SGD 135

6.5 Training GMMs using SGD

Tandem system joint training is investigated in following sections of this chapter,
which has the BN DNN for feature extraction and GMM acoustic models concurrently
updated through SGD based MPE training. First, the GMM log-likelihood and gradient
calculation methods are modified to fit the GPU hardware. Next, the tandem system
configuration is revisited to simplify the build procedure and the parameters used more
efficiently. Third, techniques required by the traditional GMM-HMM MPE training,
I-smoothing and percentile based variance floor, are adapted from the EBW to SGD
optimisation framework. Finally, the tandem system joint training approach with
techniques to stabilise and improve training performance is proposed.

6.5.1 GPU based GMM calculations

From Eqn. (2.24), the log of cimN(z(t)|µim,σ2
im) is calculated by

logcim−
D

2 ln(2π)−
D∑

d=1
logσimd−

1
2

D∑

d=1

(zd(t)−µimd)2

σ2
imd

, (6.8)

and the log-likelihood of the GMM is obtained by summing log(cimN(z(t)|µim,σim))
using the log add algorithm presented in Algorithm 3 below (Young et al., 2015),
in which the constants are determined empirically. Most calculations happen in
computing the fourth term in Eqn. (6.8), which requires T ×S×M ×D summations
and 2×T ×S×M ×D multiplications given the total number of tied states S, the
number of Gaussians in each state M , and the samples in a minibatch T .

Algorithm 3 Calculate log(exp(x)+exp(y)) approximately
1: procedure LogAdd(x,y)
2: vmin←min(x,y)
3: vmax←max(x,y)
4: vdiff← vmin−vmax

5: if vdiff <−23.0258 then
6: if vmax <−0.5×1010 then
7: return −1.0×1010

8: else
9: return vmax

10: else
11: return vmax +log

(
1+exp

(
vdiff))

136 Hybrid and Tandem System Joint Training

A speed-up method used in this thesis for log-likelihood calculations is based on1

T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1
(zd(t)−µimd)2/σ2

imd (6.9)

=
T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1

z2
d(t)

σ2
imd

−2
T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1

zd(t)µimd

σ2
imd

+
T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1

µ2
imd

σ2
imd

.

By collecting the mean and variance vectors of all Gaussians in all tied states as a
mean matrix and a variance matrix both of dimension SM ×D, and collecting the
T samples as two T ×D-dimensional sample matrices containing zd(t) and z2

d(t), the
terms

T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1

z2
d(t)

σ2
imd

T∑

t=1

S∑

i=1

M∑

m=1

D∑

d=1

zd(t)µimd

σ2
imd

can be computed efficiently using the highly optimised general matrix multiplication
(GEMM) functions in the basic linear algebra subprograms (BLAS) library (Dongarra
et al., 1990).

A difficulty in SGD based GMM training is to update cim and σim under the
constraints cim > 0,

∑M
m=1 cim = 1, and σim > 0, while SGD is an unconstrained

optimisation method. These can be ensured by the following parameter transformations
(Juang et al., 1997; Young, 1990),

cim = exp(c̃im)
∑M

m
′=1 exp(c̃im

′)
(6.10)

σimd =exp(σ̃imd), (6.11)
11/σ2

imd instead of σ2
imd is actually stored and used in the calculation, in order to convert divisions

to multiplications.

6.5 Training GMMs using SGD 137

where σ̃imd and c̃im
′ are the actual unconstrained parameters updated by SGD. There-

fore, by applying the chain rule, the partial derivatives of F̄(O) are

∂F̄(O)
∂c̃im

=
T∑

t=1
γ̄im(t)(1− cim) (6.12)

∂F̄(O)
∂µimd

=
T∑

t=1
γ̄im(t) zd(t)−µimd

σ2
imd

(6.13)

∂F̄(O)
∂σ̃imd

=
T∑

t=1
γ̄im(t)

z2
d(t)−2zd(t)µimd +µ2

imd−σ2
imd

σ2
imd

(6.14)

∂F̄(O)
∂zd(t) =

S∑

s=1

M∑

m=1
γ̄im(t) zd(t)−µimd

σ2
imd

, (6.15)

where γ̄im(t) is the posterior probability of being in Gaussian mixture component m

of state i at time t calculated by multiplying γ̄i(t) with πim(t), and πim(t) is defined
by Eqn. (2.31). When F̄(O) is the ML, MMI, or MPE objective function, γ̄i(t) is
the ML state occupancy γi(t), scaled MMI state occupancy κγMMI

i (t), or scaled MPE
state occupancy κγMPE

i (t), which has been defined in Eqn. (2.87), (2.86), or (2.101),
respectively.

In order to speed up the gradient value calculation in Eqns. (6.13) and (6.14), similar
to the log-likelihood calculation, all γ̄im(t) are arranged as an SM ×T -dimensional
occupancy matrix, and the terms

∑T
t=1 γ̄im(t)zd(t) and

∑T
t=1 γ̄im(t)z2

d(t) are calculated
by multiplying the occupancy matrix with the sample matrices zd(t) and z2

d(t) using
the GEMM functions in the BLAS library. Meanwhile, it is observed that many πim(t)
values are very small. This causes the related gradient values to be very small and
can be ignored in calculation. Therefore, a threshold is used as a lower limit, and any
πim(t) smaller than the threshold is set to 0.0, which makes the occupancy matrix
more sparse and can speed up training further.

6.5.2 Revisiting tandem system construction

From the results in Table 3.7, although performance of the SI tandem system with
39-dimensional BN features is rather close to the SI hybrid system trained in the same
way, the tandem system used both FBANK and PLP features while the hybrid system
used only FBANK features, and PLP features were actually derived from FBANK
features. Such feature redundancy causes a less efficient parameter use, for example,
the tandem system in Table 3.7 has about 17M parameters, while the hybrid system

138 Hybrid and Tandem System Joint Training

only has about 10M parameters. The tandem system configuration is revised in this
section, in order to use the parameters more efficiently.

The revised tandem system build procedure is presented below.

1. Train a BN DNN based on the alignments generated by pretrained models.

2. Construct a monophone GMM-HMM system using BN features ybn(t) derived
from the BN DNN without any modification, i.e., z(t) = ybn(t). The GMM-HMMs
are estimated using the normal ML training.

3. Expand the monophone BN GMM-HMM system to an initial tied state triphone
BN GMM-HMM system using ML training, and the tied states are generated by
the standard decision tree tying method using ybn(t).

4. The final ML triphone BN GMM-HMM system is trained using the two-model
re-estimation method, with alignments for decision tree tying produced by the
well-trained initial triphone system. The final ML system can be further refined
by the conventional GMM-HMM MPE training.

The key differences between the revised tandem configuration presented above and
the previous one presented in Section 3.9.1 lie in two aspects:

• First, only BN features are used for GMM construction in the revised config-
uration, and the features are not decorrelated for GMM training, while the
previous configuration used both HLDA projected PLPs and STC transformed
BN features.

• Second, the previous procedure reused the tied state decision trees produced
based on PLP features, while the revised configuration builds new decision trees
for BN features.

All tandem systems in the rest of this chapter were built with the revised configura-
tion, and main differences between tandem and hybrid systems include the use of the
BN layer and the output layer with diagonal covariance GMMs rather than a normal
DNN layer with the softmax function.

6.6 MPE Training for GMMs with SGD

This section adapts the traditional EBW based GMM-HMM MPE training to the SGD
based optimisation framework. The SGD based GMM training uses the formulas in

6.6 MPE Training for GMMs with SGD 139

Section 6.5.1. From Section 2.7.4, two techniques need to be adapted to SGD for MPE,
namely I-smoothing and the use of a percentile based variance floor.

6.6.1 Parameter smoothing and weight decay

Recall the I-smoothing method introduced in Section 2.7.4, which applies a data depen-
dent interpolation between MPE and ML objective functions. The data availability of
each Gaussian component is taken into account with the Gaussian mixture component
dependent interpolation coefficient, τim(O), which causes each γMPE

im (t) to be increased
by a constant τ according to the definition in Eqn. (2.103). When applying a dynamic
MMI prior, the change to γMPE

im (t) is the same as for ML based I-smoothing, and the key
difference between the two methods lies in the use of MMI rather than ML estimated
prior parameters in the EBW update formulas Eqns. (2.105) – (2.108). However, in the
SGD based update formulas in Eqns. (3.35) and (3.36), the objective function can only
influence parameter changes through the term ∂F[n]|Θ[n]/∂θ, which is calculated using
EBP according to γMPE

im (t). As a result, ML based I-smoothing and the MMI dynamic
prior have identical effects in SGD. To simulate I-smoothing with a dynamic MMI
prior in the SGD framework, the H-criterion is used to interpolate FMPE with FMMI

using a constant weighting coefficient τMMI, and FMMI is pre-smoothed by I-smoothing
with τML

im (O). Thus, the objective function is

FMPE(O)+ τMMI
(
FMMI(O)+ τML

im (O)FML(O)
)

. (6.16)

An interesting question to investigate through SGD based MPE training is the
cause of the over-fitting issue in traditional GMM-HMM MPE training. If SGD based
GMM-HMM MPE training can improve test set WERs without I-smoothing, the
over-fitting is caused by the EBW algorithm; otherwise, it is due to GMM distributions
with individual diagonal covariance matrices, since MPE training for DNN-HMMs with
softmax output distributions does not require any regularisation (as seen in Section 6.2).
Furthermore, since it is easy to apply other types of regularisation methods to SGD,
such as the weight decay method (see Section 3.6), it is also possible to compare the
effects from I-smoothing and weight decay. As a result, the full objective function used
for SGD based GMM-HMM MPE training is

FMPE(O)+ τMMI
(
FMMI(O)+ τML

im (O)FML(O)
)

+ ε

2
∑

θ
θ2, (6.17)

140 Hybrid and Tandem System Joint Training

where θ is a parameter associated with the mth Gaussian in the ith state, and ε is the
weight decay coefficient. When differentiating the objective function, τML

im (O) is viewed
as a constant, and ∂FMPE(O)/∂θ, ∂FMMI(O)/∂θ, and ∂FML(O)/∂θ are calculated
using Eqns. (6.4) – (6.6).

6.6.2 The percentile based variance floor

As mentioned in Section 2.7.4, the use of a percentile based variance floor is beneficial
to stabilise training after each parameter update in MPE training with EBW. To apply
this method to the SGD framework, two issues need to be solved.

• How frequently should the variance floor be applied? Though using it only once
at the end of each epoch, as in the EBW framework, is insufficient to prevent
variance reduction since the SGD update occurs after each utterance, using it
over frequently can increase variance values as the relative threshold σ2

d(p%) is
obtained based on current parameters.

• How can σ2
d(p%) be calculated more efficiently? The traditional method is based

on a sorting algorithm, since it is executed once per epoch and hence the efficiency
is not very important. To use this method more frequently during the entire
SGD training procedure, σ2

d(p%) needs to be obtained with fewer calculations.

To solve the first issue, experiments were conducted to find out an appropriate
application frequency. It is found that flooring the variance after every 10 updates
is helpful to maintain the variance value range, and thus is used in all experiments
later in Section 6.8. To save the cost from computing the exact σ2

d(p%) by sorting
algorithms,

σ2
d(p%)≈ µ(σ2

d)+Φ−1(p

100) ·σ(σ2
d) (6.18)

is used as an approximate threshold, where µ(σ2
d) and σ(σ2

d) are the mean and standard
deviation of all variance values of dimension d, and Φ(·) is the CDF for the standard
Gaussian distribution. This reduces the computation complexity from O(N logN)
to O(N), where N = SM is the number of Gaussian components, by applying an
assumption that variance values associated with the same dimension follow a Gaussian
distribution.

6.7 Tandem System Joint Training 141

BN DNN

GMMs

MDNN HMMs

Figure 6.4 MDNN-HMMs used for tandem system joint training.

6.7 Tandem System Joint Training

The tandem system can be seen as MDNN-HMM models by combining the BN DNN
feature extraction module and GMM-HMM acoustic model module together, which is
shown in Figure 6.4, and the tandem system joint training is carried out as MDNN-
HMM MPE training in this thesis. This section addresses various issues in this approach.
It should be noted that MDNN, or mixture density neural network, refers to an ANN
model with a GMM layer rather a softmax layer for the output in this thesis, i.e., each
output target distribution is modelled by a GMM. A very similar term, mixture density
network or MDN, often refers to a different regression model that generates real-valued
outputs using a GMM whose parameters are the output from ANN models (Bishop,
1994). MDN has been applied to speech processing for both speech synthesis (Zen and
Senior, 2014) and acoustic-articulatory inversion (Richmond, 2002, 2006) tasks.

6.7.1 Use of ReLU to replace linear activation functions

In practice, it is observed that the use of linear activation functions in the BN layer
can cause a stability issue in training. This happens when the average of ∂F/∂ybn(t)
over a minibatch moves from positive to negative and the parameters can become
stuck at a very poor solution. To prevent this phenomenon from happening, the ReLU
function can be used to take the place of linear activation functions to keep the average
of ∂F/∂ybn(t) positive. Furthermore, in order to avoid the information loss caused by

142 Hybrid and Tandem System Joint Training

rectification, ybn(t) is transformed to

ỹbn(t) = ybn(t)−µ(ybn)+6σ(ybn) (6.19)

by modifying the BN layer bias vector bbn, where µ(ybn) and σ(ybn) are the mean and
standard deviation vectors of ybn estimated over the training set. This guarantees that
99.99966% of ybn samples are rectified without information loss, assuming ybn(t) follows
a multivariate Gaussian distribution. Finally, the Gaussian components constructed
on ybn(t) features, N(ybn(t)|µim,σ2

im), can be transformed to fit the transformed BN
feature ỹbn(t) as

N(ỹbn(t)|µim−µ(ybn)+6σ(ybn),σ2
im)

without any retraining.

6.7.2 Relative update value clipping

As seen in Table 6.1, in SGD training, a fairly large learning rate, which is necessary
for fast convergence, can sometimes cause severe performance degradation. This can
be due to large inaccurate gradients generated due to various reasons such as poor
acoustic conditions and erroneous reference labels etc. A possible solution is the batch
normalisation method introduced in Section 3.6, but this was found to cause DNN
models to over-fit on small training sets (e.g., 15h). A widely used alternative solution
that prevents the parameters changing too much in a single update is the update
value clipping (see Section 3.6). However, as the standard method requires specific
clipping thresholds, it is tedious to use it here as the MDNN has both GMM and DNN
parameters, the values of which are rather different in range.

Here a method to find a relative threshold for clipping a particular collection of
parameters, Θ, is proposed. Let δθ[n] be the proposed change of θ at the nth update,
the mean and standard deviation of |δθ[n]| for all θ ∈Θ are µ(|δΘ[n]|) and σ(|δΘ[n]|),
and then |δθ[n]| is clipped according to a threshold

υ = µ(|δΘ[n]|)+mσ(|δΘ[n]|), (6.20)

where m is the relative threshold. The obtained threshold υ is then used in the update
value clipping method in Eqn. (3.38). Θ can be {cim}, {µimd}, and {σimd} for all i

and m, or W(l) or b(l) for a particular layer l.

6.8 Tandem System Joint Training Experiments 143

6.7.3 Amplified GMM learning

The MDNN output layer has a rather different functional form from other DNN layers.
As shown later in Section 6.8.1, the learning rate suitable for GMM parameters is
significantly larger than a normal DNN learning rate. Thus, in MDNN-HMM sequence
training, different learning rates, η and αη are used for the BN DNN and GMMs
separately, where α > 1 is the amplification factor. To regularise training appropriately,
the weight decay factor ε for GMMs is also scaled by α.

6.7.4 Parameter updating schemes

Three different parameter update schemes for tandem system joint training are investi-
gated in this thesis:

1. Update GMMs and hidden layers in an interleaved manner, which may also be
useful as a regulariser; or

2. Update all parameters concurrently without restriction; or

3. Update all MDNN parameters concurrently, then update GMMs only to fit BN
features better.

These updating schemes are compared later in Section 6.8.2.

6.8 Tandem System Joint Training Experiments

The tandem system joint training experiments were first carried out on the MGB 50h
data set. The DNN acoustic model and BN DNN feature extraction structures are
720×1000×1000×1000×1000×1000×3984 and 720×1000×1000×1000×1000×
39×1000×3982, respectively. The configurations were later validated on the MGB
200h data set, and the related DNN acoustic model and BN DNN feature extraction
structures are 720×1000×1000×1000×1000×1000×6029 and 720×1000×1000×
1000×1000×39×1000×6027, respectively. The DNN layer MPE training used a fixed
learning rate of 1.0×10−4 and a relative update value clipping method threshold of
m = 3, whereas a threshold of m = 9 for GMMs in joint training. Note that the BN
features were not decorrelated for the diagonal coveriance GMMs, which is discussed
later in Section 6.8.3.

144 Hybrid and Tandem System Joint Training

80 1 2 3 4 5 6 7

36

37

38

39

Iteration/Epoch Number

D
ev

.s
ub

 %
W

E
R

EBW+ Smoothing + %Variance Floor

SGD + Fixed Variance Floor

SGD + Smoothing + Fixed Variance Floor

SGD + Smoothing + L2 + Fixed Variance Floor

SGD + Smoothing + L2 + %Variance Floor

Figure 6.5 MGB 50h GMM-HMM MPE system %WERs on Dev.sub with a 160k word
trigram LM.

6.8.1 GMM-HMM MPE training

EBW and SGD based GMM-only training were performed on the 50h training set, and
compared in Figure 6.5. Both EBW and SGD MPE training started from a baseline ML
BN GMM-HMM system with a WER of 38.4%. EBW MPE training with I-smoothing,
a dynamic MMI prior, and a percentile based variance floor, can reduce the WER
to 36.1% after four iterations. Unlike EBW, SGD based MPE GMM training with a
learning rate of 5.0×10−3 and no regularisation can also reduce WER, though the
results fluctuate over the eight epochs. This reveals the over-fitting issue in traditional
GMM-HMM MPE training was caused by the EBW algorithm.

Next, the parameter smoothing method (described in Section 6.6) and weight decay
were added. τMMI and τML per frame were set to 3.0× 10−5 and 2.0× 10−6, and ε

was 4.0×10−4. It can be seen that both parameter smoothing and weight decay help
stabilise and improve the performance. When the percentile based variance floor is
finally applied, SGD based MPE training consistently reduced the WER with every
epoch and gave a WER of 35.8% after the 4th epoch. It can be seen from Figure 6.5
that the final SGD based MPE GMM training works at least well as the EBW based
method.

6.8 Tandem System Joint Training Experiments 145

40 1 2 3

34

35

36

37

38

Epoch Number

D
ev

.s
ub

 %
W

E
R

Concurrent Update + ⍺=50
Concurrent Update + ⍺=20

Concurrent Update + ⍺=1

Interleaved Update + ⍺=50

Extra GMM-HMM MPE

Figure 6.6 MGB 50h jointly trained tandem system %WERs on Dev.sub with a 160k
word trigram LM.

6.8.2 MDNN-HMM MPE training

From the experiments in Section 6.8.1, the learning rates suitable for the GMM layer
are 50 times larger than those for the hidden layers. Here, different parameter update
schemes and different GMM learning amplification factors were compared. The BN
DNN learning rate and weight decay factor were set to η = 1.0×10−4 and ε = 4.0×10−5,
respectively. The results are shown in Figure 6.6. For concurrent updates, it can be
seen that α = 1 and 20 gave a consistent WER reduction across epochs, and a WER of
34.5% was obtained when α = 20. If α is further increased to 50, a WER of 34.6% was
found at the 2nd epoch, but severe over-fitting occurred thereafter. In the interleaved
update scheme, the GMM layer was updated first, and a WER of 35.1% after updating
GMMs and hidden layers each for two epochs was achieved. If three epochs of the
concurrent update and one epoch of SGD based GMM-HMM MPE training were
applied, both with α = 20, the best 50h SI tandem system WER of 33.8% was obtained.
Compared to the use of concurrent update throughout all four epochs, the performance
improvement was acquired by freezing the hidden layer parameters in the last epoch,
which makes the GMMs fit BN features after the 3rd epoch better.

146 Hybrid and Tandem System Joint Training

6.8.3 Further experiments

Table 6.4 contains results on the 50h training set. H50h
0 is the baseline CE DNN-HMM

hybrid system, which has a relative lower WER of 3.9% than the ML trained BN
GMM-HMM system; after MPE training, the WER is further reduced by 7.3% and
H50h

1 is produced. T50h
2 outperforms H50h

1 since tandem system joint training gives a
larger improvement than DNN-HMM MPE training. Note that H50h

1 and T50h
2 also have

similar numbers of parameters (8.7M and 8.8M, respectively). By using alignments
from T50h

2 for DNN-HMM training, a 0.6% absolute WER reduction was obtained,
which was slightly better than using alignments produced by the MPE DNN-HMM
system H50h

1 . If the training targets were derived from the tied states of T50h
2 , another

0.4% absolute WER reduction was acquired, as T50h
2 decision trees were constructed

on BN features that are more suitable for clustering DNN output targets than PLPs.
Compared with the tandem system structure used in this section (shown in Fig-

ure 6.4), the CUED traditional SI tandem system structure (presented in Figure 3.4)
uses addtional HLDA projected PLP features in the GMMs, and also decorrelates
the BN features by a STC transform. A single class STC transform was also used
to decorrelate the ML BN GMM-HMM system T50h

0 , by integrating the transform
into the BN layer using the method introduced in Section 2.6.3, and the resulting ML
system performance was improved by 0.2% absolute WER reduction, but the resulting
MPE MDNN-HMM system has the same WER as T50h

2 , which shows that the joint
training could adjust features to fit GMMs with diagonal covariance matrices. The
CUED traditional SI MPE tandem system constructed based on the same 50h setup
produced a WER of 35.2% on the Dev.sub test set, which is lower than that produced
by T50h

0 due to the PLP features in the GMMs, but this also obviously increased the
number of parameters, and is therefore not a fair comparison with the hybrid system
setup.

The proposed approach was then validated on the larger 200h training set. All
MDNN-HMM MPE training parameters are the same as the 50h systems’, except for
the learning rate of 2.5×10−5. Based on the results presented in Table 6.5, the jointly
trained MPE MDNN-HMM system, T200h

1 , is comparable to the MPE trained DNN-
HMM system, H200h

1 , both in performance and size. This is consistent with the 50h
system results. Finally, the use of traditional GMM-HMM techniques, such as MLLR
and joint decoding, was studied for MPE MDNN-HMMs. With test-time unsupervised
MLLR adaptation based on the hypotheses produced by T200h

1 , the SD system T200h
2

outperformed the SI system T200h
1 by 4.0% relative WER reduction. Joint decoding

was used to combine H200h
2 with either T200h

1 or T200h
2 , and the resulting systems J200h

1

6.9 Summary and Conclusions 147

Table 6.4 MGB 50h system performance with a 160k word trigram LM on Dev.sub.

ID System %WER
T50h

0 ML BN-GMM-HMMs 38.4
T50h

1 MPE BN-GMM-HMMs 36.1
T50h

2 MPE MDNN-HMMs 33.8
H50h

0 CE DNN-HMMs 36.9
H50h

1 MPE DNN-HMMs 34.2
H50h

2 MPE DNN-HMMs + H50h
1 alignments 33.7

H50h
3 MPE DNN-HMMs + T50h

2 alignments 33.6
H50h

4 MPE DNN-HMMs + T50h
2 alignments & trees 33.2

Table 6.5 MGB 200h system performance with a 160k word trigram LM on Dev.sub.

ID System %WER
T200h

0 ML BN-GMM-HMMs 33.7
T200h

1 MPE MDNN-HMMs 29.8
T200h

2 MPE MDNN-HMMs + MLLR 28.6
H200h

0 CE DNN-HMMs 31.9
H200h

1 MPE DNN-HMMs 29.6
H200h

2 MPE DNN-HMMs + T200h
1 alignments & trees 29.0

J200h
1 T200h

1 ⊗ H200h
2 joint decoding 28.3

J200h
2 T200h

2 ⊗ H200h
2 joint decoding 27.4

and J200h
2 outperformed their constituent systems, which showed the complementarity

between DNN-HMMs and MDNN-HMMs. For J200h
1 , the complementarity only came

from the difference between a normal softmax output layer and GMMs with a BN
hidden layer. For J200h

2 , speaker adaptation was also involved by the MDNN-HMMs
and the lowest WER in this section, 27.4%, was achieved. These examples demonstrate
the benefit of reusing standard GMM-HMM methods for MDNN-HMMs.

6.9 Summary and Conclusions

This chapter studies ASR system level joint training using both hybrid and tandem
system configurations. In the hybrid configurations, DNN-HMM MPE training was first
investigated as a direct extension to MLP discriminative sequence training (Kingsbury,
2009). The improvements from our systems are similar to those reported by other
researchers (McDermott et al., 2014; Su et al., 2013; Veselý et al., 2013; Wiesler

148 Hybrid and Tandem System Joint Training

et al., 2015). Next, MPE training was applied to joint SAT. In the example studied
in this chapter, the CMLLR initialised input transforms for feature extraction and
CD-DNN acoustic models were concurrently updated in MPE training, and a frame
level CE training smoothed MPE training method was used to update testing speaker
SD parameters in an unsupervised manner. This method resulted in 4.4% and 0.5%
relative WER reductions with the 15h WSJ SI-84 setup and 72h Mandarin CTS setup,
respectively. The smaller improvement to Mandarin CTS systems is perhaps due to
over-fitting to the hypotheses used as supervision.

Afterwards, in the tandem system configuration, the tandem system build procedure
was revisited. Conventional EBW based GMM-HMM MPE training was extended
to the SGD framework and applied to MDNN-HMM MPE training for the tandem
system joint training. A set of methods were modified or proposed to improve training
performance, which include I-smoothing, a dynamic MMI prior, a percentile based
variance floor, linear to ReLU activation function conversion, relative update value
clipping, amplified GMM learning, and different parameter update schemes. WERs
obtained from the refined tandem system were comparable to those from MPE trained
hybrid systems. The resulting tandem system was found useful for hybrid system
construction and system combination. Finally, experiments have also shown that jointly
trained tandem systems can also benefit from existing GMM based approaches, such
as MLLR and joint decoding, which can further reduce system WERs. Note that
although MPE was used as the examplar criterion in this chapter, other discriminative
sequence training criteria, such as MMI and state level minimum Bayes’ risk (MBR),
can be used with the same methods.

Although hybrid systems are simpler in construction, separately trained tandem
systems sometimes have lower WER than the hybrid systems. Yan et al. (2013) showed
MMI DNN-HMM had higher WERs than the GMM-HMMs trained on the features
produced by the same DNN and projected by a Karhunen-Loève transform (KLT). In
IEEE ASRU 2015 MGB Challenge (Bell et al., 2015), the best performance single ASR
system was a SAT tandem system constructed based on the the CUED traditional
recipe (Woodland et al., 2015). There are several further reasons that make the tandem
approach, especially the jointly trained one, still of interest. First, DNN and GMMs
can be combined to form an MDNN, which is a general framework for modelling non-
Gaussian conditional probability distributions. This is in contrast to the distributions
generated by a conventional DNN acoustic model with a softmax output function, which
have equivalent terms to single Gaussians with a shared covariance matrix, as shown
in Section 3.3.1. Second, it is straightforward to improve the performance of tandem

6.10 Related Work 149

systems by applying techniques developed for GMMs to MDNN such as adaptation
and decorrelation methods. Finally, tandem and hybrid systems are known to produce
complementary errors, and hence, performance improvements can be obtained by
system combination. Such complementarity is due to the use of the BN layer and
different output distributions.

6.10 Related Work

Discriminative adaptation was widely explored using GMM-HMM models (Povey et al.,
2003a,b; Wang and Woodland, 2008; Yu et al., 2009) based on the MPE and MMI
criteria. Using DNN-HMM models, almost all adaptation researches mentioned in
Section 5.7, such as (Abdel-Hamid and Jiang, 2013; Doddipatla et al., 2014; Gemello
et al., 2007; Huang et al., 2015; Li and Sim, 2010; Liao, 2013; Neto et al., 1995; Ochiai
et al., 2014; Seide et al., 2011b; Siniscalchi et al., 2013; Swietojanski et al., 2015, 2016;
Swietojanski and Renals, 2014; Tan et al., 2015; Woodland et al., 2015; Wu and Gales,
2015; Wu et al., 2016a; Yao et al., 2012; Yu et al., 2013; Zhang and Woodland, 2016;
Zhao et al., 2015), used different discriminative criteria. Swietojanski et al. (2016) found
CE based LHUC test-time adaptation can be applied to MBR trained hybrid systems.
Huang et al. (2015) used sequence training while the others used frame level training.
Seide et al. (2011b) jointly learned randomly initialised input transforms together with
the CD-DNN acoustic model through CE training, which required constructing a large
block diagonal input matrix to hold the input transforms associated with each frame
in every minibatch. Ochiai et al. (2014) used a similar approach to make any of the
hidden layers SD. Tüske et al. (2015b) used the last hidden layer as SD and set them
to CMLLR transforms. Such SD transforms were kept frozen in joint training.

For the joint tandem system training, Bengio (1991) and Bengio et al. (1992)
trained ANN-HMMs based on the MMI criterion for phoneme recognition, which can
be regarded as a simple tandem system since the ANNs have an output layer with each
state having a single Gaussian distribution. For LVCSR, both CE and ML training have
been applied to MDNN (Variani et al., 2015) and standard DNN with a parameterised
softmax output function (Tüske et al., 2015a,b). MPE training has also been applied
to the task with GMMs and BN DNN interleavingly optimised by EBW and SGD
(Paulik, 2013).

Chapter 7

Conclusions and Future Work

7.1 Contributions and Conclusions

This thesis investigates joint training methods for the statistical HMM based ASR
approach. Two types of joint training are proposed, namely DNN acoustic model
joint training and ASR system level joint training. DNN acoustic model joint training
aims at removing dependencies on other ASR systems or pre-determined activation
functions in the DNN acoustic model design. ASR system level joint training, on the
other hand, has different ASR modules concurrently optimised after their construction
in the traditional way. Joint training of the feature extraction and acoustic model
modules using the widely used tandem and hybrid system configurations is studied
in this thesis. This relies on combining the various modules involved as a single deep
ANN model, and applying the error backpropagation (EBP) algorithm for flexible
architectures proposed in Section 3.4. Actually all methods developed in this thesis
benefit from the advances in deep learning research. The major contributions in this
thesis include the items listed below:

• Proposed a feature mixture structure and its corresponding forward and back-
propagation algorithms, which is used to provide a generic support to flexible
ANN architectures.

• Proposed a context-dependent (CD) standalone training method that comprises
of context-independent (CI) standalone training and DNN based decision tree
state tying.

• Proposed the use of parameterised sigmoid and ReLU hidden activation functions
for both speaker independent (SI) acoustic modelling and speaker adaptation.

152 Conclusions and Future Work

• Proposed a DNN discriminative sequence training based speaker adaptive training
(SAT) framework, and applied it to train CMLLR initialised input transforms.

• Proposed a tandem system joint training approach by MDNN-HMM discrimi-
native sequence training, and a set of techniques to improve and stabilise the
training.

These contributions are summarised in detail in the rest of this section.
In Chapter 4, a standalone training method that builds a CD-DNN without relying

on any existing system was proposed. The method could be divided into two parts:
discriminative PT with integrated realignment to first train context independent
DNNs without relying on previously generated alignments; and CD-DNN decision tree
target clustering, which is a modification of the standard decision tree state tying
based on explicitly estimating approximations of equivalent terms to CD-DNN output
distributions. Experiments showed that the proposed techniques yielded comparable
WER performance to CD-DNNs that rely on GMM-HMMs. Furthermore, a CI
initialisation method is proposed to initialise CD DNN FT with hidden layers trained
to classify a small number of CI states. CI initialisation has been found to serve as
an effective regulariser which is complementary to the standard weight decay method.
Experiments on 15h and 50h corpora have shown that CI initialisation can significantly
reduce resulting WERs over the baselines with generative and CD discriminative PT,
while saving a large amount of time for PT.

Chapter 5 proposes to use the parameterised forms of sigmoid and ReLU as hidden
activation functions in SI DNN acoustic modelling. Three parameters are used with
the sigmoid: the curve’s maximum value, the curve’s steepness, and a scaled horizontal
displacement. In this way, the parameterised sigmoid function can perform piecewise
approximations to other activation functions. Meanwhile, both positive and negative
parts of the ReLU are separately associated with a linear scaling factor, which allows
an unconstrained trade-off between the positive and negative activations. The role of
the parameters has been investigated in the context of Mandarin CTS data experiments
and using an adaptive output value amplifier for each artificial neuron has been found
to be the most effective configuration for both parameterised sigmoid and ReLU. Later
in the chapter, this type of configuration is applied to the speaker adaptation task
by using the amplifiers as speaker dependent (SD) parameters, and DNN adaptation
becomes re-weighting the importance of different hidden artificial neurons for each
speaker. This adaptation scheme is applied to both DNN acoustic models in hybrid
systems and bottleneck (BN) DNN feature extraction in tandem systems. Unsupervised

7.1 Contributions and Conclusions 153

adaptation experiments using MGB data show that the technique is effective in
directly adapting DNN acoustic models and the BN features, and combines well with
other DNN adaptation techniques. Reductions in WER are consistently obtained
using parameterised sigmoid and ReLU activation functions for multiple hidden layer
adaptation.

ASR system level joint training is studied in Chapter 6. DNN-HMM discriminative
sequence training is first investigated as a cornerstone method for joint training,
and the results on both 15h and 200h data sets show obvious and consistent WER
reduction from minimum phone error (MPE) trained DNN-HMMs over the baselines.
Discriminative joint SAT is proposed as a hybrid system joint training instance, and
DNN-HMMs with CMLLR input transform normalised features are the case studied in
discriminative joint SAT. Once the DNN-HMMs have been constructed using cross
entropy (CE), MPE sequence training is applied to both the DNN acoustic model and
the CMLLR initialised input transforms. Input transforms associated with testing
speakers are estimated in an unsupervised manner with the DNN parameters kept
frozen. It is found that using the F-smoothing method by interpolating the MPE
with the CE objective function is useful to alleviate the discriminatively learned SD
parameters from over-fitting to the hypotheses served as supervision. The use of
discriminative joint SAT has been found to bring considerable improvement by systems
trained on the WSJ SI-84 setup, but improvement from the Mandarin CTS system is
marginal, perhaps due to over-fitting to the supervision.

The second part of Chapter 6 proposes to jointly optimise the separately trained
GMM acoustic model and BN DNN feature extraction in a traditional tandem system.
Such an acoustic model and feature extraction can be viewed as an MDNN model that
is initialised with a conventional tandem system, which is then refined by lattice based
MPE training. The tandem system construction procedure is first revisited, and the
related parameter smoothing and percentile based variance floor methods are modified
for use with SGD. It is found through comparative study that the over-fitting issue in
traditional GMM-HMM MPE training has been caused in part by the EBW algorithm.
Next, a number of methods were used to improve the system performance, which
include linear to ReLU conversion, relative update value clipping, amplified GMM
learning, and different parameter update schemes, which were found to stabilise and
improve MDNN-HMM MPE training. The final combined method yields comparable
performance to MPE trained DNN-HMMs on MGB systems, and further experiments
show that the jointly trained tandem system is useful in DNN-HMM construction and
system combination.

154 Conclusions and Future Work

The aforementioned methods validate that the proposed joint training is an effective
way to improve statistical HMM based ASR, by having more parameters jointly
optimised together. On one hand, DNN acoustic model joint training comprises several
methods that can improve the DNN training procedure and the resulting system
performance. ASR system level joint training, on the other hand, overcomes one
weakness lying in the divide and conquer ASR construction strategy that the acoustic
model built by greedily optimising an objective function based on pre-extracted features
is not guaranteed to have optimal parameters. The idea of first initialising system
components carefully and then training them jointly is possible to be applied to more
complicated systems or pipelines.

7.2 Future Work

The most straightforward extension to the methods developed in this thesis is perhaps
to replace DNN models by other deep ANN models, such as CNNs, LSTMs, and
CLDNN etc. As presented in Appendix B, the ANN extension to HTK used by this
thesis supports all these deep models.

Furthermore, as mentioned in Section 3.11.3, commonly used alternative methods
to DNN training without alignments include CTC and lattice-free maximum mutual
information (MMI) training. Similar ideas can be applied to MPE training as well,
which can generate MPE hybrid systems while skipping the frame level training stage.
By using such methods in SAT, the training set SD parameters, such as input feature
transforms or p-Sigmoid/p-ReLU amplifiers, can be learned more naturally from the
beginning of acoustic model training and according to the final objective function.

Both p-Sigmoid and p-ReLU based SAT training can be used in tandem system
joint training as well. If the BN DNN model is adapted for training set speakers first,
all following tandem system construction stages can be conducted in an SAT fashion,
such as SAT decision tree tying, which is possible to produce better tandem systems
and leads to better joint training.

Finally, it would be very interesting to use p-Sigmoid and p-ReLU in unfolded RNN
models, which can produce the output values by the shared recurrent layer re-weighted
at each time step. This is possibly an alternative way to enable RNN to hold longer
memory. Actually even the RNNs layer, or other LSTM or GRU parameters, can be
shared differently at different time steps.

Appendix A

Data Sets and System Setup

A.1 Babel Conversational Telephone Speech

The original task objective of the IARPA Babel program (Harper, 2011) is to find all
the exact matches of a specific word/phrase query in given speech data, which uses
a speech recognition stage followed by a word-spotting stage from lattices. However,
the focus here is only the speech to text conversion accuracy, so speech recognition
error rate is used as the evaluation standard. This thesis involves some experiments
conducted on the CTS data from the Cantonese full language pack (FLP) and the
Tamil limited language pack (LLP). The Cantonese FLP full training set, Cantonese
test set, Tamil LLP full training set, and Tamil test set consist of 145.5, 16.5, 14.2, and
11.7 hours of audio data from 80,152, 9,134, 11,809, and 10,862 utterances respectively.
The audio was sampled at a 8kHz sampling rate.

The Cantonese and Tamil ASR systems were constructed based on a phone set
consisting of 32 and 33 phones apart from sil and sp respectively, and the input feature
was 52-dimensional PLP D A T, unless expressly stated. The DNN input feature vector
was expanded according to a context shift set c = {−4,−3,−2,−1,0,+1,+2,+3,+4},
and normalised by 0-MN and 1-VN based on the statistics collected from all data in
each conversation side. Discriminative PT and FT were used for all DNN training,
and the detailed configurations are listed in Table A.1. The bigram LMs applied
during Cantonese and Tamil decoding were constructed based on 27k words and 21k
vocabularies respectively, and were estimated on the training data transcriptions only.

156 Data Sets and System Setup

Table A.1 The Babel DNN CE training configuration.

Option Value
minibatch size 800
ρ 0.5
data shuffling frame level
PT scheduler List
η[1] 1.0×10−3

FT scheduler NewBob or NewBob+

η[1] 2.0×10−3

∆Framp 0.005
∆Fstop 0.005
Nmin (if applicable) 12

A.2 Multi-Genre Broadcast Task

The ASRU 2015 Multi-Genre Broadcast (MGB) challenge data (Bell et al., 2015) are
used in this thesis to evaluate the proposed techniques. The audio consists of seven
weeks of BBC television programmes with a raw total duration of 1,600 hours, and was
sampled at a 16kHz sampling rate. The data covers a full range of genres, e.g. news,
comedy, drama, sports, quiz shows, documentaries etc. The audio was pre-processed
using a lightly supervised decoding process (Chan and Woodland, 2004; Lamel et al.,
2002; Lanchantin et al., 2016), and 200 hours of data from 2,180 shows were randomly
selected for which the subtitles and the lightly supervised output had a phone matched
error rate of less than 20% (Lanchantin et al., 2015). The 200 hour training set consists
of 115,932 utterances that were automatically clustered into 10,930 speaker clusters
(Karanasou et al., 2015; Wang et al., 2016). A 50 hour subset was evenly sampled
from the 200 hour set as the 50 hour training set, which includes 32,771 utterances
and 3,272 speaker clusters.

Apart from sil, there are 47 phones in the phone set. Two vocabularies were used
in decoding, one has 64k words and the other has 160k words. Trigram and 4-gram
LMs were estimated using either vocabulary. All LMs were trained on 650M words
of audio transcriptions and additional MGB subtitles, and pruned with an entropy
based beam of 1.0e-9. The full test set, Dev.full, has 28 hours of audio data from 47
different shows and is the official full MGB transcription development set (Bell et al.,
2015). The manual segmentation was processed by automatic speaker clustering that
resulted in 30,690 uttterances and 285 speaker clusters. The official subset of Dev.full,

A.3 Wall Street Journal Read Speech 157

Dev.sub, is also used in the experiments, which contains 5.5 hours data from 12 shows.
There are 8,713 utterances and 285 speaker clusters in Dev.sub, which has 69 seconds
data per speaker on average. More details about the dictionary, LMs, and test sets
can be found in (Woodland et al., 2015).

Two types of acoustic features were used, 40-dimensional FBANK and 13-dimensional
PLP coefficients, which were further expanded to 80-dimensional FBANK D and 52-
dimensional PLP D A T. The inputs to all DNNs were produced by stacking the features
according to c = {−4,−3,−2,−1,0,+1,+2,+3,+4}, and normalised by 0-MN and 1-
VN based on the statistics calculated with all valid speech segments in each show. The
overlapping segments were ignored in scoring. All GMM-HMMs have 16 Gaussians per
state, except for the sil states. All CE DNN training used the training configuration
listed in Table A.2.

Table A.2 The MGB DNN CE training configuration.

Option Value
minibatch size 800
ρ 0.5
data shuffling frame level
PT scheduler List
η[1] 1.0×10−3

FT scheduler NewBob+

η[1] 2.0×10−3

∆Framp 0.0005
∆Fstop 0.0001
Nmin 16

A.3 Wall Street Journal Read Speech

The read speech corpora created by DARPA based on the Wall Street Journal (WSJ)
news text have been widely used for acoustic modelling since the 1990s (Paul and
Baker, 1992). There are two corpora for training, known as WSJ0 and WSJ1, for which
the texts to be read were selected within the WSJ text corpus. There are two training
set configurations, SI-84 and SI-284. SI-84 consists of 15 hours of audio from 7,185
utterances from 84 different speakers in WSJ0. SI-284 includes 36,493 utterances from
284 different speakers from both WSJ0 and WSJ1, and the total duration is about 66
hours. The sampling rate of the audio was 16kHz. The LIMSI phone set was used in

158 Data Sets and System Setup

all system construction, with 45 phones plus the silence units. The input feature vector
is 52-dimensional PLP D A T projected to 39-dimensional by HLDA. The DNN input
feature is still stacked based on c = {−4,−3,−2,−1,0,+1,+2,+3,+4}, with utterance
level 0-MN and global 1-VN. The CE DNN training setup follows that in Table A.3.

Two test sets were used in this thesis, namely the 1994 H1-dev (denoted as Dev)
and November 1994 H1-eval (denoted as Eval), both of which had text prompts from a
variety of North American Business News types. The Dev set contains 310 utterances
from 20 speakers, while the Eval set has 316 utterances from 20 different speakers. The
LIMSI derived dictionary with 65k words, along with a trigram LM were used for all
related decoding (Woodland et al., 1995).

Table A.3 The WSJ DNN CE training configuration.

Option Value
minibatch size 800
ρ 0.5
data shuffling frame level
PT scheduler List
η[1] 1.0×10−3

FT scheduler List
η[1]−η[6] 1.0×10−3

η[7]−η[12] 2.0×10−3

A.4 Aurora-4 Multi-Condition Read Speech

The Aurora-4 multi-condition corpus was obtained by adding multiple noise conditions
to the WSJ0 SI-84 training set (Pearce, 2002). Six different types of noises between
10dB to 20dB were used. The test set was constructed based on a subset of the Nov92
NIST evaluation set with 330 utterances from 8 speakers, with 14 test conditions
created from different recording channels and noises. These 14 conditions were further
grouped into 4 subsets of the Aurora-4 test set, denoted as A, B, C, and D. All decoding
used a modified version of the CMU dictionary with 5k words and a bigram LM for
the standard WSJ0 SI-84 setup (Woodland et al., 1994).

The GMM-HMM input feature is also 52-dimensional PLP D A T. The DNN input
is 80-dimensional FBANK D stacked based on c = {−4,−3,−2,−1,0,+1,+2,+3,+4}.
Utterance level 0-MN and global 1-VN were applied. The CE DNN training setup is
shown in Table A.4.

A.5 Mandarin Conversational Telephony Speech 159

Table A.4 The Aurora-4 DNN CE training configuration.

Option Value
minibatch size 200
ρ 0.9
ε 0.001
υ (update value) 0.32
data shuffling frame level
PT scheduler List
η[1] 1.0×10−3

FT scheduler NewBob+

η[1] 2.0×10−3

∆Framp 0.001
∆Fstop 0.001
Nmin 16

A.5 Mandarin Conversational Telephony Speech

A 72 hour CTS data set is also used in this thesis. It contains 50 hours of LDC
2004 CTS Mandarin data, as well as 22 hours of LDC Call Home Mandarin and Call
Friend Mandarin data. The training set consists of 786 conversation sides, and was
used in building the 2004 Cambridge University HTK-based Mandarin system (Gales
et al., 2005). Three test sets were involved in performance evaluation: a two hour
development set Dev04 containing 24 conversations and 48 speakers, a 1.1 hours 2003
evaluation data set with 12 conversations and 24 speakers taken from the Call Friend
data, Eval03, as well as Eval97, a 1.5 hours 1997 NIST Hub4 Mandarin evaluation
set with 20 conversations and 49 speakers.

The base phone set contains 46 toneless phones or 124 tonal phones, and the
recognition word list contains 63k words, comprising of about 52k multi-character
Chinese words, 5k single character Chinese words, and an additional 5k frequent English
words (Liu et al., 2015). Decoding was performed with a trigram LM trained using a
total of one billion words of text data.

The acoustic feature vector consists of 52-dimensional PLP D A T coefficients nor-
malised by vocal length normalisation (Lee and Rose, 1996) and projected to 39-
dimensional using HLDA. Pitch features extracted by the Kaldi toolkit (Ghahremani
et al., 2014; Povey et al., 2011), along the their first and second order differentials
were appended to the projected vector. The 42-dimensional augmented vector was
further normalised by speaker level 0-MN and 1-VN, and then used to build SAT

160 Data Sets and System Setup

GMM-HMMs for CMLLR transform estimation. After transformation by CMLLR,
the feature vector was normalised again to 0-MN and 1-VN, and stacked according to
c = {−4,−3,−2,−1,0,+1,+2,+3,+4} to form the DNN input vector. The CE DNN
training configuration is presented in Table A.5

Table A.5 The Mandarin CTS DNN CE training configuration.

Option Value
minibatch size 800
ρ 0.5
data shuffling frame level
PT scheduler List
η[1] 1.0×10−3

FT scheduler NewBob+

η[1] 2.0×10−3

∆Framp 0.001
∆Fstop 0.005
Nmin 12

A.6 TED Talks

The TED (Technology, Entertainment, and Design) talk corpus is a publicly available
English data set consisting of 143 hours of speech from 813 TED talks (speakers)
(Cettolo et al., 2012). Three test sets are used for this task, namely Dev2010,
Tst2010, and Tst2011, which contain 8, 11, and 8 10-minute talks, respectively. A
4-gram LM estimated from 751M words is used during decoding. Details of the data
sets, phone set, dictionary, and LM can be found in (Bell and Renals, 2015a).

The input feature vector to the GMM-HMMs is a 52-dimensional PLP D A T
feature. The DNN input vector is 80-dimensional FBANK D stacked based on c =
{−4,−3,−2,−1,0,+1,+2,+3,+4} and normalised at the speaker level. The DNN CE
training configuration is the same as the MGB systems as in Table A.2.

Appendix B

A General ANN Extension for
HTK

HTK is a research source code toolkit designed primarily for ASR with more than
100,000 users around the world. Previously, the most recent version is 3.4.1 which was
released in 2008, and contains many commonly used HMM based ASR techniques,
such as GMM decision tree tying, MLLR and CMLLR adaptation, and lattice-based
discriminative training. These have allowed the construction of ASR systems for both
research and commercial deployment. Beyond the official HTK release, there are a
number of extensions, and the most well-known is the HTS system for parametric
speech synthesis (Zen et al., 2007). However, previous versions of HTK did not support
ANNs, and therefore the use of ANNs in HTK-based systems relied on external ANN
tools such as QuickNet (Johnson, 2012; Knill et al., 2013; Zhang and Woodland, 2014).
This appendix describes the recently developed ANN extension to HTK (HTK-ANN),
which has been widely used inside CUED and partly released in HTK version 3.5.

B.1 Design Principles

Three principles were applied to the design of HTK-ANN.

1. In order to accommodate new models and methods easily, without sacrificing
efficiency, the design should be as generic as possible. HTK-ANN supports ANNs
with flexible input feature configurations and model architectures, and relies on
a universal definition of ANN layer input features.

2. The new ANN modules should be compatible with as many existing functions
in HTK as possible, which minimises the effort to reuse previous HTK related

162 A General ANN Extension for HTK

source code and tools in the new framework and simplifies the transfer of many
techniques, for instance, sequence training and speaker adaptation, from the
GMM to the ANN framework.

3. It should be “research friendly” so that further extensions and modifications can
be created. To promote ease of reuse and future extensions, the functions are
designed to be fine-grained and loosely coupled.

B.2 Implementation Details

HTK includes many widely used speech processing technologies, covering the entire
ASR pipeline. Many of these features including front-end feature extraction, HMM
state clustering, feature transforms, sequence training, large vocabulary decoders, as
well as lattice generation and processing, are all used in the design of ANN based ASR
systems. Therefore, implementing native support of ANNs in HTK can simplify the
use of all of these established approaches and allow ANN-based systems to benefit from
the HTK infrastructure. This is achieved by developing HTK-ANN as a number of
new HTK modules (libraries) and tools, and extending other libraries and tools to be
compatible with them. An overview of the newly added and extended HTK modules
and tools is shown in Table B.1 and B.2.

Table B.1 A list of the ANN related HTK modules.

Name Type Function Descriptions/Updates
HANNet new ANN structures and core algorithms
HArc extended CUDA based lattice FB algorithm
HCUDA new CUDA based math kernel functions
HFBLat extended Lattice based γMPE

i (t) and γMMI
i (t) computation

HMath extended ANN related math kernel functions
HModel extended ANN model reading/writing interface
HNCache new Data cache for data random access
HParm extended Using ANN output values as GMM input features
HShell extended ANN related user interface changes

B.3 ANN Support and Training Methods

HTK-ANN supports DCG based generic ANN structures defined in Section 3.2, and
all parameters can be SD and shared at the vector and matrix level. Apart from

B.3 ANN Support and Training Methods 163

Table B.2 A list of the ANN related HTK tools.

Name Type Function Descriptions/Updates
HCompV extended Tandem feature mean and variance estimation
HDecode extended Tandem/hybrid system LVCSR decoder
HDecode.joint new Joint decoding of HTK AMs
HDecode.mod extended Tandem/hybrid system model marking
HERest extended Tandem system ML training
HHEd extended ANN model creation and editing
HMMIRest extended Tandem system discriminative sequence training
HNForward new ANN evaluation and output generation
HNTrainSGD new SGD based tandem/hybrid system joint training
HVite extended Tandem/hybrid decoder and alignment

Eqn. (3.6) that the values from the feature elements are concatenated, the values
from the elements can be combined in other ways, such as a weighted summation and
multiplication etc, and the combination weights can be any input values, parameters, or
output values from another layer. All activation functions mentioned in this thesis, such
as softmax, linear, sigmoid, p-Sigmoid, ReLU, p-ReLU, soft ReLU, and subsampling
etc has been implemented. Using these mechanisms, CNN, DNN, RNN layers, and
their combination models are supported. Other toolkits that support similar types
of models include Theano (Bastien et al., 2012), RWTH-ASR (Wiesler et al., 2014a),
CNTK (Yu et al., 2014), TensorFlow (Abadi et al., 2015), and Kaldi nnet3 (Povey et al.,
2011). GMMs with diagonal covariance matrices are re-implemented in HTK-ANN
using Eqns. (6.12) – (6.15), which can be seen as a special layer and reused together
with other common layers.

Training ANN models with DAG structures (FNNs) use Eqn. (3.32), and recurrent
ANN training requires to convert the model structures to DAG first by unfolding and
truncating the recurrent layers. Both frame level criteria such as CE and MMSE,
and discriminative sequence criteria including MMI, MPE, and MWE are supported.
For different training modes, the supervision used for ANN training can come from
label files with frame to label alignments (for CE and MMSE training), lattice files
(for lattice based MMI, MPE, and MWE), feature data files, and the output values
from some ANN layer. HTK-ANN supports many commonly used training techniques
introduced in Section 3.6, such as momentum, gradient/update value clipping and
scaling, weight decay, dropout, and batch normalisation. For learning rate schedulers,
examples from every type mentioned in Section 3.6.1 were implemented, including the
List and NewBob+ schedulers used in this thesis.

164 A General ANN Extension for HTK

B.4 Data Cache

As mentioned in Section 3.5.2, it is important to access the data in a randomised
order in SGD training. In order to minimise the I/O cost from random data access,
loading data into the memory through a cache is usually crucial. To make the cache
sufficiently large, HTK was extended to have the full 64bit support. Three different
data rearrangements are available in the data cache to support different types of models
and training modes.

1. Frame level randomisation/shuffling. All frames from all utterances in the cache
are shuffled, which is a commonly used approach for frame level ANN training.
However, in HTK-ANN, in order to process FNNs with any architecture, context
shifts for every frame in the minibatch should be available at the same time. This
also paves the way for training unfolded RNNs.

2. Utterance based shuffling. This is useful in sequence training and SAT.

3. Batch of utterance level shuffling. A batch of utterances is randomly selected
and processed in parallel. Once an utterance is finished, a new utterance will be
loaded to the empty position in the batch. This kind of cache is sometimes used
for folded RNN training etc.

Since efficiency is a key factor in cache design, an extra thread can be enabled to
load data into the cache, while the main thread is working on ANN forward/backward
propagation.

B.5 Interfacing ANNs with HMMs

In hybrid configurations, each ANN output target is associated with an HMM state,
and the output probabilities are converted to log-likelihoods using Eqn. (3.50). This
enables the HMM based techniques in HTK, such as lattice generation, rescoring, and
decoding, to be reused by ANN-HMMs.

In tandem configurations, BN features can be written out and transformed into
normal HTK feature data files using the HNForward tool, and the tandem system pro-
cessing becomes normal GMM-HMM processing based on such features. An alternative
way that saves additional data file generation is to feed the ANN layer output values to
GMMs directly through the traditional HTK HMM feature processing module HParm.

B.6 Other Key Features 165

Such direct ANN features can be normalised using a parameterised linear activation
function

f
(l)
i (a(l)

i (t)) = α
(l)
i a

(l)
i (t)+β

(l)
i , (B.1)

where α
(l)
i and β

(l)
i are the parameters associated with AN i. When using data

dependent α
(l)
i and β

(l)
i with

α
(l)
i = 1

σ
(l)
i

(B.2)

β
(l)
i =− µ

(l)
i

σ
(l)
i

, (B.3)

where µ
(l)
i and σ

(l)
i are the mean and standard deviation of a

(l)
i (t) calculated over the

corresponding data samples, Eqn. (B.1) acts as the on-the-fly 0-MN and 1-VN to a
(l)
i (t).

HCompV, HERest, HMMIRest, and the decoders can use this function to build tandem
systems. In HNTrainSGD, a set of GMMs can be implicitly converted to an ANN layer,
which makes the tandem system an MDNN-HMM for the joint training proposed in
Section 6.5.

B.6 Other Key Features

B.6.1 Math kernels

A set of math kernel functions required by ANN processing was added. All new kernels
have standard CPU, Intel MKL, and CUDA based implementations. Both single and
double precision float numbers are supported.

B.6.2 Input transforms and speaker adaptation

In HTK, ANNs can directly utilise many types of SI and SD input transforms estimated
by GMM-HMMs, including HLDA, STC, and CMLLR etc. Meanwhile, since all
ANN parameters are stored as either matrices or vectors, a new light-weight speaker
adaptation mechanism was added to sequence level training, which can swap some
small-grained ANN parameter units, represented by matrices and vectors, according to
speaker ids.

166 A General ANN Extension for HTK

B.6.3 Model editing

Like previous versions of HTK, the HTK model editor tool, HHEd, is used to edit
the structure of ANN models. Current edit operations include insertion, removal or
initialisation of a layer; changing the activation functions or dimensions of a layer;
modifying a feature mixture by adding or removing a feature element, or changing
its associated context shift set. These operations can be used to generate ANNs with
any DCG equivalent architectures, and any intermediate models for PT. HHEd can
also associate an isolated ANN with a GMM-HMM set by assigning each ANN output
target an HMM state.

B.6.4 Decoders

Both the standard HTK Viterbi decoder HVite and the LVCSR decoder HDecode were
updated to support tandem and hybrid system decoding. In ANN-HMM training,
HVite is also used to produce the frame to label alignments. Model marking on word
lattices with ANN-HMMs has been implemented by both HVite and HDecode.mod, a
variant of HDecode, which is required by MPE. Another more recent HDecode variant,
HDecode.joint, performs joint decoding of multiple HTK AMs with a shared decision
tree, as defined in Section 3.10.4.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
http://tensorflow.org.

Abdel-Hamid, O. and Jiang, H. (2013). Fast speaker adaptation of hybrid NN/HMM
model for speech recognition based on discriminative learning of speaker code. In
Proc. ICASSP, Vancouver, Canada.

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 22:1533–1545.

Anastasakos, T., McDonough, J., Schwartz, R., and Makhoul, J. (1996). A compact
model for speaker adaptive training. In Proc. ICSLP, Philadelphia, PA, USA.

Atal, B. and Hanauer, S. (1971). Speech analysis and synthesis by linear prediction of
the speech wave. Journal of the Acoustical Society of America, 50:637–655.

Bacchiani, M. and Ostendorf, M. (1998). Using automatically-derived acoustic subword
units in large vocabulary speech recognition. In Proc. ICSLP, Sydney, Australia.

Bacchiani, M. and Rybach, D. (2014). Context dependent state tying for speech
recognition using deep neural network acoustic models. In Proc. ICASSP, Florence,
Italy.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In Proc. ICLR, San Diego, CA, USA.

http://tensorflow.org

168 References

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016). End-to-
end attention-based large vocabulary speech recognition. arXiv 1508.04395.

Bahl, L., Bakis, R., Jelinek, F., and Mercer, R. (1980). Language-model/acoustic-
channel-model balance mechanism. IBM Technical Disclosure Bulletin, 23:3464–3465.

Bahl, L., de Souza, P., Gopalakrishnan, P., Nahamoo, D., and Picheny, M. (1991).
Decision trees for phonological rules in continuous speech. In Proc. ICASSP, Toronto,
Canada.

Baker, J. (1975). The DRAGON system – An overview. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 23:24–29.

Barker, J., Josifovski, L., Cooke, M., and Green, P. (2000). Soft decisions in missing
data techniques for robust automatic speech recognition. In Proc. Interspeech, Beijing,
China.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements.
In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, Lake
Tahoe, CA, USA.

Baum, L. and Egon, J. (1972). An inequality and associated maximization technique
in statistical estimation for probabilistic functions of Markov processes. Inequalities,
3:1–8.

Bell, P., Gales, M., Hain, T., Kilgour, J., Lanchantin, P., Liu, X., McParland, A.,
Renals, S., Saz, O., Wester, M., and Woodland, P. (2015). The MGB challenge:
Evaluating multi-genre broadcast media transcription. In Proc. ASRU, Scottsdale,
AZ, USA.

Bell, P. and Renals, S. (2015a). Complementary tasks for context-dependent deep
neural network acoustic models. In Proc. Interspeech, Dresden, Germany.

Bell, P. and Renals, S. (2015b). Regularization of context-dependent deep neural
networks with context-independent multi-task training. In Proc. ICASSP, Brisbane,
Australia.

Bengio, Y. (1991). Artificial Neural Networks and Their Application to Sequence
Tecognition. PhD thesis, McGill University.

References 169

Bengio, Y. (2009). Learning Deep Architectures for AI (Foundations and Trends in
Machine Learning). Now Publishers Inc, Boston, MA, USA.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2012). Advances in optimiz-
ing recurrent networks. arXiv 1212.0901.

Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1992). Phonetically motivated
acoustic parameters for continuous speech recognition using artificial neural networks.
Speech Communication, 11:261–271.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise
training of deep networks. Advances in Neural Information Processing Systems,
19:153–160.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5:157–166.

Berndt, D. and Clifford, J. (1994). Using dynamic time warping to find patterns in
time series. In Proc. AAAI, Seattle, WA, USA.

Beulen, K. and Ney, H. (2000). Automatic question generation for decision tree based
state tying. In Proc. ICASSP, Istanbul, Turkey.

Bi, M., Qian, Y., and Yu, K. (2016). Very deep convolutional neural networks for
LVCSR. In Proc. ICASSP, Shanghai, China.

Biem, A., Katagiri, S., McDermott, E., and Juang, B.-H. (2002). An application
of discriminative feature extraction to filter-bank-based speech recognition. IEEE
Transactions on Speech and Audio Processing, 9:96–110.

Bishop, C. (1994). Mixture density networks. Technical report, NCRG 4288, Neural
Computing Research Group, Aston University.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, UK.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer, New York,
NY, USA.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proc. COMPSTAT, Paris, France.

170 References

Bourlard, H., Konig, Y., and Morgan, N. (2016). REMAP: Recursive estimation and
maximization of a posteriori probabilities in connectionist speech recognition. In
Proc. Interspeech, San Francisco, CA, USA.

Bourlard, H. and Morgan, N. (1993). Connectionist Speech Recognition: A Hybrid
Approach. Kluwer Academic Publishers, Norwell, MA, USA.

Bridle, J. (1990a). Alpha-nets: A recurrent ‘neural network architecture with a hidden
Markov model interpretation. Speech Communication, 9:83–92.

Bridle, J. (1990b). Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Fogelman Soulié, F.
and Hérault, J., editors, Neurocomputing: Algorithms, Architectures and Applications,
pages 227–236. Springer-Verlag, New York, NY, USA.

Brown, P. (1987). The Acoustic-Modeling Problem in Automatic Speech Recognition.
PhD thesis, Carnegie Mellon University.

BUT (2013). TNet. http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet.

Byrne, W., Beyerlein, P., Huerta, J., Khudanpur, S., Marthi, B., Morgan, J., Peterek,
N., Picone, J., Vergyri, D., and Wang, W. (2000). Towards language independent
acoustic modeling. In Proc. ICASSP, Istanbul, Turkey.

Caruana, R. (1993). Multitask connectionist learning. In Proc. Connectionist Models
Summer School, Boulder, CO, USA.

Cettolo, M., Girardi, C., and Federico, M. (2012). Wit3: Web inventory of transcribed
and translated talks. In Proc. EAMT, Trento, Italy.

Chan, H. and Woodland, P. (2004). Improving broadcast news transcription by lightly
supervised discriminative training. In Proc. ICASSP, Montreal, Canada.

Chen, K. and Huo, Q. (2016). Scalable training of deep learning machines by incremental
block training with intra-block parallel optimization and blockwise model-update
filtering. In Proc. ICASSP, Shanghai, China.

Chesta, C., Laface, P., and Ravera, F. (1997). Bottom-up and top-down state clustering
for robust acoustic modeling. In Proc. Eurospeech, Rhodes, Greece.

Chou, P. (1991). Optimal partitioning for classification and regression trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13:340–354.

http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet

References 171

Choukri, K. and Chollet, G. (1986). Adaptation of automatic speech recognizers to
new speakers using canonical correlation analysis techniques. Computer Speech and
Langauge, 1:95–107.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv 1412.3555.

Church, K. and Gale, W. (1991). A comparison of the enhanced Good-Turing and
deleted estimation methods for estimating probabilities of English bigrams. Computer
Speech and Language, 5:19–54.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (1990). Introduction to Algorithms.
MIT Press, Cambridge, MA, USA.

Cox, S. and Bridle, J. (1989). Unsupervised speaker adaptation by probabilistic
spectrum fitting. In Proc. ICASSP, Glasgow, UK.

Cui, X. and Goel, V. (2015). Maximum likelihood nonlinear transformations based on
deep neural networks. In Proc. ICASSP, Brisbane, Australia.

Dahl, G., Sainath, T., and Hinton, G. (2013). Improving deep neural networks for
LVCSR using rectified linear units and dropout. In Proc. ICASSP, Vancouver,
Canada.

Dahl, G., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 20:30–42.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 28:357–366.

Dayan, P. and Abott, L. (2001). Theorectical Neuroscience. MIT Press, Cambridge,
MA, USA.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior,
A., Tucker, P., Yang, K., and Ng, A. (2012). Large scale distributed deep networks.
Advances in Neural Information Processing Systems, 25:1223–1231.

Delcroix, M., Kinoshita, K., Yu, C., Ogawa, A., Yoshioka, T., and Nakatani, T. (2016).
Context adaptive deep neural networks for fast acoustic model adaptation in noisy
conditions. In Proc. ICASSP, Shanghai, China.

172 References

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39:1–38.

Demuynck, K., Duchateau, J., Van Compernolle, D., and Wambacq, P. (2000). An effi-
cient search space representation for large vocabulary continuous speech recognition.
Speech Communication, 30:37–53.

Diestel, R. (1997). Graph Theory. Springer-Verlag, New York, NY, USA.

Digalakis, V., Rtischev, D., and Neumeyer, L. (1995). Speaker adaptation using
constrained estimation of Gaussian mixtures. IEEE Transactions Speech and Audio
Processing, 3:357–366.

Doddipatla, R., Hasan, M., and Hain, T. (2014). Speaker dependent bottleneck layer
training for speaker adaptation in automatic speech recognition. In Proc. Interspeech,
Singapore.

Dongarra, J., du Croz, J., and Duff, I. (1990). A set of level 3 basic linear algebra
subprograms. IEEE Transactions on Mathematical Software, 16:1–17.

Doumpiotis, V. and Byrne, W. (2004). Pinched lattice minimum Bayes risk discrimina-
tive training for large vocabulary continuous speech recognition. In Proc. Interspeech,
Lisbon, Portugal.

Duchi, J., Hazan, E., and Singer, Y. (2010). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159.

Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. Wiley, New
York, NY, USA.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia, R. (2001). Incorporating
second-order functional knowledge for better option pricing. Advances in Neural
Information Processing Systems, 13:472–478.

Ellis, D. and Morgan, N. (1999). Size matters: An empirical study of neural network
training for large vocabulary continuous speech recognition. In Proc. ICASSP,
Phoenix, AZ, USA.

Evermann, G., Chan, H., Gales, M., Jia, B., Mrva, D., Woodland, P., and Yu, K.
(2005). Training LVCSR systems on thousands of hours of data. In Proc. ICASSP,
Philadelphia, PA, USA.

References 173

Evermann, G. and Woodland, P. (2000). Large vocabulary decoding and confidence
estimation using word posterior probabilities. In Proc. ICASSP, Istanbul, Turkey.

Frankel, J., Wester, M., and King, S. (2007). Articulatory feature recognition using
dynamic bayesian networks. Computer Speech and Language, 21:620–640.

Fung, P., Byrne, W., Zheng, T., Kamm, T., Liu, Y., Song, Z., Venkataramani, V.,
and Ruhi, U. (2000). Pronunciation modeling of Mandarin casual speech. Technical
report, Workshop 2000 for Language Engineering for Students and Professionals
Integrating Research and Education.

Furui, S. (1986). Speaker-independent isolated word recognition based on emphasized
spectral dynamics. In Proc. ICASSP, Tokyo, Japan.

Gales, M. (1995). Model-based Techniques for Robust Speech Recognition. PhD thesis,
University of Cambridge.

Gales, M. (1998). Maximum likelihood linear transformations for HMM-based speech
recognition. Computer Speech and Language, 12:75–98.

Gales, M. (1999). Semi-tied covariance matrices for hidden Markov models. IEEE
Transactions on Speech and Audio Processing, 7:272–281.

Gales, M. (2000). Cluster adaptive training of hidden Markov models. IEEE Transac-
tions on Speech and Audio Processing, 8:417–428.

Gales, M. (2002). Maximum likelihood multiple subspace projections for hidden Markov
models. IEEE Transactions on Speech and Audio Processing, 10:37–47.

Gales, M., Jia, B., Liu, X., Sim, K., Woodland, P., and Yu, K. (2005). Development of
the CUHTK 2004 Mandarin conversational telephone speech transcription system.
In Proc. ICASSP, Philadelphia, PA, USA.

Gales, M., Knill, K., and Ragni, A. (2015). Unicode-based graphemic systems for
limited resource languages. In Proc. ICASSP, Brisbane, Australia.

Gales, M. and Woodland, P. (1996). Mean and variance adaptation within the MLLR
framework. Computer Speech and Language, 10:249–264.

Gales, M., Woodland, P., Chan, H., Mrva, D., Sinha, R., and Tranter, S. (2006).
Progress in the CU-HTK broadcast news transcription system. IEEE Transactions
on Audio, Speech, and Language Processing, 14:1513–1525.

174 References

Gao, T., Du, J., Dai, L.-R., and Lee, C.-H. (2015). Joint training of front-end and
back-end deep neural networks for robust speech recognition. In Proc. ICASSP,
Brisbane, Australia.

Gardiner, C. (1985). Handbook of Stochastic Methods. Springer Berlin, Berlin, Germany.

Gauvain, J.-L. and Lee, C.-H. (1994). Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains. IEEE Transactions on Speech and
Audio Processing, 2:291–298.

Gemello, R., Mana, F., Scanzio, S., Laface, P., and De Mori, R. (2007). Linear hidden
transformations for adaptation of hybrid ANN/HMM models. Speech Communication,
49:827–835.

Gemmeke, J., Virtanen, T., and Hurmalainen, A. (2011). Exemplar-based sparse
representations for noise robust automatic speech recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 19:2067–2080.

Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., and Khudanpur,
S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In
Proc. ICASSP, Florence, Italy.

Ghoshal, A., Swietojanski, P., and Renals, S. (2013). Multilingual training of deep
neural networks. In Proc. ICASSP, Vancouver, Canada.

Gibson, M. and Hain, T. (2006). Hypothesis spaces for minimum Bayes risk training
in large vocabulary speech recognition. In Proc. Interspeech, Pittsburgh, PA, USA.

Gill, P., Murray, W., and Wright, M. (1981). Practical Optimization. Academic Press,
Cambridge, MA, USA.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proc. AISTATS, Sardinia, Italy.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier networks. In Proc.
AISTATS, Ft. Lauderdale, FL, USA.

Goh, S. and Mandic, D. (2003). Recurrent neural networks with trainable amplitude
of activation functions. Neural Networks, 16:1095–1100.

Golik, P., Doetsch, P., and Ney, H. (2013). Cross-entropy vs. squared error training: A
theoretical and experimental comparison. In Proc. Interspeech, Lyon, France.

References 175

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press,
Cambridge, MA, USA.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
Maxout networks. In Proc. ICML, Atlanta, GA, USA.

Gopalakrishnan, P., Kanevsky, D. Nádas, A., and Nahamoo, D. (1991). An inequality
for rational functions with applications to some statistical estimation problems.
IEEE Transactions on Information Theory, 37:814–817.

Gosztolya, G., Grósz, T., and Tóth, L. (2016). GMM-free flat start sequence-
discriminative DNN training. arXiv 1610.03256.

Gosztolya, G., Grósz, T., Tóth, L., and Imseng, D. (2015). Building context-dependent
DNN acoustic models using Kullback-Leibler divergence-based state tying. In Proc.
ICASSP, Brisbane, Australia.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent neural
networks. In Proc. ICML, Pittsburgh, PA, USA.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks. In Proc. ICML, Beijing, China.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks, 18:602–
610.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing machines. arXiv
1410.5401.

Grézl, F. and Fousek, P. (2008). Optimizing bottle-neck features for LVCSR. In Proc.
ICASSP, Las Vegas, NV, USA.

Grézl, F., Karafiát, M., Kontár, S., and Černocký, J. (2007). Probabilistic and
bottle-neck features for LVCSR of meetings. In Proc. ICASSP, Honolulu, HI, USA.

Hahnloser, R. (1998). On the piecewise analysis of networks of linear threshold neurons.
Neural Networks, 11:691–697.

176 References

Hain, T., Woodland, P., Niesler, T., and Whittaker, E. (1999). The 1998 HTK system
for transcription of conversational telephone speech. In Proc. ICASSP, Phoenix, AZ,
USA.

Ham, F. and Kostanic, I. (2000). Principles of Neurocomputing for Science and
Engineering. McGraw-Hill Higher Education, New York, NY, USA.

Han, J. and Moraga, C. (1995). The influence of the sigmoid function parameters
on the speed of backpropagation learning. In Proc. IWANN, Malaga-Torremolinos,
Spain.

Harper, M. (2011). IARPA Babel program. http://www.iarpa.gov/Programs/ia/Babel/
babel.html.

Haton, J.-P. (1985). Knowledge-based and expert systems in automatic speech recogni-
tion. In De Mori, R. and Suen, C. Y., editors, New Systems and Architectures for
Automatic Speech Recognition and Synthesis, pages 249–269. Springer Berlin, Berlin,
Germany.

He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image
recognition. arXiv 1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. arXiv 1502.01852.

Heigold, G. (2010). A Log-Linear Discriminative Modeling Framework for Speech
Recognition. PhD thesis, RWTH Aachen University.

Heigold, G., Deselaers, T., Schlüter, R., and Ney, H. (2008). Modified MMI/MPE:
A direct evaluation of the margin in speech recognition. In Proc. ICML, Helsinki,
Finland.

Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., and Dean,
J. (2013). Multilingual acoustic models using distributed deep neural networks. In
Proc. ICASSP’13, Vancouver, Canada.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. Journal
of the Acoustical Society of America, 87:1738–1752.

Hermansky, H., Ellis, D., and Sharma, S. (2000). Tandem connectionist feature
extraction for conventional HMM systems. In Proc. ICASSP, Istanbul, Turkey.

http://www.iarpa.gov/Programs/ia/Babel/babel.html
http://www.iarpa.gov/Programs/ia/Babel/babel.html

References 177

Hinton, G. (2010). A practical guide to training restricted Boltzmann machines.
Technical report, UTML TR 2010-003, Department of Computer Science, University
of Toronto.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-R., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T., and Kinsbury, B. (2012). Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal Processing
Magazine, pages 2–17.

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313:504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9:1735–1780.

Hopfield, J. (1987). Learning algorithms and probability distributions in feed-forward
and feed-back networks. Proceedings of the National Academy of Sciences, 84:8429–
8433.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2:359–366.

Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-language knowledge
transfer using multilingual deep neural network with shared hidden layers. In
ICASSP, Vancouver, Canada.

Huang, X. (1989). Semi-Continuous Hidden Markov Models for Speech Recognition.
PhD thesis, University of Edinburgh.

Huang, X., Acero, A., and Hon, H.-W. (2001). Spoken Language Processing: A Guide
to Theory, Algorithm and System Development. Prentice Hall, Upper Saddle River,
NJ, USA.

Huang, Z., Siniscalchi, S., Chen, I.-F., Li, J., Wu, J., and Lee, C.-H. (2015). Maximum
a posteriori adaptation of network parameters in deep models. In Proc. ICASSP,
Dresden, Germany.

Hwang, M.-Y., Huang, X., and Alleva, F. (1996). Predicting unseen triphones with
senones. IEEE Transactions on Speech and Audio Processing, 4:412–419.

178 References

Imseng, D., Bourlard, H., Dines, J., Garner, P., and Magimai.-Doss, M. (2013).
Applying multi- and cross-lingual stochastic phone space transformations to non-
native speech recognition. IEEE Transactions on Audio, Speech, and Language
Processing, 21:1713–1726.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv 1502.03167.

Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991). Adaptive mixtures of local
experts. Neural Computation, 3:79–87.

Jelinek, F. (1991). Up from trigrams! The struggle for improved language models. In
Proc. ECSCT, Genoa, Italy.

Jelinek, F. (1998). Statistical Methods for Speech Recognition. MIT Press, Cambridge,
MA, USA.

Jernite, Y., Choromanska, A., Sontag, D., and LeCun, Y. (2016). Simultaneous learning
of trees and representations for extreme classification, with application to language
modeling. arXiv 1610.04658.

Johnson, D. (2012). Quicknet. http://www1.icsi.berkeley.edu/speech/qn.html.

Juang, B.-H. (1985). Maximum-likelihood estimation for mixture multivariate stochastic
observations of Markov chains. AT&T Technical Journal, 64:1235–1249.

Juang, B.-H., Chou, W., and Lee, C.-H. (1997). Minimum classification error rate
methods for speech recognition. IEEE Transactions on Speech and Audio Processing,
5:257–265.

Juang, B.-H. and Katagiri, S. (1992). Discriminative learning for minimum error
classification. IEEE Transactions on Signal Processing, 40:3043–3054.

Kaiser, J., Horvat, B., and Kačič, Z. (2002). Overall risk criterion estimation of hidden
Markov model parameters. Speech Communication, 38:383–398.

Kanthak, S. and Ney, H. (2002). Context-dependent acoustic modelling using graphemes
for large-vocabulary speech recognition. In Proc. ICASSP, Orlando, FL, USA.

Karafiát, M., Veselý, J., Szokem, I., and Černocký, J. (2014). BUT 2014 Babel system:
Analysis of adaptation in NN based systems. In Proc. Interspeech, Singapore.

http://www1.icsi.berkeley.edu/speech/qn.html

References 179

Karanasou, P., Gales, M., Lanchantin, P., Liu, X., Qian, Y., Wang, L., Woodland, P.,
and Zhang, C. (2015). Speaker diarisation and longitudinal linking in multi-genre
broadcast data. In Proc. ASRU, Scottsdale, AZ, USA.

Karanasou, P., Wang, Y., Gales, M., and Woodland, P. (2014). Adaptation of deep
neural network acoustic models using factorised i-vectors. In Proc. Interspeech,
Singapore.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recogniser. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 35:400–401.

Kim, S., Hori, T., and Watanabe, S. (2016). Joint CTC-attention based end-to-end
speech recognition using multi-task learning. arXiv 1609.06773.

King, S., Stephenson, T., Isard, S., Taylor, P., and Strachan, A. (1998). Speech
recognition via phonetically featured syllables. In Proc. ICSLP, Sydney, Australia.

Kingsbury, B. (2009). Lattice-based optimization of sequence classification criteria for
neural-network acoustic modeling. In Proc. ICASSP, Taipei, Taiwan.

Kingsbury, B., Sainath, T., and Soltau, H. (2012). Scalable minimum Bayes risk training
of deep neural network acoustic models using distributed Hessian-free optimization.
In Proc. Interspeech, Portland, OR, USA.

Kirchhoff, K. (1999). Robust Speech Recognition using Articulatory Information. PhD
thesis, University of Bielefeld.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
In Proc. ICASSP, Detroit, MI, USA.

Knill, K., Gales, M., Rath, S., Woodland, P., Zhang, C., and Zhang, S.-X. (2013).
Investigation of multilingual deep neural networks for spoken term detection. In
Proc. ASRU, Olomouc, Czech Republic.

Kumar, N. (1997). Investigation of Silicon-Auditory Models and Generalization of
Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis, John
Hopkins University.

Lamel, L., Gauvain, J.-L., and Adda, G. (2002). Lightly supervised and unsupervised
acoustic model training. Computer Speech and Language, 16:115–129.

180 References

Lanchantin, P., Gales, M., Karanasou, P., Liu, X., Qian, Y., Wang, L., Woodland,
P., and Zhang, C. (2015). The development of the Cambridge university alignment
systems for the multi-genre broadcast challenge. In Proc. ASRU, Scottsdale, AZ,
USA.

Lanchantin, P., Gales, M., Karanasou, P., Liu, X., Qian, Y., Wang, L., Woodland,
P., and Zhang, C. (2016). Selection of multi-genre broadcast data for the training
of automatic speech recognition systems. In Proc. Interspeech, San Francisco, CA,
USA.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86:2278–2324.

LeCun, Y., Bottou, L., Orr, G., and Müller, K.-R. (1998b). Efficient backprop. In
G.B. and Müller, K.-R., editors, Neural Networks: Tricks of the Trade, pages 9–50.
Springer-Verlag Berlin Heidelberg, Berlin, Germany.

Lee, C.-H. (2004). From knowledge-ignorant to knowledge-rich modeling: A new
speech research paradigm for next generation automatic speech recognition. In Proc.
Interspeech, Jeju Island, Korea.

Lee, L. and Rose, R. (1996). Speaker normalization using efficient frequency warping
procedures. In Proc. ICASSP, Atlanta, GA, USA.

Leggetter, C. and Woodland, P. (1995). Maximum likelihood linear regression for
speaker adaptation of continuous density hidden Markov models. Computer Speech
and Language, 9:171–185.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710.

Levinson, S. (1986). Continuously variable duration hidden Markov models for auto-
matic speech recognition. Computer Speech and Language, 1:29–45.

Li, B. and Sim, K. (2010). Comparison of discriminative input and output transforma-
tions for speaker adaptation in the hybrid NN/HMM systems. In Proc. Interspeech,
Makuhari, Japan.

Li, J., Yuan, M., and Lee, C.-H. (2006). Soft margin estimation of hidden Markov
model parameters. In Proc. Interspeech, Pittsburgh, PA, USA.

References 181

Li, X. and Wu, X. (2014a). Decision tree based state tying for speech recognition using
DNN derived embeddings. In Proc. ISCSLP, Singapore.

Li, X. and Wu, X. (2014b). Labeling unsegmented sequence data with DNN-HMM
and its application for speech recognition. In Proc. ISCSLP, Singapore.

Liao, H. (2013). Speaker adaptation of context dependent deep neural networks. In
Proc. ICASSP, Vancouver, Canada.

Liu, X., Chen, X., Wang, Y., Gales, M., and Woodland, P. (2016). Two efficient lattice
rescoring methods using recurrent neural network language models. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24:1438–1449.

Liu, X., Flego, F., Wang, L., Zhang, C., Gales, M., and Woodland, P. (2015). The Cam-
bridge University 2014 BOLT conversational telephone Mandarin Chinese LVCSR
system for speech translation. In Proc. Interspeech, Dresden, Germany.

Liu, X., Gales, M., Hieronymus, J., and Woodland, P. (2010). Language model
combination and adaptation using weighted finite state transducers. In Proc. ICASSP,
Dallas, TX, USA.

Liu, X., Gales, M., Hieronymus, J., and Woodland, P. (2011). Investigation of acoustic
units for LVCSR systems. In Proc. ICASSP, Prague, Czech Republic.

Liu, X., Gales, M., and Woodland, P. (2003). Automatic complexity control for HLDA
systems. In Proc. ICASSP, Hong Kong.

Liu, X., Gales, M., and Woodland, P. (2013). Use of contexts in language model
interpolation and adaptation. Computer Speech and Language, 27:301–321.

Ljolje, A., Pereira, F., and Riley, M. (1999). Efficient general lattice generation and
rescoring. In Proc. Eurospeech, Budapest, Hungary.

Lowerre, B. (1976). The HARPY Speech Recognition System. PhD thesis, Carnegie
Mellon University.

Lu, L., Zhang, X., Cho, K., and Renals, S. (2015). A study of the recurrent neural
network encoder-decoder for large vocabulary speech recognition. In Proc. Interspeech,
Dresden, Germany.

Maas, A., Hanun, A., and Ng, A. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proc. ICML, Atlanta, GA, USA.

182 References

MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge, UK.

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding consensus in speech recognition:
word error minimization and other applications of confusion networks. Computer
Speech and Language, 14:373–400.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, USA.

Martens, J. (2010). Deep learning via Hessian-free optimization. In Proc. ICML, Haifa,
Israel.

McDermott, E., Heigold, G., Moreno, P., Senior, A., and Bacchiani, M. (2014). Asyn-
chronous stochastic optimization for sequence training of deep neural networks:
Towards big data. In Proc. Interspeech, Singapore.

Miao, Y., Gowayyed, M., and Metze, F. (2015). EESEN: End-to-end speech recognition
using deep RNN models and WFST-based decoding. In Proc. ASRU, Scottsdale,
AZ, USA.

Miao, Y., Zhang, H., and Metze, F. (2014). Towards speaker adaptive training of deep
neural network acoustic models. In Proc. Interspeech, Singapore.

Mikolov, T. (2012). Statistical Language Models based on Neural Networks. PhD thesis,
Burno University of Technology.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA, USA.

Mohamed, A., Hinton, G., and Penn, G. (2012). Understanding how deep belief
networks perform acoustic modelling. In Proc. ICASSP, Kyoto, Japan.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23:269–311.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in
speech recognition. Computer Speech and Language, 16:69–88.

Morgan, N. (2012). Deep and wide: Multiple layers in automatic speech recognition.
IEEE Transactions on Audio, Speech, and Language Processing, 20:7–13.

References 183

Myers, C., Rabiner, L., and Rosenberg, A. (2003). Performance tradeoffs in dynamic
time warping algorithms for isolated word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 28:623–635.

Nádas, A. (1983). A decision theoretic formulation of a training problem in speech
recognition and a comparison of training by unconditional versus conditional maxi-
mum likelihood. IEEE Transactions on Acoustics, Speech, and Signal Processing,
31:814–817.

Nair, V. and Hinton, G. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proc. ICML, Haifa, Israel.

Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics, 9:249–265.

Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate (1/sqr(k)). Soviet Mathematics Doklady, 27:372–376.

Neto, J., Almeida, L., Hochberg, M., Martins, C., Nunes, L., Renals, S., and Robinson,
T. (1995). Speaker-adaptation for hybrid HMM-ANN continuous speech recognition
system. In Proc. Eurospeech, Madrid, Spain.

Ney, H. and Aubert, X. (1994). A word graph algorithm for large vocabulary. In Proc.
ICSLP, Yokohama, Japan.

Niles, L. and Silverman, H. (1990). Combining hidden Markov model and neural
network classifiers. In Proc. ICASSP, Albuquerque, NM, USA.

Normandin, Y. (1991). Hidden Markov Models, Maximum Mutual Information Esti-
mation, and the Speech Recognition Problem. PhD thesis, McGill University.

Ochiai, T., Matsuda, S., Lu, X., Hori, C., and Katagiri, S. (2014). Speaker adaptive
training using deep neural networks. In Proc. Eurospeech, Florence, Italy.

Odell, J. (1995). The Use of Context in Large Vocabulary Speech Recognition. PhD
thesis, University of Cambridge.

Odell, J. (1999). Network and language models for use in a speech recognition system.
US Patent 6668243 B1.

Odell, J., Valtchev, V., Woodland, P., and Young, S. (1994). A one pass decoder design
for large vocabulary recognition. In Proc. HLT, Plainsboro, NJ, USA.

184 References

Oppenheim, A. and Schafer, R. W. (1975). Discrete-Time Signal Processing. Prentice
Hall, Upper Saddle River, NJ, USA.

Park, J., Diehl, F., Gales, M., Tomalin, M., and Woodland, P. (2011). The efficient
incorporation of MLP features into automatic speech recognition systems. Computer
Speech and Language, 25:519–634.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. arXiv 1211.5063.

Paul, D. (1997). Extensions to phone-state decision-tree clustering: single tree and
tagged clustering. In Proc. ICASSP, Munich, Germany.

Paul, D. and Baker, J. (1992). The design for the Wall Street Journal based CSR
corpus. In Proc. DARPA SLS Workshop, Pacific Grove, CA, USA.

Paulik, M. (2013). Lattice-based training of bottleneck feature extraction neural
networks. In Proc. Interspeech, Lyon, France.

Pearce, D. (2002). Aurora working group: DSR front end LVCSR evaluation. Technical
report, AU/384/02, Aurora working group.

Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network
architecture for efficient modeling of long temporal contexts. In Proc. Interspeech,
Dresden, Germany.

Pineda, F. (1987). Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59:2229–2232.

Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4:1–17.

Povey, D. (2003). Discriminative Training for Large Vocabulary Speech Recognition.
PhD thesis, University of Cambridge.

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Feng, K., Ghoshal, A., Glembek, O.,
Goel, N., Karafiát, M., Rastrow, A., Rose, R., Schwarz, P., and Thomas, S. (2010).
Subspace Gaussian mixture models for speech recognition. In Proc. ICASSP, Dallas,
TX, USA.

Povey, D., Gales, M., Kim, D., and Woodland, P. (2003a). MMI-MAP and MPE-MAP
for acoustic model adaptation. In Proc. Interspeech, Geneva, Switzerland.

References 185

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann,
M., Motlíček, P., Qian, Y., Schwarz, P., Silovský, J., Stemmer, G., and Veselý, K.
(2011). The Kaldi speech recognition toolkit. In Proc. ASRU, Waikoloa, HI, USA.

Povey, D., Hannemann, M., Boulianne, G., Burget, L., Ghoshal, A., Janda, M.,
Karafiát, M., Kombrink, S., Motliček, P., Qian, Y., Riedhammer, K., Veselý, K.,
and Thang Vu, N. (2012). Generating exact lattices in the WFST framework. In
Proc. ICASSP, Kyoto, Japan.

Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., and Visweswariah,
K. (2008). Boosted MMI for model and feature-space discriminative training. In
Proc. ICASSP, Las Vegas, NV, USA.

Povey, D. and Kingsbury, B. (2007). Evaluation of proposed modifications to MPE for
large scale discriminative training. In Proc. ICASSP, Honolulu, HI, USA.

Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., and Zweig, G. (2005).
fMPE: discriminatively trained features for speech recognition. In Proc. ICASSP,
Philadelphia, PA, USA.

Povey, D., Vijayaditya, P., Galves, D., Ghahremani, P., Manohar, V., Na, X., Wang,
Y., and Khudanpur, S. (2016). Purely sequence-trained neural networks for ASR
based on lattice-free MMI. In Proc. Interspeech, San Francisco, CA, USA.

Povey, D. and Woodland, P. (1999). An investigation of frame discrimination for con-
tinuous speech recognition. Technical report, CUED/F-INFENG/TR332, University
of Cambridge.

Povey, D. and Woodland, P. (2002). Minimum phone error and I-smoothing for
improved discriminative training. In Proc. ICASSP, Orlando, FL, USA.

Povey, D., Woodland, P., and Gales, M. (2003b). Discriminative MAP for acoustic
model adaptation. In Proc. ICASSP, Hong Kong.

Povey, D., Zhang, X., and Khudanpur, S. (2015). Parallel training of DNNs with
natural gradient and parameter averaging. In Proc. ICLR, San Diego, CA, USA.

Pundak, G. and Sainath, T. (2016). Lower frame rate neural network acoustic models.
In Proc. Interspeech, San Francisco, CA, USA.

Pye, D. and Woodland, P. (1997). Experiments in speaker normalisation and adaptation
for large vocabulary speech recognition. In Proc. ICASSP, Munich, Germany.

186 References

Qian, Y., Tan, T., Yu, D., and Zhang, Y. (2016). Integrated adaptation with multi-
factor joint-learning for far-field speech recognition. In Proc. ICASSP, Shanghai,
China.

Qian, Y. and Woodland, P. (2016). Very deep convolutional neural networks for robust
speech recognition. In Proc. SLT, San Diego, CA, USA.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77:257–286.

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice
Hall, Upper Saddle River, NJ, USA.

Reichl, W. and Chou, W. (2000). Robust decision tree state tying for continuous speech
recognition. IEEE Transactions on Speech and Audio Processing, 8:555–566.

Renals, S., Morgan, N., Cohen, M., and Franco, H. (1992). Connectionist probability
estimation in the DECIPHER speech recognition system. In Proc. ICASSP, San
Francisco, CA, USA.

Richmond, K. (2002). Estimating Articulatory Parameters from the Acoustic Speech
Signal. PhD thesis, University of Edinburgh.

Richmond, K. (2006). A trajectory mixture density network for the acoustic-articulatory
inversion mapping. In Proc. Interspeech, Pittsburgh, PA, USA.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Proc. ICNN, San Francisco, CA,
USA.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals
of Mathematical Statistics, 22:400–407.

Robbins, H. and Siegmund, D. (1971). A convergence theorem for non negative almost
supermartingales and some applications. In Rustagi, J., editor, Optimizing Methods
in Statistics, pages 233–257. Academic Press, New York, NY, USA.

Robinson, A. (1989). Dynamic Error Propagation Networks. PhD thesis, University of
Cambridge.

Robinson, A. and Fallside, F. (1987). The utility driven dynamic error propagation
network. Technical report, CUED/F-INFENG/TR1, University of Cambridge.

References 187

Rosenblatt, F. (1961). Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, Washington, DC, USA.

Rumelhart, D., McClelland, J., and the PDP Research Group (1986). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Volumn 1:
Foundations. MIT Press, Cambridge, MA, USA.

Russell, M. and Moore, R. (1985). Explicit modeling of state occupancy in hidden
Markov models for automatic speech recognition. In Proc. DARPA Speech Recognition
Workshop, Tampa, FL, USA.

Sainath, T., Kingsbury, B., Soltau, H., and Ramabhadran, B. (2013a). Optimization
techniques to improve training speed of deep neural networks for large speech tasks.
IEEE Transactions on Audio, Speech, and Language Processing, 21:2267–2276.

Sainath, T., Mohamed, A., Kingsbury, B., and Ramabhadran, B. (2013b). Deep
convolutional neural networks for LVCSR. In Proc. ICASSP, Vancouver, Canada.

Sainath, T., Vinyals, O., Senior, A., and Sak, H. (2015a). Convolutional, long short-
term memory, fully connected deep neural networks. In Proc. ICASSP, Brisbane,
Australia.

Sainath, T., Weiss, R., Senior, A., Wilson, K., and Vinyals, O. (2015b). Learning
the speech front-end with raw waveform CLDNNs. In Proc. Interspeech, Dresden,
Germany.

Salinas, E. and Abbott, L. (1996). A model of multiplicative neural responses in
parietal cortex. Neurobiology, 93:11956–11961.

Saon, G., Sercu, T., Rennie, S., and Kuo, H.-K. (2016). The IBM 2016 English
conversational telephone speech recognition system. arXiv 1604.08242.

Saon, G., Soltau, H., Emami, A., and Picheny, M. (2014). Unfolded recurrent neural
networks for speech recognition. In Proc. Interspeech, Singapore.

Saon, G., Soltau, H., Nahamoo, D., and Picheny, M. (2013). Speaker adaptation of
neural network acoustic models using i-vectors. In Proc. ASRU, Olomouc, Czech
Republic.

Schlüter, R., Macherey, W., Müller, B., and Ney, H. (2001). Comparison of discrim-
inative training criteria and optimization methods for speech recognition. Speech
Communication, 34:287–310.

188 References

Schultz, T. and Waibel, A. (2001). Language-independent and language adaptive
acoustic modeling for speech recognition. Speech Communication, 35:31–35.

Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45:2673–2681.

Schwartz, R., Chow, Y., Kimball, O., Roucos, S., Krasner, M., and Makhoul, J. (1985).
Context-dependent modeling for acoustic-phonetic recognition of continuous speech.
In Proc. ICASSP, Tampa, FL, USA.

Scrivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech DNNs. In
Proc. Interspeech, Singapore.

Seide, F., Li, G., Chen, X., and Yu, D. (2011a). Feature engineering in context-
dependent deep neural networks for conversational speech transcription. In Proc.
ASRU, Waikoloa, HI, USA.

Seide, F., Li, G., and Yu, D. (2011b). Conversational speech transcription using
context-dependent deep neural networks. In Proc. Interspeech, Florence, Italy.

Selkirk, E. (1986). Phonology and Syntax: The Relationship between Sound and
Structure. MIT Press, Cambridge, MA, USA.

Senior, A. (1994). Off-line Cursive Handwriting Recognition using Recurrent Neural
Networks. PhD thesis, University of Cambridge.

Senior, A., Heigold, G., Bacchiani, M., and Liao, H. (2014). GMM-free DNN training.
In Proc. ICASSP, Florence, Italy.

Senior, A., Heigold, G., Ranzato, M., and Yang, K. (2013). An empirical study of
learning rates in deep neural networks for speech recognition. In Proc. ICASSP,
Vancouver, Canada.

Senior, A. and Lopez-Moreno, I. (2014). Improving DNN speaker independence with
i-vector inputs. In Proc. ICASSP, Florence, Italy.

References 189

Sercu, T., Puhrsch, C., Kingsbury, B., and LeCun, Y. (2016). Very deep multilingual
convolutional neural networks for LVCSR. In Proc. ICASSP, Shanghai, China.

Sha, F. and Saul, L. (2006). Large margin Gaussian mixture modeling for phonetic
classification and recognition. In Proc. ICASSP, Toulouse, France.

Sha, F. and Saul, L. (2008). Generalization of extended Baum-Welch parameter
estimation for discriminative training and decoding. In Proc. Interspeech, Brisbane,
Australia.

Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication.
University of Illinois Press, Champaign, IL, USA.

Shinoda, K. and Watanabe, T. (2000). MDL-based context-dependent subword model-
ing for speech recognition. Journal of Acoustic Society of Japan, 21:79–86.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional neural networks for
large-scale image recognition. In Proc. ICLR, San Diego, CA, USA.

Siniscalchi, S., Li, J., and Lee, C.-H. (2013). Hermitian polynomial for speaker
adaptation of connectionist speech recognition systems. IEEE Transactions on
Audio, Speech, and Language Processing, 21:2152–2161.

Siniscalchi, S., Svendsen, T., Sorbello, S., and Lee, C.-H. (2010). Experimental studies
on continuous speech recognition using neural architectures with “adaptive” hidden
activation functions. In Proc. ICASSP, Dallas, TX, USA.

Sivadas, S., Wu, Z., and Ma, B. (2015). Investigation of parametric rectified linear
units for noise robust speech recognition. In Proc. Interspeech, Dresden, Germany.

Ström, N. (1996). Speaker adaptation by modeling the speaker variation in a continuous
speech recognition system. In Proc. ICSLP, Philadelphia, PA, USA.

Su, H., Li, G., Yu, D., and Seide, F. (2013). Error back propagation for sequence training
of context-dependent deep neural networks for conversational speech transcription.
In Proc. ICASSP, Vancouver, Canada.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialisation and momentum in deep learning. In Proc. ICML, Atlanta, GA, USA.

190 References

Swietojanski, P., Bell, P., and Renals, S. (2015). Structured output layer with auxiliary
targets for context-dependent acoustic modelling. In Proc. Interspeech, Dresden,
Germany.

Swietojanski, P., Ghoshal, A., and Renals, S. (2012). Unsupervised cross-lingual
knowledge transfer in DNN-based LVCSR. In Proc. IWSLT, Hong Kong.

Swietojanski, P., Li, J., and Renals, S. (2016). Learning hidden unit contributions
for unsupervised acoustic model adaptation. IEEE/ACM Transactions on Audio,
Speech and Language Processing, 24:1450–1463.

Swietojanski, P. and Renals, S. (2014). Learning hidden unit contributions for unsu-
pervised speaker adaptation of neural network acoustic models. In Proc. SLT, Lake
Tahoe, CA, USA.

Tan, T., Qian, Y., Yin, M., Zhuang, Y., and Yu, K. (2015). Cluster adaptive training
for deep neural network. In Proc. ICASSP, Brisbane, Australia.

Tóth, L. (2013). Phone recognition with deep sparse rectifier neural networks. In Proc.
ICASSP, Vancouver, Canada.

Tóth, L. (2014). Combining time- and frequency-domain convolution in convolutional
neural network-based phone recognition. In Proc. ICASSP, Florence, Italy.

Trentin, E. (2001). Networks with trainable amplitude of activation functions. Neural
Networks, 14:471–493.

Trentin, E. and Gori, M. (2003). Robust combination of neural networks and hidden
Markov models for speech recognition. IEEE Transactions on Neural Networks,
14:1519–1531.

Tüske, Z., Golik, P., Schlüter, R., and Ney, H. (2014). Acoustic modeling with deep
neural networks using raw time signal for LVCSR. In Proc. Interspeech, Singapore.

Tüske, Z., Golik, P., Schlüter, R., and Ney, H. (2015a). Integrating Gausssian mixtures
into deep neural networks: Softmax layer with hidden variables. In Proc. ICASSP,
Brisbane, Australia.

Tüske, Z., Golik, P., Schlüter, R., and Ney, H. (2015b). Speaker adaptive joint training
of Gaussian mixture models and bottleneck features. In Proc. ASRU, Scottsdale,
AZ, USA.

References 191

Tüske, Z., Sundermeyer, M., Schlüter, R., and Ney, H. (2012). Tandem system
adaptation using multiple linear feature transforms. In Proc. ICASSP, Portland,
OR, USA.

Valtchev, V. (1995). Discriminative Methods in HMM-based Speech Recognition. PhD
thesis, University of Cambridge.

van Dalen, R., Yang, J., Wang, H., Ragni, A., Zhang, C., and Gales, M. (2015).
Structured discriminative models using deep neural-network features. In Proc.
ASRU, Scottsdale, AZ, USA.

Vapnik, V. (1998a). Statistical Learning Theory. John Wiley, New York, NY, USA.

Vapnik, V. (1998b). The support vector method of function estimation. In Suykens, J.
and Vandewalle, J., editors, Nonlinear Modeling: Advanced Black-Box Techniques,
pages 55–85. Kluwer Academic Publishers, Boston, MA, USA.

Variani, E., McDermott, E., and Heigold, G. (2015). A Gaussian mixture model
layer jointly optimized with discriminative features within a deep neural network
architecture. In Proc. ICASSP, Brisbane, Australia.

Veselý, K., Ghoshal, A., Burget, L., and Povey, D. (2013). Sequence-discriminative
training of deep neural networks. In Proc. Interspeech, Lyon, France.

Veselý, K., Karafiát, M., and Grézl, F. (2011). Convolutive bottleneck network features
for LVCSR. In Proc. ASRU, Waikoloa, HI, USA.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269.

Wachter, M. D., Matton, M., Demuynck, K., Wambacq, P., Cools, R., and Compernolle,
D. V. (2007). Template based continuous speech recognition. IEEE Transactions on
Audio, Speech, and Language Processing, 15:1377–1390.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989). Phoneme
recognition using time-delay neural networks. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37:328–339.

Wang, H., Ragni, A., Gales, M., Knill, K., Woodland, P., and Zhang, C. (2015).
Joint decoding of tandem and hybrid systems for improved keyword spotting on low
resource languages. In Proc. Interspeech, Dresden, Germany.

192 References

Wang, L. and Woodland, P. (2008). MPE-based discriminative linear transforms for
speaker adaptation. Computer Speech and Language, 22:256–272.

Wang, L., Zhang, C., Woodland, P., Gales, M., Karanasou, P., Lanchantin, P., Liu, X.,
and Qian, Y. (2016). Improved DNN-based segmentation for multi-genre broadcast
audio. In Proc. ICASSP, Shanghai, China.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioural Sciences. PhD thesis, Harvard University.

Wiesler, S., Golik, P., Schlüter, R., and Ney, H. (2015). Investigations on sequence
training of neural networks. In Proc. ICASSP, Brisbane, Australia.

Wiesler, S. and Ney, H. (2011). A convergence analysis of log-linear training. Advances
in Neural Information Processing Systems, 24:657–665.

Wiesler, S., Richard, A., Golik, P., Schlüter, R., and Ney, H. (2014a). RASR/NN: The
RWTH neural network toolkit for speech recognition. In Proc. ICASSP, Florence,
Italy.

Wiesler, S., Richard, A., Schlüter, R., and Ney, H. (2014b). Mean-normalized stochastic
gradient for large-scale deep learning. In Proc. ICASSP, Florence, Italy.

Woodland, P. (1989). Weight limiting, weight quantisation and generalisation in
multi-layer perceptrons. In Proc. ICANN, London, UK.

Woodland, P. (1992). Spoken alphabet recognition using multilayer perceptrons. In
Linggard, R., Myers, D., and Nightingale, C., editors, Neural Networks for Vision,
Speech and Natural Language, pages 135–147. Springer Netherlands, Dordrecht,
Netherlands.

Woodland, P. (2001). Speaker adaptation for continuous density HMMs: A review. In
ISCA ITR-Workshop, Sophia Antipolis, France.

Woodland, P. (2002). The development of the HTK broadcast news transcription
system: An overview. Speech Communication, 37:47–67.

Woodland, P., Gales, M., Pye, D., and Young, S. (1997). Broadcast news transcription
using HTK. In Proc. ICASSP, Munich, Germany.

References 193

Woodland, P., Leggetter, C., Odell, J., Valtchev, V., and Young, S. (1995). The 1994
HTK large vocabulary speech recognition system. In Proc. ICASSP, Detroit, MI,
USA.

Woodland, P., Liu, X., Qian, Y., Zhang, C., Gales, M., Karanasou, P., Lanchantin, P.,
and Wang, L. (2015). Cambridge University transcription systems for the multi-genre
broadcast challenge. In Proc. ASRU, Scottsdale, AZ, USA.

Woodland, P., Odell, J., Valtchev, V., and Young, S. (1994). Large vocabulary
continuous speech recognition using HTK. In Proc. ICASSP, Adelaide, Australia.

Woodland, P. and Povey, D. (2002). Large scale discriminative training of hidden
Markov models for speech recognition. Computer Speech and Language, 16:25–47.

Wu, C. and Gales, M. (2015). Multi-basis adaptive neural network for rapid adaptation
in speech recognition. In Proc. ICASSP, Brisbane, Australia.

Wu, C., Karanasou, P., Gales, M., and Sim, K. (2016a). Stimulated deep neural
network for speech recognition. In Proc. Interspeech, San Francisco, CA, USA.

Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., and Salakhutdinov, R. (2016b). On
multiplicative integration with recurrent neural networks. arXiv 1606.06630.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., and
Zweig, G. (2016). The Microsoft 2016 conversational speech recognition system.
arXiv 1609.03528.

Xu, W. (2011). Towards optimal one pass large scale learning with averaged stochastic
gradient descent. arXiv 1107.2490.

Yan, Y., Fanty, M., and Cole, R. (1997). Speech recognition using neural networks
with forward-backward probability generated targets. In Proc. ICASSP, Munich,
Germany.

Yan, Z., Huo, Q., and Xu, J. (2013). A scalable approach to using DNN-derived
features in GMM-HMM based acoustic modeling for LVCSR. In Proc. Interspeech,
Lyon, France.

Yang, J., Zhang, C., Ragni, A., Gales, M., and Woodland, P. (2016). System combina-
tion with log-linear models. In Proc. ICASSP, Shanghai, China.

194 References

Yao, K., Yu, D., Seide, F., Su, H., Deng, L., and Gong, Y. (2012). Adaptation of
context-dependent deep nerual networks for automatic speech recognition. In Proc.
IWSLT, Hong Kong.

Yin, M., Sivadas, S., Yu, K., and Ma, B. (2016). Discriminatively trained joint speaker
and environment representations for adaptation of deep neural network acoustic
models. In Proc. ICASSP, Shanghai, China.

Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., and Kitamura, T. (1998).
Duration modeling for HMM-based speech synthesis. In Proc. ICSLP, Sydney,
Australia.

Yoshioka, T., Ohnishi, K., Fang, F., and Nakatini, T. (2016). Noise robust speech
recognition using recent developments in neural networks for computer vision. In
Proc. ICASSP, Shanghai, China.

Young, S. (1990). Competitive training in hidden Markov models. In Proc. ICASSP,
Albuquerque, NM, USA.

Young, S. (1996). Large vocabulary continuous speech recognition: A review. IEEE
Signal Processing Magazine, 13:45–57.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell,
J., Ollason, D., Povey, D., Ragni, A., Valtchev, V., Woodland, P., and Zhang, C.
(2015). The HTK Book (for HTK version 3.5). Cambridge University Engineering
Department, Cambridge, UK.

Young, S., Odell, J., and Woodland, P. (1994). Tree-based state tying for high accuracy
acoustic modelling. In Proc. HLT, Plainsboro, NJ, USA.

Young, S., Russel, N., and Thornton, J. (1989). Token passing: A simple concep-
tual model for connected speech recognition systems. Technical report, CUED/F-
INFENG/TR38, University of Cambridge.

Young, S. and Woodland, P. (1993). The use of state tying in continuous speech
recognition. In Proc. Eurospeech, Berlin, Germany.

Yu, D., Deng, L., He, X., and Acero, A. (2006). Use of incrementally regulated
discriminative margins in MCE training for speech recognition. In Proc. Interspeech,
Pittsburgh, PA, USA.

References 195

Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Kuchaiev, O.,
Zhang, Y., Seide, F., Wang, H., Droppo, J., Zweig, G., Rossbach, C., Currey, J.,
Gao, J., May, A., Peng, B., Stolcke, A., and Slaney, M. (2014). An introduction to
computational networks and the computational network toolkit. Technical report,
MSR-TR-2014-112, Microsoft Corporation.

Yu, D., Yao, K., Su, H., Li, G., and Seide, F. (2013). KL-divergence regularized deep
neural network adaptation for improved large vocabulary speech recognition. In
Proc. ICASSP, Vancouver, Canada.

Yu, K., Gales, M., and Woodland, P. (2009). Unsupervised adaptation with discrimi-
native mapping transforms. IEEE Transactions on Audio, Speech, and Language
Processing, 17:714–723.

Zeiler, M., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q., Nguyen, P., Senior,
A., Vanhoucke, V., Dean, J., and Hinton, G. (2013). On rectified linear units for
speech processing. In Proc. ICASSP, Vancouver, Canada.

Zen, H. and Gales, M. (2011). Decision tree-based context clustering based on cross
validation and hierarchical priors. In Proc. ICASSP, Prague, Czech Republic.

Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A., and Tokuda, K.
(2007). The HMM-based speech synthesis system (HTS) version 2.0. In Proc. 6th
ISCA Workshop on Speech Synthesis, Bonn, Germany.

Zen, H. and Senior, A. (2014). Deep mixture density networks for acoustic modeling
in statistical parametric speech synthesis. In Proc. ICASSP, Florence, Italy.

Zhang, C. and Woodland, P. (2014). Standalone training of context-dependent deep
neural network acoustic models. In Proc. ICASSP, Florence, Italy.

Zhang, C. and Woodland, P. (2015a). A general artificial neural network extension for
HTK. In Proc. Interspeech, Dresden, Germany.

Zhang, C. and Woodland, P. (2015b). Parameterised sigmoid and ReLU hidden
activation functions for DNN acoustic modelling. In Proc. Interspeech, Dresden,
Germany.

Zhang, C. and Woodland, P. (2016). DNN speaker adaptation using parameterised
sigmoid and ReLU hidden activation functions. In Proc. ICASSP, Shanghai, China.

196 References

Zhang, C. and Woodland, P. (2017). Joint optimisation of tandem systems using
Gaussian mixture density neural network discriminative sequence training. In Proc.
ICASSP, New Orleans, LA, USA.

Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C., Bengio, Y., and Courville,
A. (2016). Towards end-to-end speech recognition with deep convolutional neural
networks. In Proc. Interspeech, San Francisco, CA, USA.

Zhao, Y., Li, J., Xue, J., and Gong, Y. (2015). Investigating online low-footprint
speaker adaptation using generalized linear regression and click-through data. In
Proc. ICASSP, Brisbane, Australia.

Zhou, P., Dai, L., and Jiang, H. (2014). Sequence training of multiple deep neural
networks for better performance and faster training speed. In Proc. ICASSP, Florence,
Italy.

Zhu, L., Kilgour, K., Stüker, S., and Waibel, A. (2015). Gaussian free cluster tree
construction into deep neural network. In Proc. Interspeech, Dresden, Germany.

Zhu, Q., Chen, B., Grézl, F., and Morgan, N. (2005). Improved MLP structures for
data-driven feature extraction for ASR. In Proc. Interspeech, Lisbon, Portugal.

Zue, V. and Lamel, L. (1986). An expert spectrogram reader: A knowledge-based
approach to speech recognition. In Proc. ICASSP, Tokyo, Japan.

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Thesis Outline
	1.2 Proposed Methods
	1.2.1 Optimising baseline DNN systems
	1.2.2 Standalone DNN acoustic model training
	1.2.3 Parameterised sigmoid and ReLU functions
	1.2.4 Hybrid system discriminative joint SAT
	1.2.5 SI tandem system joint training
	1.2.6 A generic ANN extension to HTK

	1.3 Summary of Contributions

	2 Automatic Speech Recognition
	2.1 Automatic Speech Recognition System Structure
	2.2 Feature Extraction
	2.3 Acoustic Models
	2.3.1 Acoustic modelling units
	2.3.2 Hidden Markov models and the forward-backward procedure
	2.3.3 The ML HMM training problem
	2.3.4 The Baum-Welch algorithm
	2.3.5 Properties of the BW algorithm

	2.4 Language Models and The Decoding Process
	2.4.1 Language modelling
	2.4.2 Decoding process
	2.4.3 Representing hypotheses using lattices
	2.4.4 WER evaluation

	2.5 Context-Dependent Acoustic Modelling
	2.6 Maximum Likelihood Linear Transforms
	2.6.1 Maximum likelihood linear regression
	2.6.2 Heteroscedastic linear discriminant analysis
	2.6.3 Semi-tied covariance matrices

	2.7 Discriminative Sequence Training
	2.7.1 Maximum mutual information
	2.7.2 The extended Baum-Welch algorithm
	2.7.3 Minimum phone error rate
	2.7.4 I-smoothing and percentile based variance floor

	2.8 LVCSR Acoustic Model Construction
	2.8.1 HTK LVCSR silence modelling
	2.8.2 Embedded-unit training
	2.8.3 Flat start initialisation
	2.8.4 GMM-HMM system construction

	3 Artificial Neural Networks for Speech Recognition
	3.1 An ANN Model
	3.2 ANNs with Flexible Structures
	3.3 Probabilistic Interpretations
	3.3.1 Output activation function
	3.3.2 Cross entropy criterion
	3.3.3 Sigmoid hidden activation function
	3.3.4 ReLU hidden activation function

	3.4 Error Backpropagation
	3.5 Gradient Descent
	3.5.1 Full batch based gradient descent
	3.5.2 Stochastic gradient descent

	3.6 Practical Solutions to SGD Issues
	3.6.1 Learning rate scheduler
	3.6.2 Momentum
	3.6.3 Gradient and update value clipping
	3.6.4 Batch normalisation

	3.7 Regularisation
	3.8 Deep Learning
	3.8.1 Deep ANN models
	3.8.2 Generative PT
	3.8.3 Discriminative PT

	3.9 Integrating ANNs into ASR
	3.9.1 Tandem system
	3.9.2 Hybrid system
	3.9.3 Sequence training for hybrid systems

	3.10 Baseline Configurations
	3.10.1 An improved NewBob scheduler
	3.10.2 Tandem baseline system
	3.10.3 Hybrid baseline system
	3.10.4 Joint decoding system

	3.11 Joint Training Methods
	3.11.1 ASR system joint training
	3.11.2 DNN acoustic model joint training
	3.11.3 Related work

	4 DNN Acoustic Model Standalone Training
	4.1 CI-DNN-HMM Standalone Training
	4.1.1 Initial alignment refinement
	4.1.2 Discriminative PT with realignment

	4.2 Target Clustering for CD-DNN-HMMs
	4.2.1 Class-conditional distribution interpretation
	4.2.2 DNN-HMM based decision tree target clustering
	4.2.3 Distribution estimation based on hidden activations
	4.2.4 Statistics collection and CD-DNN construction

	4.3 Standalone Training Experiments
	4.3.1 Baseline system performance
	4.3.2 CI system standalone training
	4.3.3 CD system standalone training

	4.4 CI Discriminative PT
	4.4.1 CI initialisation for CD-DNNs
	4.4.2 CI state classification accuracy

	4.5 CI Initialisation Experiments
	4.5.1 WSJ SI-84 DNN-HMM system performance
	4.5.2 Investigation of DNN layer output values
	4.5.3 WSJ SI-284 DNN-HMM system performance
	4.5.4 Aurora-4 DNN-HMM system performance

	4.6 Summary and Conclusions
	4.7 Related Work

	5 Learning Hidden Activation Functions
	5.1 Training Parameterised Activation Functions with error backpropagation (EBP)
	5.2 Parameterised Activation Functions
	5.2.1 Parameterised sigmoid functions
	5.2.2 Parameterised ReLU functions

	5.3 Speaker Independent Modelling Experiments
	5.3.1 Training p-Sigmoid and p-ReLU parameters
	5.3.2 Selecting p-Sigmoid and p-ReLU parameters to train

	5.4 p-Sigmoid and p-ReLU for Speaker Adaptation
	5.4.1 SD p-Sigmoid and p-ReLU parameters
	5.4.2 Adaptation criteria and the layer-wise scheme

	5.5 Speaker Adaptation Experiments
	5.5.1 MGB hybrid system adaptation
	5.5.2 MGB tandem system adaptation
	5.5.3 MGB stacked hybrid system adaptation
	5.5.4 TED hybrid system adaptation

	5.6 Summary and Conclusions
	5.7 Related Work

	6 Hybrid and Tandem System Joint Training
	6.1 Hybrid System MPE Training
	6.2 MPE Training Experiments
	6.3 Discriminative Joint SAT
	6.4 Discriminative Joint SAT Experiments
	6.5 Training GMMs using SGD
	6.5.1 GPU based GMM calculations
	6.5.2 Revisiting tandem system construction

	6.6 MPE Training for GMMs with SGD
	6.6.1 Parameter smoothing and weight decay
	6.6.2 The percentile based variance floor

	6.7 Tandem System Joint Training
	6.7.1 Use of ReLU to replace linear activation functions
	6.7.2 Relative update value clipping
	6.7.3 Amplified GMM learning
	6.7.4 Parameter updating schemes

	6.8 Tandem System Joint Training Experiments
	6.8.1 GMM-HMM MPE training
	6.8.2 MDNN-HMM MPE training
	6.8.3 Further experiments

	6.9 Summary and Conclusions
	6.10 Related Work

	7 Conclusions and Future Work
	7.1 Contributions and Conclusions
	7.2 Future Work

	Appendix A Data Sets and System Setup
	A.1 Babel Conversational Telephone Speech
	A.2 Multi-Genre Broadcast Task
	A.3 Wall Street Journal Read Speech
	A.4 Aurora-4 Multi-Condition Read Speech
	A.5 Mandarin Conversational Telephony Speech
	A.6 TED Talks

	Appendix B A General ANN Extension for HTK
	B.1 Design Principles
	B.2 Implementation Details
	B.3 ANN Support and Training Methods
	B.4 Data Cache
	B.5 Interfacing ANNs with HMMs
	B.6 Other Key Features
	B.6.1 Math kernels
	B.6.2 Input transforms and speaker adaptation
	B.6.3 Model editing
	B.6.4 Decoders

	References

