278,713 research outputs found

    Context-aware Path Ranking for Knowledge Base Completion

    Full text link
    Knowledge base (KB) completion aims to infer missing facts from existing ones in a KB. Among various approaches, path ranking (PR) algorithms have received increasing attention in recent years. PR algorithms enumerate paths between entity pairs in a KB and use those paths as features to train a model for missing fact prediction. Due to their good performances and high model interpretability, several methods have been proposed. However, most existing methods suffer from scalability (high RAM consumption) and feature explosion (trains on an exponentially large number of features) problems. This paper proposes a Context-aware Path Ranking (C-PR) algorithm to solve these problems by introducing a selective path exploration strategy. C-PR learns global semantics of entities in the KB using word embedding and leverages the knowledge of entity semantics to enumerate contextually relevant paths using bidirectional random walk. Experimental results on three large KBs show that the path features (fewer in number) discovered by C-PR not only improve predictive performance but also are more interpretable than existing baselines

    Loop Corrections in Non-Linear Cosmological Perturbation Theory II. Two-point Statistics and Self-Similarity

    Full text link
    We calculate the lowest-order non-linear contributions to the power spectrum, two-point correlation function, and smoothed variance of the density field, for Gaussian initial conditions and scale-free initial power spectra, P(k)∼knP(k) \sim k^n. These results extend and in some cases correct previous work in the literature on cosmological perturbation theory. Comparing with the scaling behavior observed in N-body simulations, we find that the validity of non-linear perturbation theory depends strongly on the spectral index nn. For n<−1n<-1, we find excellent agreement over scales where the variance \sigma^2(R) \la 10; however, for n≥−1n \geq -1, perturbation theory predicts deviations from self-similar scaling (which increase with nn) not seen in numerical simulations. This anomalous scaling suggests that the principal assumption underlying cosmological perturbation theory, that large-scale fields can be described perturbatively even when fluctuations are highly non-linear on small scales, breaks down beyond leading order for spectral indices n≥−1n \geq -1. For n<−1n < -1, the power spectrum, variance, and correlation function in the scaling regime can be calculated using dimensional regularization.Comment: 48 pages, 19 figures, uses axodraw.sty; also available at http://fnas08.fnal.gov

    Navier-Stokes-alpha model: LES equations with nonlinear dispersion

    Full text link
    We present a framework for discussing LES equations with nonlinear dispersion. In this framework, we discuss the properties of the nonlinearly dispersive Navier-Stokes-alpha model of incompressible fluid turbulence --- also called the viscous Camassa-Holm equations and the LANS equations in the literature --- in comparison with the corresponding properties of large eddy simulation (LES) equations obtained via the approximate-inverse approach. In this comparison, we identify the spatially filtered NS-alpha equations with a class of generalized LES similarity models. Applying a certain approximate inverse to this class of LES models restores the Kelvin circulation theorem for the defiltered velocity and shows that the NS-alpha model describes the dynamics of the defiltered velocity for this class of generalized LES similarity models. We also show that the subgrid scale forces in the NS-alpha model transform covariantly under Galilean transformations and under a change to a uniformly rotating reference frame. Finally, we discuss in the spectral formulation how the NS-alpha model retains the local interactions among the large scales, retains the nonlocal sweeping effects of large scales on small scales, yet attenuates the local interactions of the small scales amongst themselves.Comment: 15 pages, no figures, Special LES volume of ERCOFTAC bulletin, to appear in 200

    Dark energy domination in the Virgocentric flow

    Full text link
    The standard \LambdaCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we focus now on the Virgo Cluster and the flow of expansion around it. We interpret the Hubble diagram, from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Our conclusions are: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances \ga 15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, due to the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.Comment: 7 pages, 2 figures, Astronomy and Astrophysics (accepted

    Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology

    Get PDF
    We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of a divergent sum which involves the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.Comment: 38 pages LaTe

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Similarity Renormalization Group Evolution of Chiral Effective Nucleon-Nucleon Potentials in the Subtracted Kernel Method Approach

    Full text link
    Methods based on Wilson's renormalization group have been successfully applied in the context of nuclear physics to analyze the scale dependence of effective nucleon-nucleon (NNNN) potentials, as well as to consistently integrate out the high-momentum components of phenomenological high-precision NNNN potentials in order to derive phase-shift equivalent softer forms, the so called Vlow−kV_{low-k} potentials. An alternative renormalization group approach that has been applied in this context is the Similarity Renormalization Group (SRG), which is based on a series of continuous unitary transformations that evolve hamiltonians with a cutoff on energy differences. In this work we study the SRG evolution of a leading order (LO) chiral effective NNNN potential in the 1S0^1 S_0 channel derived within the framework of the Subtracted Kernel Method (SKM), a renormalization scheme based on a subtracted scattering equation.Comment: Published versio

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease
    • …
    corecore