2,732 research outputs found

    Collaborating on Affinity Diagrams Using Large Displays

    Get PDF
    Gathering and understanding user requirements is an essential part of design. Techniques like affinity diagramming are useful for gathering and understanding user data but have shortcomings such as the difficulty to preserve the diagram after its creation, problems during the process such as searching for notes, and loss of shared awareness. We propose an early prototype that solves problems in the process of creating an affinity diagram and enhances it using a large screen display in combination with individual PDAs

    Literature Survey on Interaction Techniques for Large Displays

    Get PDF
    When designing for large screen displays, designers are forced to deal with cursor tracking issues, interacting over distances, and space management issues. Because of the large visual angle of the user that the screen can cover, it may be hard for users to begin and complete search tasks for basic items such as cursors or icons. In addition, maneuvering over long distances and acquiring small targets understandably takes more time than the same interactions on normally sized screen systems. To deal with these issues, large display researchers have developed more and more unconventional devices, methods and widgets for interaction, and systems for space and task management. For tracking cursors there are techniques that deal with the size and shape of the cursor, as well as the β€œdensity” of the cursor. There are other techniques that help direct the attention of the user to the cursor. For target acquisition on large screens, many researchers saw fit to try to augment existing 2D GUI metaphors. They try to optimize Fitts’ law to accomplish this. Some techniques sought to enlarge targets while others sought to enlarge the cursor itself. Even other techniques developed ways of closing the distances on large screen displays. However, many researchers feel that existing 2D metaphors do not and will not work for large screens. They feel that the community should move to more unconventional devices and metaphors. These unconventional means include use of eye-tracking, laser-pointing, hand-tracking, two-handed touchscreen techniques, and other high-DOF devices. In the end, many of these developed techniques do provide effective means for interaction on large displays. However, we need to quantify the benefits of these methods and understand them better. The more we understand the advantages and disadvantages of these techniques, the easier it will be to employ them in working large screen systems. We also need to put into place a kind of interaction standard for these large screen systems. This could mean simply supporting desktop events such as pointing and clicking. It may also mean that we need to identify the needs of each domain that large screens are used for and tailor the interaction techniques for the domain

    Situational Awareness Support to Enhance Teamwork in Collaborative Environments

    Get PDF
    Modern collaborative environments often provide an overwhelming amount of visual information on multiple displays. The multitude of personal and shared interaction devices leads to lack of awareness of team members on ongoing activities, and awareness of who is in control of shared artefacts. This research addresses the situational awareness (SA) support of multidisciplinary teams in co-located collaborative environments. This work aims at getting insights into design and evaluation of large displays systems that afford SA and effective teamwork

    Direct interaction with large displays through monocular computer vision

    Get PDF
    Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized. A proof-of-concept prototype is built and evaluated from various user studies. Results from this thesis suggested that it is possible to allow natural user interaction with large displays using low-cost monocular computer vision. Furthermore, models developed and lessons learnt in this research can assist designers to develop more accurate and natural interactive systems that make use of human’s natural pointing behaviours

    Cross-display attention switching in mobile interaction with large displays

    Get PDF
    Mobile devices equipped with features (e.g., camera, network connectivity and media player) are increasingly being used for different tasks such as web browsing, document reading and photography. While the portability of mobile devices makes them desirable for pervasive access to information, their small screen real-estate often imposes restrictions on the amount of information that can be displayed and manipulated on them. On the other hand, large displays have become commonplace in many outdoor as well as indoor environments. While they provide an efficient way of presenting and disseminating information, they provide little support for digital interactivity or physical accessibility. Researchers argue that mobile phones provide an efficient and portable way of interacting with large displays, and the latter can overcome the limitations of the small screens of mobile devices by providing a larger presentation and interaction space. However, distributing user interface (UI) elements across a mobile device and a large display can cause switching of visual attention and that may affect task performance. This thesis specifically explores how the switching of visual attention across a handheld mobile device and a vertical large display can affect a single user's task performance during mobile interaction with large displays. It introduces a taxonomy based on the factors associated with the visual arrangement of Multi Display User Interfaces (MDUIs) that can influence visual attention switching during interaction with MDUIs. It presents an empirical analysis of the effects of different distributions of input and output across mobile and large displays on the user's task performance, subjective workload and preference in the multiple-widget selection task, and in visual search tasks with maps, texts and photos. Experimental results show that the selection of multiple widgets replicated on the mobile device as well as on the large display, versus those shown only on the large display, is faster despite the cost of initial attention switching in the former. On the other hand, a hybrid UI configuration where the visual output is distributed across the mobile and large displays is the worst, or equivalent to the worst, configuration in all the visual search tasks. A mobile device-controlled large display configuration performs best in the map search task and equal to best (i.e., tied with a mobile-only configuration) in text- and photo-search tasks

    Interactive Stroke-Based NPR using Hand Postures on Large Displays

    Get PDF

    Interactive Stroke-Based NPR using Hand Postures on Large Displays

    Get PDF

    Large displays and tablets:Data exploration and its effects on data collection

    Get PDF
    Data is pivotal to open government initiatives, where citizens are often expected to be informed and actively participate. Yet, it can be difficult for people to understand the meaning of data. Presenting data to the public in an appropriate way may also increase citizen's willingness to participate in data collection. Here we present a study which explores how large screens can support socially relevant data exploration. In a between subject laboratory experiment, we analysed how pairs of participants explored data visualisations on a high-resolution display (LHRD) and a tablet. Our results indicate that LHRDs are less cognitively demanding, while tablets offer more shared control of the interface. Data exploration had limited effect on increasing comfort with sharing personal data but helped increase perceptions of trustworthiness within the data collection process. We observed that appropriately visualised data on either platform has significant potential to increase the public's understanding of large data sets
    • …
    corecore