2,185 research outputs found

    Regular finite decomposition complexity

    Get PDF
    We introduce the notion of regular finite decomposition complexity of a metric family. This generalizes Gromov's finite asymptotic dimension and is motivated by the concept of finite decomposition complexity (FDC) due to Guentner, Tessera and Yu. Regular finite decomposition complexity implies FDC and has all the permanence properties that are known for FDC, as well as a new one called Finite Quotient Permanence. We show that for a collection containing all metric families with finite asymptotic dimension all other permanence properties follow from Fibering Permanence

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Maximum union-free subfamilies

    Get PDF
    An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called union-free if there are no three distinct sets in the family such that the union of two of the sets is equal to the third set. We show that every family of m sets contains a union-free subfamily of size at least \lfloor \sqrt{4m+1}\rfloor - 1 and that this bound is tight. This solves Moser's problem and proves a conjecture of Erd\H{o}s and Shelah from 1972. More generally, a family of sets is a-union-free if there are no a+1 distinct sets in the family such that one of them is equal to the union of a others. We determine up to an absolute multiplicative constant factor the size of the largest guaranteed a-union-free subfamily of a family of m sets. Our result verifies in a strong form a conjecture of Barat, F\"{u}redi, Kantor, Kim and Patkos.Comment: 10 page

    Generalized strongly increasing semigroups

    Full text link
    In this work we present a new class of numerical semigroups called GSI-semigroups. We see the relations between them and others families of semigroups and we give explicitly their set of gaps. Moreover, an algorithm to obtain all the GSI-semigroups up to a given Frobenius number is provided and the realization of positive integers as Frobenius numbers of GSI-semigroups is studied

    Helly numbers of Algebraic Subsets of Rd\mathbb R^d

    Full text link
    We study SS-convex sets, which are the geometric objects obtained as the intersection of the usual convex sets in Rd\mathbb R^d with a proper subset S⊂RdS\subset \mathbb R^d. We contribute new results about their SS-Helly numbers. We extend prior work for S=RdS=\mathbb R^d, Zd\mathbb Z^d, and Zd−k×Rk\mathbb Z^{d-k}\times\mathbb R^k; we give sharp bounds on the SS-Helly numbers in several new cases. We considered the situation for low-dimensional SS and for sets SS that have some algebraic structure, in particular when SS is an arbitrary subgroup of Rd\mathbb R^d or when SS is the difference between a lattice and some of its sublattices. By abstracting the ingredients of Lov\'asz method we obtain colorful versions of many monochromatic Helly-type results, including several colorful versions of our own results.Comment: 13 pages, 3 figures. This paper is a revised version of what was originally the first half of arXiv:1504.00076v
    • …
    corecore