42,652 research outputs found

    Language Definitions as Rewrite Theories

    Get PDF
    (To appear in Springer LNCS)International audienceK is a formal framework for defining the operational semantics of programming languages. It includes software tools for compiling K language definitions to Maude rewrite theories, for executing programs in the defined languages based on the Maude rewriting engine, and for analyzing programs by adapting various Maude analysis tools. A recent extension to the K tool suite is an automatic transformation of language definitions that enables the symbolic execution of programs, i.e., the execution of programs with symbolic inputs. In this paper we investigate the theoretical relationships between K language definitions and their translations to Maude, between symbolic extensions of K definitions and their Maude encodings, and how the relations between K definitions and their symbolic extensions are reflected on their respective representations in Maude. These results show, in particular, how analyses performed with Maude tools can be formally lifted up to the original language definitions

    A Constructor-Based Reachability Logic for Rewrite Theories

    Get PDF
    Reachability logic has been applied to K rewrite-rule-based language definitions as a language-generic logic of programs. It has been proved successful in verifying a wide range of sophisticated programs in conventional languages. Here we study how reachability logic can be made not just language-generic, but rewrite-theory-generic to make it available not just for conventional program verification, but also to verify rewriting-logic-based programs and distributed system designs. A theory-generic reachability logic is presented and proved sound for a wide class of rewrite theories. Particular attention is given to increasing the logic's automation by means of constructor-based semantic unification, matching, and satisfiability procedures. The relationships to Hoare logic and LTL are discussed, new methods for proving invariants of possibly never terminating distributed systems are developed, and experiments with a prototype implementation illustrating the new methods are presented.Partially supported by NSF Grants CNS 13-19109 and CNS 14-09416, and AFOSR Contract FA8750-11-2-0084.Ope

    Phobos: A front-end approach to extensible compilers (long version)

    Get PDF
    This paper describes a practical approach for implementing certain types of domain-specific languages with extensible compilers. Given a compiler with one or more front-end languages, we introduce the idea of a "generic" front-end that allows the syntactic and semantic specification of domain-specific languages. Phobos, our generic front-end, offers modular language specification, allowing the programmer to define new syntax and semantics incrementally

    Canonical Abstract Syntax Trees

    Get PDF
    This paper presents Gom, a language for describing abstract syntax trees and generating a Java implementation for those trees. Gom includes features allowing the user to specify and modify the interface of the data structure. These features provide in particular the capability to maintain the internal representation of data in canonical form with respect to a rewrite system. This explicitly guarantees that the client program only manipulates normal forms for this rewrite system, a feature which is only implicitly used in many implementations

    A Universal Machine for Biform Theory Graphs

    Full text link
    Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMTt/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information. We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final publication is available at http://link.springer.com

    Checking Zenon Modulo Proofs in Dedukti

    Get PDF
    Dedukti has been proposed as a universal proof checker. It is a logical framework based on the lambda Pi calculus modulo that is used as a backend to verify proofs coming from theorem provers, especially those implementing some form of rewriting. We present a shallow embedding into Dedukti of proofs produced by Zenon Modulo, an extension of the tableau-based first-order theorem prover Zenon to deduction modulo and typing. Zenon Modulo is applied to the verification of programs in both academic and industrial projects. The purpose of our embedding is to increase the confidence in automatically generated proofs by separating untrusted proof search from trusted proof verification.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Open Graphs and Monoidal Theories

    Full text link
    String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets us safely encode the interesting structure of a computational model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical representation absorbs many of the tedious details. Although topological formalisms exist for string diagrams, our construction is discreet, finitary, and enjoys decidable algorithms for composition and rewriting. We also show how open-graphs can be parametrised by graphical signatures, similar to the monoidal signatures of Joyal and Street, which define types for vertices in the diagrammatic language and constraints on how they can be connected. Using typed open-graphs, we can construct free symmetric monoidal categories, PROPs, and more general monoidal theories. Thus open-graphs give us a handle for mechanised reasoning in monoidal categories.Comment: 31 pages, currently technical report, submitted to MSCS, waiting review

    Formalization of the fundamental group in untyped set theory using auto2

    Full text link
    We present a new framework for formalizing mathematics in untyped set theory using auto2. Using this framework, we formalize in Isabelle/FOL the entire chain of development from the axioms of set theory to the definition of the fundamental group for an arbitrary topological space. The auto2 prover is used as the sole automation tool, and enables succinct proof scripts throughout the project.Comment: 17 pages, accepted for ITP 201
    corecore