
HAL Id: hal-00950775
https://hal.inria.fr/hal-00950775

Submitted on 22 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language Definitions as Rewrite Theories
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu, Traian-Florin Serbanuta, Andrei

Stefanescu, Grigore Rosu

To cite this version:
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu, Traian-Florin Serbanuta, Andrei Stefanescu, et al.. Lan-
guage Definitions as Rewrite Theories. International Workshop on Rewriting Logic and Application,
Apr 2014, Grenoble, France. �hal-00950775�

https://hal.inria.fr/hal-00950775
https://hal.archives-ouvertes.fr

Language Definitions as Rewrite Theories

Andrei Arusoaie1, Dorel Lucanu1, Vlad Rusu2, Traian-Florin Şerbănuţă1,3,
Andrei Ştefănescu4, and Grigore Roşu4

1 Alexandru Ioan Cuza University, Iaşi, Romania
2 Inria Lille Nord Europe, France

3 University of Bucharest, Romania
4 University of Illinois at Urbana-Champaign, USA

Abstract. K is a formal framework for defining the operational seman-
tics of programming languages. It includes software tools for compiling K

language definitions to Maude rewrite theories, for executing programs
in the defined languages based on the Maude rewriting engine, and for
analyzing programs by adapting various Maude analysis tools. A recent
extension to the K tool suite is an automatic transformation of language
definitions that enables the symbolic execution of programs, i.e., the exe-
cution of programs with symbolic inputs. In this paper we investigate the
theoretical relationships between K language definitions and their trans-
lations to Maude, between symbolic extensions of K definitions and their
Maude encodings, and how the relations between K definitions and their
symbolic extensions are reflected on their respective representations in
Maude. These results show, in particular, how analyses performed with
Maude tools can be formally lifted up to the original language definitions.

1 Introduction

K [11] is a framework for formally defining the semantics of programming lan-
guages. The current version of K includes options that have Maude [3] as a back-
end: the K compiler transforms any K definition into a Maude module; then, the
K runner uses Maude to run or analyze programs in the defined language.

Recently, K has been extended with symbolic execution support [2]. Briefly,
a K language definition is automatically transformed into a symbolic-language
definition, such that the concrete executions of programs using the symbolic defi-
nition are symbolic executions of programs using the original language definition.
The transformation amounts to incorporating path conditions in program con-
figurations, and to changing the language’s semantic rules so that they match on
symbolic configurations and that they automatically update the path conditions.

Symbolic executions are called feasible if their path conditions are satisfiable.
Two results relating concrete and symbolic program executions are proved in [2]:
coverage, saying that for each concrete execution there is a feasible symbolic one
taking the same path on the program; and precision, saying that for each feasible
symbolic execution there is a concrete one taking the same program path.

In this paper we propose two ways of representing K language definitions in
Maude: a faithful representation and an approximate one. We then study the rela-
tionships between K language definitions (including the symbolic ones, obtained

by the above-described transformation) and their representations in Maude. We
also show how the coverage and precision results, which relate a language L
and its symbolic extension Ls, are reflected on their respective representations
in Maude. These results show, in particular, how (symbolic) analyses performed
with Maude tools on the (faithful and approximate) Maude representations of
languages can be lifted up to the original language definitions. The various re-
sults that we have obtained can be graphically depicted as in following diagram
(dashed arrows show the results proved in the paper):

Faithful Representation Approximate Representation

L

R(L)

Ls

R(Ls)

coverage

precision

faithful
encoding

coverage

precision

faithful
encoding

L

R(L)

Ls

R(Ls)

coverage

precision

approx.
encoding

coverage

precision

approx.
encoding

In the faithful encoding, each semantic rule of the language definition L is trans-
lated into a rewrite rule of the rewrite theory R(L). Equations are only intro-
duced in order to express equality in the data domain. The resulting rewrite
theory is proved to be executable by Maude, and the transition system gener-
ated by the language definition is shown to be isomorphic to the one generated
by the rewrite theory. Some variations of this encoding are also discussed, all
of which satisfy the executability and faithfulness properties. As a consequence,
both positive and negative results of reachability analyses, obtained on rewrite
theories (i.e., by using the Maude search command) also hold on the original lan-
guage definitions. Moreover, all symbolic reachability analysis results obtained
on the rewrite-theory representation R(Ls) of a symbolic language Ls also hold
on the rewrite-theory representation R(L) of the language L. The latter prop-
erty is analoguous to the results obtained in [10], where rewriting modulo SMT
is shown to be related to (usual) rewriting in a sound and complete way.

For nontrivial language definitions, the faithful encoding is not very practi-
cal, because it typically generates a huge state-space that is not amenable to
reachability analysis. This is why we introduce approximate representations of
language definitions as two-layered rewrite theories. These approximations are
obtained by splitting the semantic rules of the language into two sets, called lay-
ers, such that the first layer forms a terminating rewrite system. The one-step
rewriting in such a theory is obtained by computing an irreducible form w.r.t.
rules from the first layer (according to a given strategy), and then applying a
rule from the second layer. A simple example of a two-layered rewrite theory is
a Maude module consisting of equations and rules, where the equations (denot-
ing the first layer) are only required to be terminating, and both the equations
and rules (which form the second layer) specify transitions in the underlying
transition-system model of the theory.

In an (approximating) two-layered rewrite theory R(L), only a subset of the
executions of programs in the original language L are represented. The conse-
quence is that only positive results of reachability analyses on the two-layered

2

rewrite theories can be lifted up to the corresponding language definitions. In
addition to reducing the state-space to be explored, the approximate encoding
of a language by a two-layered rewrite theory can also be seen as the output of
a compiler that solves some semantic choices left by the language definition at
compile-time. For example, in C, the order in which the operands of addition
are evaluated is a compile-time choice. By turning the operand-evaluation rules
into first-layer rules, and by letting Maude automatically execute these rules
in various orders according to certain strategies, one can reproduce the various
design compile-time choices for the evaluation of arguments.

We note that approximating two-layered rewrite theories have some limita-
tions: only the coverage property relating the language definition L to its sym-
bolic version Ls also holds on their respective approximate encodings theories;
the precision property holds only in some restricted cases. However, the precision
property between the approximate symbolic encoding R(Ls) and the language
definition L always holds. Hence, one can trace symbolic reachability analyses
(performed on R(Ls)) back to programs in L, and also (in some restricted cases)
to the representation of programs in R(L), which, as discussed above, can be
seen as compiled programs where some semantic choices are left to the compiler.

Organisation. In Section 2 we present our working examples, which are two
programs belonging to the CinK kernel of C++, which was specified in K [7].
A partial description of the K definition for CinK is included. In Section 3 we
introduce a formal notion of a language-definition framework, which allows us to
make our approach independent of the K language definitional framework and
to abstract away some particular implementation details of K. For the same rea-
son, we will be using rewrite theories (instead of their implementations as Maude
modules) for the encodings of language definitions. We also briefly present the
language-independent symbolic execution approach [2] and recap some essential
notions related to the executability of rewrite theories.

Section 4 presents the faithful and the approximate representations of lan-
guage definitions into a rewrite theory and the various relations between them
(graphically depicted in the above diagram). Section 5 presents the applications
of these representations to the compilation of K language definitions as Maude
modules. Finally, Section 6 presents conclusions and related work.

2 Running Example

Our running example is CinK [7], a kernel of the C++ programming language.
The K definition of CinK can be found on the K Framework Github reposi-
tory: http://github.com/kframework/cink-semantics. As any K definition,
it consists of the language syntax, given using a BNF-style grammar, and of its
semantics, given using rewrite rules on configurations. In this paper we only ex-
hibit a small part of the K definition of CinK, whose syntax is shown in Figure 1.
Some of the grammar productions are annotated with K-specific attributes.

A major feature of C++ expressions is that given by the “sequenced before”
relation [1], which defines a partial order over the evaluation of subexpressions.

3

http://github.com/kframework/cink-semantics

Exp ::= Id | Int

| ++ Exp [strict , prefinc]
| -- Exp [strict , predec]
| Exp / Exp [strict(all(context(rvalue))), divide]
| Exp + Exp [strict(all(context(rvalue))), plus]
| Exp > Exp [strict(all(context(rvalue)))]

Stmt ::= Exps ; [strict]
| {Stmts}
| while (Exp)Stmt

| return Exp ; [strict(all(context(rvalue)))]
| if (Exp)Stmt else Stmt [strict(1 (context(rvalue)))]

Fig. 1. CinK syntax

This can be easily expressed in K using the strict attribute to specify an eval-
uation order for an operation’s operands. If the operator is annotated with the
strict attribute then its operands will be evaluated in a nondeterministic or-
der. For instance, all the binary operations are strict. Hence, they may induce
non-determinism in programs because of possible side-effects in their arguments.

Another feature is given by the classification of expressions into rvalues and
lvalues. The arguments of binary operations are evaluated as rvalues and their
results are also rvalues, while, e.g., both the argument of the prefix-increment
operation and its result are lvalues. The strict attribute for such operations has
a sub-attribute context for wrapping any subexpression that must be evaluated
as an rvalue. Other attributes (funcall , divide, plus,minus, . . .) are names asso-
ciated to each syntactic production, which can be used for referring to them.
The K framework uses configurations to store program states. A configuration is
a nested structure of cells, which typically include the program to be executed,
input and output streams, values for program variables, and other additional in-
formation. The configuration of CinK (Figure 2) includes the 〈〉k cell containing
the code that remains to be executed, which is represented as a list of computa-
tion tasks C1 y C2 y . . . to be executed in the given order. Computation tasks
are typically statements and expression evaluations. The memory is modeled
using two cells 〈〉env (which holds a map from variables to addresses) and 〈〉state
(which holds a map from addresses to values). The configuration also includes a
cell for the function call stack and another one for the return values of functions.

〈 〈$PGM〉k 〈·〉env 〈·〉store 〈·〉stack 〈·〉return 〉cfg

Fig. 2. CinK configuration

When the configuration is initialised at runtime, a CinK program is loaded in the
〈〉k cell, and all the other cells remain empty. A K rule is a topmost rewrite rule
specifying transitions between configurations. Since usually only a small part of
the configuration is changed by a rule, a configuration abstraction mechanism is
used, allowing one to only specify the parts transformed by the rule. For instance,
the (abstract) rule for addition, shown in Figure 3, represents the (concrete) rule

〈〈I1 + I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg

⇒⇒⇒

〈〈I1 +Int I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg

4

I1:Int + I2:Int ⇒⇒⇒ I1 +Int I2 [plus]
I1:Int / I2:Int ⇒⇒⇒ I1 /Int I2 requires I2 6=Int 0 [division]
if(true) St:Stmt else _ ⇒⇒⇒ St [if-true]
if(false) _ else St:Stmt ⇒⇒⇒ St [if-false]
while(B:Exp) St :Stmt ⇒⇒⇒ if(B){ St while(B) St else {}} [while]
V :Val ;⇒⇒⇒ · [instr-expr]
〈++lval(L:Loc)⇒⇒⇒ lval(L) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V +Int 1 ···〉store [inc,memw]
〈--lval(L:Loc)⇒⇒⇒ lval(L) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V −Int 1 ···〉store [dec,memw]
〈〈lval(L:Loc)= V :Val ⇒⇒⇒ V ···〉k〈··· L 7→ _ ⇒⇒⇒ V ···〉store ···〉cfg [update,memw]
〈〈$lookup(L:Loc)⇒⇒⇒ V ···〉k〈··· L 7→ V :Val ···〉store ···〉cfg [lookup,memr]
{ Sts:Stmts }⇒⇒⇒ Sts [block]

Fig. 3. Subset of rules from the K semantics of CinK

where +Int is the mathematical operation for addition. Note that the ellipses in
a cell (e.g., 〈 ···〉k) represent the part of the cell not affected by the rule.

The rule for division has a side condition which restricts its application.
The conditional statement if has two corresponding rules, one for each possible
evaluation of the condition expression. The rule for the while loop is unrolled
into an if statement. The increment and update rules have side effects in the
〈〉store cell, modifying the value stored at a specific address. Finally, the reading
of a value from the memory is specified by the lookup rule, which matches a
value in the 〈〉store and places it in the 〈〉k cell. The auxiliary construct $lookup
is used, e.g., when a program variable is evaluated as an rvalue.

In addition to these rules (writtten by the K user), the K framework au-
tomatically generates so-called heating and cooling rules, which are induced by
strict attributes. We show only the case of division, which is strict in both ar-
guments:

A1 / A2 ⇒⇒⇒ rvalue(A1) y � / A2 (1)

A1 / A2 ⇒⇒⇒ rvalue(A2) y A1 / � (2)

rvalue(I1) y � / A2 ⇒⇒⇒ I1 / A2 (3)

rvalue(I2) y A1 / �⇒⇒⇒ A1 / I2 (4)

where � is a special symbol, destined to receive the result of an evaluation.

We shall be using the following two programs in the sequel. The program
counter in Figure 4 is nondeterministic; nondeterminism arises from the unde-

int counter = 1;

int inc() {

return ++counter;

}

int dec() {

return --counter;

}

int main() {

return inc() + dec();

}

int main() {

int k, x;

x = A:Int; //A:Int is a symbolic value

k = 0;

while (x > 0) {

++k;

x = x / 2;

}

}

a) The program counter b) The program log

Fig. 4. Two C++ programs

5

fined evaluation order for the arguments of the + operation and from the side-
effects in its arguments. The program log in the same figure is a symbolic one
because A:Int is a symbolic value, which can denote any integer value. When it
is completed the variable k holds [log2(A)] where [_] denotes the integer part of
a real number. In Section 5 we show how the behaviours of these programs can
be analysed using our encodings of the CinK language as Maude programs.

3 Background

3.1 The Ingredients of a Language Definition

In this section we identify the ingredients of language definitions in an algebraic
and term-rewriting setting. The concepts are explained on the K definition of
CinK. We assume the reader is familiar with the basics of algebraic specification
and rewriting. A language L can be defined as a triple (Σ, T ,S), consisting of:
1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for

configurations and a sort Bool for constraint formulas. For the sake of pre-
sentation, we assume in this paper that the constraint formulas are Boolean
terms built with a subsignature ΣBool ⊆ Σ including the boolean constants
and operations. Σ may also include other subsignatures for other data sorts,
depending on the language L (e.g., integers, identifiers, lists, maps,. . .). Let
ΣData denote the subsignature of Σ consisting of all data sorts and their
operations. We assume that the sort Cfg and the syntax of L are not data,
i.e., they are defined in Σ \ ΣData. Let TΣ denote the Σ-algebra of ground
terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms
with variables, TΣ,s(Var) denote the set of terms of sort s with variables,
and var(t) denote the set of variables occurring in the term t.

2. A ΣData-model D, which interprets the data sorts and operations. For conve-
nience, we assume that Dd ⊂ Σd for each data sort d, i.e., the constants are
elements of the corresponding signature. Let T , T (D) denote the free Σ-
model generated by D. The satisfaction relation ρ |= b between valuations ρ
and constraint formulas b ∈ TΣ,Bool(Var) is defined by ρ |= b iff ρ(b) = Dtrue .
For simplicity, we write true, false, 0, 1 . . . instead of Dtrue ,Dfalse ,D0,D1,

3. A set S of rewrite rules. Each rule is a pair of the form l∧∧∧b⇒⇒⇒ r, where l, r ∈
TΣ,Cfg(Var) are the rule’s left-hand-side and right-hand-side, respectively,
and b ∈ TΣ,Bool(Var) is the condition. The formal definitions for rules and
for the transition system defined by them are given below.

Remark 1. For the sake of presentation, here we consider only "pure" language
definitions, where the semantics is given only by semantic rules between configu-
rations. Some definitions may include additional functions defined by equations.
For such cases the language definition may additionally includes a set of axioms
A0, e.g., associativity and/or commutativity of some functions, and a set of equa-
tions E0. Then the model T is the free algebra modulo A0∪E0. We believe that
the approach presented in this paper can be extended to these more involved
definitions, but this requires more investigation and is left for future work.

6

We now formally introduce the notions required for defining semantic rules.

Definition 1 (pattern [12]). A pattern is an expression of the form π ∧∧∧ b,
where π ∈ TΣ,Cfg(Var) is a basic pattern and b ∈ TΣ,Bool(Var). If γ ∈ TCfg and
ρ :Var → T then we write (γ, ρ) |= π ∧∧∧ b iff γ = ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condi-
tion b gives additional constraints these configurations must satisfy.

Remark 2. The above definition is a particular case of a definition in [12]. There,
a pattern is a first-order logic formula with configuration terms as sub-formulas.
In this paper we keep the conjunction notation from first-order logic but separate
basic patterns from constraints. Note that first-order formulas can be encoded as
terms of sort Bool, where the quantifiers become constructors. The satisfaction
relation |= is then defined, for such terms, like the usual FOL satisfaction.

We identify basic patterns π with patterns π ∧∧∧ true. Sample patterns are
〈〈I1 + I2 y C〉k〈Env〉env〉cfg and 〈〈I1 / I2 y C〉k〈Env〉env〉cfg ∧∧∧ I2 6=Int 0.

Definition 2 (rule, transition system). A rule is a pair of patterns of the
form l ∧∧∧ b ⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules

defines a labelled transition system (TCfg ,⇒S) such that γ
α

=⇒S γ
′ iff there exist

α , (l∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r.

3.2 Symbolic Execution

We briefly recap our approach to symbolic execution from [2]. The main idea is
to automatically generate a new definition (Σs, T s,Ss) for a language Ls from
a given definition (Σ, T ,S) of a language L. The new language Ls has the same
syntax, and its semantics extends L’s data domains with symbolic values and
adapts the semantical rules of L to deal with the new domains.

Let V s denote an infinite, data sort-wise set of symbolic values, disjoint from
Var and from symbols in Σ. The data algebra is extended to Ds, which is the
algebra of ground terms over the signature ΣData(V s).

Remark 3. The approach in [2] allows some freedom in choosing the algebra Ds,
to enable the use of decision procedures for handling symbolic artifacts.

The signature Σs extends Σ with the symbolic values V s as constants, a new
sort Cfgs and a constructor _∧∧∧_ : Cfg×Bool → Cfgs. The model T s is defined
as being the free Σs-model generated by Ds, similarly to how T is built over D.
The ground terms π ∧∧∧ φ ∈ T s

Cfgs are called symbolic configurations. Let [[π ∧∧∧ φ]]
denote the set of concrete configurations {γ | (∃ρ) (γ, ρ) |= π ∧∧∧ φ}.

Thanks to the rule transformation procedure presented in [2], we make with-
out loss of generality the assumption that the basic patterns in left-hand sides of
rules do not contain operations on data, and the rules are left-linear. Concrete
semantic rules l∧∧∧ b⇒⇒⇒ r ∈ S are then systematically transformed into rules

l∧∧∧ ψ⇒⇒⇒ r ∧∧∧ (ψ ∧ b) (5)

7

where ψ ∈ Var is a fresh variable of sort Bool playing the role of a path condition.
This means that symbolic rules are applied like concrete rules, except for the
fact that the current path condition ψ is enriched with the rule’s condition b.

Then, the symbolic execution of L programs is the concrete execution of
the corresponding Ls programs, i.e., the application of the rewrite rules in the
semantics of Ls. Building the definition of Ls amounts to extending the signature
Σ to a symbolic signature Σs, extending the Σ-algebra T to a Σs-algebra T s,
and turning the concrete rules S into symbolic rules Ss. The transition system
(T s

Cfgs ,⇒Ss) is defined using Definitions 1, 2 applied to Ls. In [2] it is proved
that the symbolic transition system forward-simulates the concrete one, and that
the concrete transition system backward-simulates the symbolic one. These two
results then imply the naturally expected properties of symbolic execution.

Theorem 1 (Coverage [2]). For every concrete execution γ0
α1=⇒S γ1

α2=⇒S

· · ·
αn=⇒S γn

αn+1

=⇒S · · · there is a symbolic execution π0∧∧∧ φ0
α1=⇒Ss π1∧∧∧ φ1

α2=⇒Ss

· · ·
αn=⇒Ss πn ∧∧∧ φn

αn+1

=⇒Ss · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

A symbolic configuration π ∧∧∧ φ ∈ T s

Cfgs is satisfiable if there is a valuation
ϑ : V s → D such that ϑ |= φ (which is equivalent to [[π ∧∧∧ φ]] 6= ∅). We call a
symbolic execution feasible if all its configurations are satisfiable.

Theorem 2 (Precision [2]). For every feasible symbolic execution π0∧∧∧φ0
α1=⇒Ss

π1 ∧∧∧ φ1
α2=⇒Ss · · ·

αn=⇒Ss πn ∧∧∧ φn
αn+1

=⇒Ss · · · there is a concrete execution

γ0
α1=⇒S γ1

α2=⇒S · · ·
αn=⇒S γn

αn+1

=⇒S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

3.3 Rewrite Theories

A rewrite theory [3] R = (Σ,E∪A,R) consists of a signatureΣ, a set of equations
E, a set of axioms A, e.g., associativity, commutativity, unity or combinations
of these, and a set of rewrite rules R of the form l → r if b, where l and r
are terms with variables and b is a term of sort Bool. We are only interested in
rewrite theories R that are executable, i.e., (Σ,E ∪A,R) where:

1. there exists a matching algorithm modulo A;
2. (Σ,E∪A) is ground Church-Rosser and terminating modulo A (the equations
E are seen here as rewrite rules oriented from left to right). Thus, each ground
term t has a canonical form canE/A(t) that is unique modulo the axioms A;

3. R is ground coherent w.r.t. E modulo A [13]: for all t, t1 ∈ TΣ with t→R/A t1
there is t2 ∈ TΣ s.t. canE/A(t) →R/A t2 and canE/A(t1) =A canE/A(t2).

The relation →R/A denotes the one-step rewriting relation defined by apply-
ing a rule from R modulo axioms A: u →R/A v iff there are the terms u′, v′,
a rule l → r if b in R, position p in u′, and substitution σ such that u =A u′,
v =A v′, u′|p = σ(l)5, v′ = u[σ(r)]p

6, and σ(b) =A true.
The rewriting relation →R defined by an executable rewrite theory R is:

t1 →R t2 iff canE/A(t1) →R/A t′2 and canE/A(t
′
2) = t2. This is equivalent to

→R/(E∪A) due to confluence and coherence. We write t1
α
−→R t2 to emphasise

that α , (l → r if b) ∈ R is applied in the rewriting step canE/A(t1)→R/A t
′
2.

5 t|p denotes subterm of t at position p.
6 t[u]p denotes the term obtained from t by replacing the subterm at position p with u.

8

4 Translating Language Definitions into Rewrite Theories

This section includes the main contribution of the paper. We introduce two en-
codings of language definitions as rewrite theories: a faithful encoding and an
approximate encoding. Since the symbolic extension of a language is also a lan-
guage definition, we automatically get encodings of both concrete languages and
their symbolic extensions. We investigate how the properties relating a language
definition and its symbolic extension are reflected on their respective encodings.

Definition 3 (faithful encoding). Let L = (Σ, T ,S) be a language definition.
The faithful encoding of L is R(L) = (Σ,E ∪A,R), where

– A = ∅;
– for each operation f in ΣData and d1, . . . , dn ∈ D of corresponding sorts, E

includes an equation f(d1, . . . , dn) = Df (d1, . . . , dn);
– R = S, where each rule π ∧∧∧ b⇒⇒⇒ r ∈ S becomes a rewrite rule l → r if b ∈ R.

Theorem 3. Let L = (Σ, T ,S) be a language definition. Then R(L) is an

executable rewrite theory satisfying γ
α

=⇒S γ
′ iff γ

α
−→R(L) γ

′, for all γ, γ′ ∈ TCfg .

Remark 4. The construction of the rewrite theory R(L), with data domain D ⊆
ΣData defined by the set of equations E given in Definition 3, corresponds to the
data domains D being builtin sorts in the Maude terminology. A builtin sort is a
sort that is not built algebraically but one that, for efficiency reasons, is directly
implemented in code (C++ code in the case of Maude). For example, natural
numbers are specified by the equational specification 0 : Nat, s : Nat → Nat,
but using the resulting unary-notation for them would be highly inefficient. This
is why natural numbers are implemented as builtins. The construction R(L)
can, however, be extended to accomodate non-builtin sorts, i.e., sorts that are
defined as the initial model of a finite set of equations E′ that are confluent and
terminating modulo a set A of axioms. For this, it is enough to ensure that E′∪E
is also confluent and terminating modulo A - where E is the set of equations given
in the proof of Theorem 3. This typically happens, as E and E′ refer to different
sorts - the builtin ones for the former, and the non-builtin ones for the latter. If
this is the case then the proof of the ground coherence property in Theorem 3
still holds, because it only depends on E′ ∪ E being confluent and terminating
modulo A, not on the particular form of the equations. The proof of faithfulness
of the encoding remains the same. This observation is important, since it ensures
that we obtain executable Maude rewrite-theories R(L) for languages-definitions
L whose data are specified using either bulitin sorts or non-builtin sorts. The
faithfulness of the encoding then ensures that all results of reachability analyses
(either positive or negative) performed on R(L), e.g., obtained using Maude’s
search command, also hold on L.

The symbolic extension of a language definition can be encoded as a rewrite
theory as well. Let Ls = (Σs, T s,Ss) be the symbolic extension of L = (Σ, T ,S).
Recall that Σs is Σ extended with the constructor of symbolic configurations

9

∧∧∧ and with the symbolic values V s seen as constants. The symbolic configu-
rations are ground terms π∧∧∧φ ∈ T s

Cfgs . If R(Ls) = (Σs, E ∪A,R) is the faithful
encoding given by Theorem 3, then E = A = ∅ because the data algebra Ds we
considered is the ΣData(V s)-algebra of the ground terms built over D and V s.
Recall that we assumed that D ⊆ Σ ⊆ ΣData(V s).

The relationship between a language definition L and its symbolic extension
Ls can be now reflected at the level of the encodings R(L) and R(Ls). A sym-
bolic configuration π∧∧∧ φ consists of a configuration ground term π (of sort Cfg)
and a formula ground term φ (of sort Bool). The constants V s play the role of
logical variables, and the definition of satisfiability for patterns extends to their
representations as symbolic configurations. Moreover, the notion of feasible ex-
ecution in R(Ls) is defined similarly to how it is defined for Ls. The following
two results are direct consequences of Theorems 3, 1, and 2, respectively.

Corollary 1 (Coverage for Encoding Rewrite Theories). For every con-

crete execution γ0
α0−→R(L) γ1

α2−→R(L) · · ·
αn−−→R(L) γn

αn+1

−−−→R(L) · · · there

is a symbolic execution π0 ∧∧∧ φ0
α1−→R(Ls) π1 ∧∧∧ φ1

α2−→R(Ls) · · ·
αn−−→R(L) πn ∧∧∧

φn
αn+1

−−−→R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

Corollary 2 (Precision for Encoding Rewrite Theories). For every fea-

sible symbolic execution π0 ∧∧∧ φ0
α1−→R(Ls) π1 ∧∧∧ φ1

α2−→R(Ls) · · ·
αn−−→R(L) πn ∧∧∧

φn
αn+1

−−−→R(Ls) · · · there is a concrete execution γ0
α0−→R(L) γ1

α2−→R(L) · · ·
αn−−→R(L)

γn
αn+1

−−−→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

The faithful encoding thus enjoys nice theoretical properties, but it has a limited
practical value when we consider actual K definitions of nontrivial languages:

– The heating and cooling rules, which are symmetric each other, may lead to
infinite rewritings;

– The generated state space may be very large, even for small programs.

There are currently two proposals for obtaining abstractions of the rewrite
theories: equational abstraction [9] or transforming some semantical rules into
equations [6].

The former amounts to basically deriving a new definition, where the new
model T is the quotient of the the original one, usually requiring substantial
input from the user, which is something we would like to avoid.

The latter might not be suitable for language definitions in general because,
semantically, it would equate elements that are supposed to be distinct in T .
Consider a language construct randBool with two rules: randBool => true

and randBool => false. Assume now we want to analyze a program which
uses randBool, but who fails to satisfy a given property regardless of whether
randBool transits to true or to false. In this case it might beneficial to collapse
the state space by considering only one of the cases; however, if we transform the
two rules above into equations, this will semantically identify true and false in
T , collapsing much more of the state space than desirable. An additional oper-
ational concern is that transforming certain rules into equations might destroy
coherence and/or confluence, thus falling out of the executability requirements.

10

Two-layered rewrite theories, introduced below, allow us to preserve the ben-
efits of the techniques above (state space reduction, efficient execution), while
avoiding their semantical consequences (unnecessary collapse of states in the
semantical model T).

Definition 4. A two-layered rewrite theory is a tuple R = (Σ,E ∪ A, 1R ∪
2R, ε), where (Σ,E ∪ A, 1R ∪ 2R) is an executable rewrite theory, E ∪ 1R is
ground terminating modulo A, and ε : TΣ → TΣ is a function that, for any
t ∈ TΣ, returns an element in the set of (E ∪ 1R)/A-irreducible terms {t′ ∈
TΣ | t →!

(E∪1R)/A t′} (which is nonempty precisely because E ∪ 1R is ground

terminating modulo A). The one-step rewrite relation ։R is defined by t1 ։R t2
iff ε(t1) →2R/A t′2 and canE/A(t

′
2) =A t2.

Theorem 4. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be a two-layered rewrite theory with (Σ,E ∪A, 1R ∪ 2R) built as
in Definition 3 but where the set of rules is partitioned into two subsets 1R and
2R and E ∪ 1R is terminating modulo A. If γ ։R(L) γ

′ then γ ⇒+
S
γ′.

We say that R(L) is an approximate encoding of L.

Corollary 3 (precision for approximate encoding). Let L = (Σ, T ,S) be
a language definition and R(Ls) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of Ls. For each feasible symbolic execution π0∧∧∧φ0 −→Rs π1∧∧∧φ1 −→R(Ls)

· · · −→R(Ls) πn ∧∧∧ φn −→R(Ls) · · · there is a concrete execution in L: γ0
α1=⇒

+
S

γ1
α2=⇒

+
S · · ·

αn=⇒
+
S γn

αn+1

=⇒
+
S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

An interesting and practically relevant question is whether the coverage/preci-
sion relationships between L and Ls can be reflected on the level of the approx-
imate encodings as two-layered rewrite theories. To investigate these relation-
ships, we have to find a way to define an approximate two-layered rewrite theory
R(Ls) that extends a given approximate two-layered rewrite theory R(L). A
first attempt is to define R(Ls) = (Σs, E ∪ A, 1Rs ∪ 2Rs, εs) from R(L) in the
same way Ls is obtained from L, but this is not enough to have a coverage-like
result. The program log in Figure 4 is deterministic and terminating for each
ϑ(A) ∈ Int . So we may execute any instance of it with an approximate encoding
R having no second-layer rules, i.e., 2R = ∅. If 2Rs = ∅, then 1Rs is non termi-
nating because there is an infinite execution corresponding to the case when the
value of the program variable X in the current configuration is always greater the
zero. Another problem is to specify how the strategy ε is extended to εs. Since it
is hard to give general definitions for these questions, we opted for a particular
solution that can be implemented in Maude.

Definition 5 (symbolic approximate encoding). Let Ls = (Σs, T s,Ss) be
the symbolic extension of L = (Σ, T ,S) and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) an
approximate encoding of L. We assume that there is a total order relation ≺ over
1R such that:

1. the rewrite t→!
(E∪1R)/A ε(t) uses the minimal rule from 1R w.r.t. ≺ when-

ever such a rule is applicable;

11

2. if α is unconditional and α′ is conditional then α ≺ α′.

We let the approximated encoding of Ls be R(Ls) = (Σs, E ∪A, 1Rs ∪ 2Rs, εs):

– 1Rs = {αs | α ∈ 1R, α unconditional};
– 2Rs = {αs | α ∈ 1R, α conditional} ∪ {αs | α ∈ 2R};
– αs≺s α′s iff α ≺ α′;
– εs uses the minimal rule from 1Rs w.r.t. ≺s.

Theorem 5 (coverage for approximate rewrite theories). Let L = (Σ, T ,S)
be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of L. For every concrete execution γ0 −→R(L) γ1 −→R(L) · · · −→R(L)

γn −→R(L) · · · there is a symbolic execution π0 ∧∧∧ φ0 −→+
R(Ls) π1 ∧∧∧ φ1 −→+

R(Ls)

· · · −→+
R(Ls) πn ∧∧∧ φn −→+

R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

However, the precision relationship between R(L) and R(Ls) does not hold
in general. The reason is that 1Rs has fewer rules than 1R and hence the
representative-selection strategy εs is weaker than ε. Therefore there are no
guarantees that the concrete execution given by Corollary 3 will be the same
with that chosen by the strategy ε. If the strategy εs is the "isomorphic image"
of ε via the transformation • 7→ •s, then the precision result holds:

Theorem 6 (precision for approximate rewrite theories). Let L = (Σ, T ,S)
be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approx-
imated encoding of L such that 1R includes only unconditional rules (hence
1Rs = {αs | α ∈ 1R}). For every feasible symbolic execution π0 ∧∧∧ φ0 −→R(Ls)

π1∧∧∧φ1 −→R(Ls) · · · −→R(Ls) πn∧∧∧φn −→R(Ls) · · · there is a concrete one γ0 −→R(L)

γ1 −→R(L) · · · −→R(L) γn −→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

5 Implementing the K Framework in Maude

The current implementation of the K framework uses Maude as a rewrite engine.
In [4], the framework, at that time called K-Maude, was presented as an extension
of Maude consisting in several meta-transformations which gradually translate
K modules into executable Maude modules. In the current version of K we use
a compiler for language definitions where each of these meta-transformations
is actually a separate compilation step. Through compilation, K definitions are
translated into Maude rewrite theories which are then used for running/analysing
programs. The main components of a K definition are the syntax declarations,
the configuration and the K (rewrite) rules. To these, the tool adds automatically
the rules generated from strictness annotations (e.g. heating/cooling rules 1-4).

The work described in this article is concerned with how the set of rules is
compiled into a two-layered rewrite theory, which is then encoded into Maude
by using equations for the first-layer rules and rewrite rules for the second-layer
rules. By default, all K rules are translated into (conditional) equations, that is
1R = S and 2R = ∅. This behavior can be altered by specifying (at compile
time) that certain rules are to be considered transitions, which will trigger their
transformation into (conditional) rewrite rules in the resulted Maude module.

12

To specify that a rule is a transition, one must pass the rule name as an
argument for the -transition option at compilation time:

$ kompile cink.k –transition "division"

The above command specifies the rule division as a transition; thus, the rule
for division is included in 2R. By this command we express our intent that the
tool considers the rule for division as a transition when exploring an execution’s
transition system. By making it a rewrite rule in Maude, we can explore the
non-determinism generated by the rule when using Maude’s search command.

Another source of non-determinism arises from strictness annotations. When
the strict attribute is given to some syntactical construct, the tool chooses by
default an arbitrary, fixed order to evaluate its arguments. This optimisation has
the side effect of possibly losing behaviours due to missed interleavings.

Some of these missed interleavings can be restored using the –superheat

option. This option is used to instruct the K tool to exhaustively explore all the
non-deterministic evaluation choices for the strictness of a language construct.

Once we know which rules are transitions and which are not, we can easily
deduce the two sets 1R and 2R, and thus we obtain the executable rewrite theory
R(L) as discussed in Section 4.

The following example shows how one can explore more behaviours by spec-
ifying second-layer rules at compile time. If we compile the language definition
of CinK without any options, then running the program counter (Figure 4) will
result in a single solution, where the return value is either 1 (when the tool first
evaluates dec() and then inc()) or 3 (when it first evaluates inc() and then
dec()). However, if we set the operation plus as superheat:

$ kompile cink –superheat "plus"

then we obtain both solutions, because the heating rule for addition can be
applied in two ways and the option tells the tool to explore them both.

The symbolic transformations discussed in Section 3.2 are implemented as
compilation steps in the K compiler [2]. The tool uses the same translation
to Maude discussed above in order to obtain the rewrite theory R(Ls). An
important step in this process is that conditional rules whose conditions cannot
be reduced to true are compiled as transitions, that is, they are included in
2R. When performing search in Maude, these rules are essential in exploring all
the execution paths, thereby ensuring the Coverage (Theorem 5) property. Note
that none of the symbolic transformations applied by the tool to the language
definition changes the initial semantics of the language.

The implementation uses a slightly modified version of Maude which includes
a hook to the Z3 SMT solver [5] and a corresponding operation called checkSat.
It receives as argument an SMTLib string, which is sent to the solver to check its
satisfiability. The result returned by the solver is propagated back through the
hook to Maude as a string, so checkSat can return “sat”, “unsat”, or “unknown”. In
practice, our tool uses checkSat to reduce the search space by slicing unfeasible
execution paths, and thus being very important in preserving the precision prop-
erty. To obtain R(Ls) from a language definition one uses the symbolic backend

13

as follows:

$ kompile cink –backend symbolic

This command applies the symbolic transformations, moves the appropriate rules
in 2R, and generates the rewrite theory R(Ls). Using R(Ls) one can execute
programs using either concrete values or symbolic ones. However, running pro-
grams with symbolic values may lead to infinite loops when the loop conditions
contain symbolic values. In such cases one can bound the number of execution
paths:

$ krun log.imp –search –bound 3 -cIN=".List" -cPC="true"

This executes log (Figure 4) symbolically, until a number of 3 solutions is found.
Each solution consists in a result configuration and a formula which constitutes
the path condition. The symbolic values are represented as fresh variables with
a specific sort (e.g. A:Int). These can also be passed as input at the command
line of the tool as arguments of the -cIN parameter. Users can also set the initial
path condition using the -cPC option. During the symbolic execution the tool
applies a rule only if the next state is feasible: the current path condition and
the new conditions imposed by the application of the rule are not “unsat”.

6 Conclusion and Related Work

We presented some results that relate language definitions to different kinds
of rewrite theories, which encode the language definitions both faithfully and
approximately. The results show how (symbolic) analyses performed on a rewrite
theory are reflected on the corresponding language definition. The general results
are applied to the current implementation of K language definitions in Maude.

The faitfful encoding of K language definitions as rewrite theories is relatively
simple but the resulting theory is not efficient in practice. Therefore we extended
the notion of rewrite theory in order to work with under-approximations of the
language definitions (and implicitly of the rewrite theories). The approximating
theories are more efficient and flexible – the user has the freedom to work with
various levels of approximations –, but heir use for program analysis must be
done with care because they do not preserve all the behavioural properties. The
coverage/precision results proved in this paper can help the user in correctly
assessing which analyses hold on which representations.

Related Work K started as methodology for defining the semantics of the
programming languages in Maude. The first tool supporting K [4] was written
in Maude’s meta-level, as a series of transformations translating K definitions
into Maude programs. Then the K compiler became a more complex tool that
translates a K definition into an intermediate language, which is then used to
generate code for various backends, including Maude. A presentation of this tool
is given in [8]. There, a brief description of the semantics of K definitions is
also included. The programming-language definition framework presented here
in Section 3 is a specialised case of that definition.

The coverage and precision properties, which relate the faithful rewrite-
theory encoding of a language and of that language’s symbolic version, are

14

analoguous to the soundness and completeness results in [10], which relate usual
rewriting and rewriting modulo SMT. An interesting alternative to defining sym-
bolic execution by as executions in a transformed language (as we do it in [2])
would be to compile a language into a rewriting-modulo-SMT Maude module.

Our construction of two-layered rewrite theories have some similarities with
equational abstractions [9] and with the state-space reduction techniques ob-
tained by transforming rules into equations presented in [6]. However, our first-
layer rewrite rules do not equate states as Maude equations do; their semantics
is that of transformation, not of equality. Therefore these rules do not have to
satisfy the executability and property-preservation requirements of [9,6].

References

1. Standard for Programming Language C++. Working Draft. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf.

2. A. Arusoaie, D. Lucanu, and V. Rusu. A generic framework for symbolic execution.
In 6th International Conference on Software Language Engineering, volume 8225
of LNCS, pages 281–301. Springer Verlag, 2013. Also available as a technical report
at http://hal.inria.fr/hal-00766220/.

3. M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet, and C. Tal-
cott. All About Maude, A High-Performance Logical Framework, volume 4350 of
LNCS. Springer, 2007.

4. T. F. Şerbanuţă and G. Roşu. K-Maude: A rewriting based tool for semantics
of programming languages. In P. C. Ölveczky, editor, Rewriting Logic and Its

Applications - 8th International Workshop, WRLA 2010, volume 6381 of Lecture

Notes in Computer Science, pages 104–122, 2010.
5. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume

4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.
6. A. Farzan and J. Meseguer. State space reduction of rewrite theories using invisible

transitions. In P. Proceedings of the 21st German Annual Conference on Artificial

Intelligence, pages 142–157. Springer, 2006.
7. D. Lucanu and T. F. Serbanuta. Cink - an exercise on how to think in k. Technical

Report TR 12-03, Version 2, Alexandru Ioan Cuza University, Faculty of Computer
Science, December 2013.

8. D. Lucanu, T. F. Şerbănuţă, and G. Roşu. The K Framework distilled. In 9th

International Workshop on Rewriting Logic and its Applications, volume 7571 of
Lecture Notes in Computer Science, pages 31–53. Springer, 2012. Invited talk.

9. J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational abstractions. Theor.

Comput. Sci., 403(2-3):239–264, 2008.
10. C. Rocha, J. Meseguer, and C. A. Munoz. Rewriting modulo SMT. Technical

Report 218033, NASA, 2013.
11. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal

of Logic and Algebraic Programming, 79(6):397–434, 2010.
12. G. Roşu and A. Ştefănescu. Checking reachability using matching logic. In G. T.

Leavens and M. B. Dwyer, editors, OOPSLA, pages 555–574. ACM, 2012.
13. P. Viry. Equational rules for rewriting logic. Theor. Comput. Sci., 285(2):487–517,

2002.

15

http://hal.inria.fr/hal-00766220/

This appendix is for reviewers’ convenience, to see the proofs of the main
results included in the paper and the output of the reported experiments.
If this paper is accepted then the appendix will be removed, the proofs
will be included into a technical report, and the reader will be referred to
the web interface of the K Tool, http://fmse.info.uaic.ro/tools/K/,
where these examples and many others can be executed online.

A Proofs

Theorem 3. Let L = (Σ, T ,S) be a language definition. Then R(L) is an

executable rewrite theory satisfying γ
α

=⇒S γ′ iff γ
α
−→R(L) γ

′, for all concrete
configurations γ, γ′ ∈ TCfg .

Proof. In this proof we are going to construct R(L) as follows:
For the rewrite theory constructed as in Definition 3 there exists a matching

algorithm modulo the equational axioms A, since A = ∅7. The equational theory
(Σ(D), E) is terminating since each application of an equation f(d1, . . . , dn) =
Df (d1, . . . , dn) to a term strictly reduces the number of non-constant operations
in ΣData in the term, by replacing non-constant terms f(d1, . . . , dn) by constants
Df (d1, . . . , dn).

We now show that the equational theory (Σ,E) is also locally confluent (and
by Newman’s lemma, it is also confluent). Let t be a term and two equations e1 ,
f1(d1, . . . , dn) = Df1(d1, . . . , dn) and e2 , f2(d

′
1, . . . , d

′
n′) = Df2(d

′
1, . . . , d

′
n′)

such that they match the term t at positions p1 and p2, respectively. If one
of the positions is a strict prefix of the other, say, p1 is a strict prefix of p2,
then at most one of the equations can be applied (since for the other one, the
arguments are not constants as required by the equation), and local confluence
follows trivially.

If p1 = p2 then e1 coincides with e2 and thus the confluence is not an issue.
If p1 and p2 are disjoint positions, both e1 and e2 can be applied, which gives:

– t[Df1(d1, . . . , dn)]p1
[Df2(d

′
1, . . . , d

′
n′]p2

if e1 is applied first, then e2 is applied;
– t[Df2(d

′
1, . . . , d

′
n′]p2

[Df1(d1, . . . , dn)]p1
if e2 is applied first, then e1 is applied.

Since p1 and p2 are disjoint, the above terms are syntactically equal, which
concludes the proof of the confluence property.

We now establish the ground coherence property. Let t, t1, t2 be three ground
terms, e , f(d1, . . . , dn) = Df (d1, . . . , dn) an equation in E, α , l → r if b a rule
in R, pe, pα two positions in t, and σ a substitution such that t→E/A t1 holds by
applying e at position pe and t→R/A t2 holds by applying α at position pα via
σ (recall that A = ∅). It follows that t1 = t[Df (d1, . . . , dn)]pe

and t2 = t[σ(r)]pα

and σ(b) →∗
E/A true (b is a side condition). We will show that there are t′1 and

u such that t1 →R/A t′1, t2 →∗
E/A u and t′1 →∗

E/A u. This will prove that the

7 Even if A = ∅, we prefer to keep the references to the axioms A in the rest of the
proof, because constructions of R(L) with A 6= ∅ also exist, cf. Remark 4.

16

equation does not introduce incoherence. The process can then be repeated for
all the equations in order to establish the coherence property.

Since rules are applied at the top (on terms of sorts Cfg) and left-hand sides
of equations are terms of Data sorts, it follows that pα is a prefix of pe (i.e. e
is applied below α). Since l is linear and each of its data subterms is a variable,
there is a unique data variableX and a data term v such that σ(X) →E/A v holds
by applying e. Let σ′ be the substitution defined in the same way as σ except
for X, where σ′(X) = v. We now prove (♦): σ′(b) →∗

E/A true. Indeed, σ′(b) =

σ(b[X/v]), and the substitution [X/v] is obtained by applying the equation e ∈
E. As E is confluent modulo A and σ(b) →∗

E/A true, it follows that the equation
e is applied at some point in the above reduction. Due again to the confluence,
the equations in that reduction can be applied in any order; in particular, e can
be applied first, which gives σ(b) →E/A σ′(b) →∗

E/A true and proves (♦).

Hence t1 →R/A t′1 , t[σ′(r)]pα
. Since σ(r) →∗

E/A σ′(r) (σ(Y) →∗
E/A σ′(Y)

for each variable Y), it follows that t2 = t[σ(r)]pα
→∗

E/A t[σ′(r)]pα
, u. The

coherence property is now proved.
There remains to prove the faithfulness of the encoding (of language definition

into rewrite theory), i.e., γ
α

=⇒S γ
′ iff γ

α
−→R(L) γ

′. By Defs. 1 and 2, γ
α

=⇒S γ
′

iff α , (l ∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T are such that γ =T ρ(l), ρ(b) =T true

and γ′ =T ρ(r) (where we empasise that the equality =T is that of T).
Since the elements in T are ground (Σ \ ΣData) ∪ D-terms, their only pos-

sible data-subterms are elements in D. It follows that they are E/A-irreducible
and hence T coincides with the algebra of the E/A-canonical forms, i.e. T =
CanΣ/(E/A). Hence, each valuation ρ : Var → T defines a ground substi-
tution σρ : Var → TΣ such that σρ(X) = ρ(X) for each X ∈ Var , and
canE/A(σρ(t)) =A ρ(t) for each term t ∈ TΣ(Var). For instance, if ρ(I1) =
3, ρ(I2) = 5 then ρ(I1 +Int I2) = T_+Int_(ρ(I1), ρ(I2)) = D_+Int_(3, 5) = 8 and
σρ(I1+Int I2) = _+Int _(σρ(I1), σρ(I2)) = 3+Int 5. The term 3+Int 5 is reduced
to 8 using the equations E. Conversely, each ground substitution σ : Var → TΣ
defines a valuation ρσ : Var → T such that ρσ(X) =A canE/A(σ(X)) for each
X ∈ Var . Thus, if a rule l∧∧∧ b⇒⇒⇒ r ∈ S is applicable on a concrete configuration
γ ∈ TCfg via the valuation ρ and produces γ′, then l → r if b in R(L) is appli-
cable to γ via σρ and produce the same result γ′. Conversely, if a rule l → r if b
in R(L) is applicable on γ ∈ TCfg via the substitution σ and produces γ′, then
l∧∧∧ b⇒⇒⇒ r ∈ S is applicable to γ via ρσ and produce the same result γ′. Our the
faithfulness of the encoding is now proved, and the theorem is proved as well. ⊓⊔

Lemma 1. Let L = (Σ, T ,S) be a language definition and suppose that R(L) =
(Σ,E ∪ A, 1R ∪ 2R), where the set of rules is partitioned into two subsets 1R

and 2R with E ∪ 1R terminating modulo A. If γ →∗
(E∪1R)/A γ′ then γ →!

R(L)

canE/A(γ
′), for all γ, γ′ ∈ TCfg .

Proof. By induction on the length i of the derivation γ →∗
(E∪1R)/A γ′ , γi.

When i = 0, then γ′ = γ. Since all data subterms of γ are constants, it follows
that γ is irreducible and we obviously have γ →!

R(L) canE/A(γ) = γ. We assume

17

that γ →∗
(E∪1R)/A γi implies γ →!

R(L) canE/A(γi) (♣), and we want to prove

that γ →∗
(E∪1R)/A γi →(E∪1R)/A γi+1 implies γ →!

R(L) canE/A(γi+1), i ≥ 0.
There are two possibilities for γi+1 to be reached from γi:

– γi →E/A γi+1, i.e γi+1 is reached from γi applying an equation. We obtain
γi+1 →∗

E/A canE/A(γi+1) = canE/A(γi) by the confluence and termination

of E and γ →!
R(L) canE/A(γi+1) follows directly from (♣).

– γi →1R/A γi+1, i.e. γi+1 is reached from γi applying a rule in 1R. Since 1R

is ground coherent with respect to E modulo A, there exists a ground term
γ′i such that canE/A(γi) →1R/A γ′i and canE/A(γi+1) =A canE/A(γ

′
i). So,

canE/A(γi) →1R/A γ′i →!
E/A canE/A(γ

′
i) =A canE/A(γi+1), which implies

γi →R(L) canE/A(γi+1). We obtain γ →!
R(L) canE/A(γi+1) applying (♣).

Now the proof by induction is finished and hence the conclusion of the lemma
holds. ⊓⊔

Theorem 4. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be a two-layered rewrite theory with (Σ,E ∪A, 1R ∪ 2R) built as
in Definition 3 but where the set of rules is partitioned into two subsets 1R and
2R and E ∪ 1R is terminating modulo A. If γ ։R(L) γ

′ then γ ⇒+
S
γ′.

We say that R(L) is an approximate encoding of L.

Proof. Assume that γ ։R(L) γ
′. We have that ε(γ) →2R/A γ′′, canE/A(γ

′′) =A

γ′, and γ →!
(E∪1R)/A ε(γ) by Defintion 4. Since γ →!

(E∪1R)/A ε(γ), there exists
n and γ1, γ2, . . . , γn such that γ = γ1 →(E∪1R)/A γ2 →(E∪1R)/A · · · →(E∪1R)/A

γn = ε(γ). We obtain γ →!
R(L) canE/A(ε(γ)) (♦) by applying Lemma 1 for

γ →∗
(E∪1R)/A γn. Since ε(γ) is (E ∪ 1R)-irreducible, we have canE/A(ε(γ)) =

ε(γ) and hence (♦) is equivalent to γ →!
R(L) ε(γ). From ε(γ) →2R/A γ′′ and

canE/A(γ
′′) =A γ′ we have that ε(γ) →R(L) γ

′. We obtain γ ⇒∗
S
ε(γ) by ap-

plying Theorem 3 to γ →!
R(L) ε(γ) and ε(γ) →R(L) γ

′, respectively. Hence we

conclude that γ ⇒+
S
γ′. ⊓⊔

Lemma 2. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be an approximate encoding of L. If γ →R(L) γ

′, γ |= π ∧∧∧ φ then

there is π′ ∧∧∧ φ′ such that π ∧∧∧ φ→+
R(Ls) π

′ ∧∧∧ φ′ and γ′ |= π′ ∧∧∧ φ′.

Proof. Assume γ →R(L) γ
′. By the proof of Theorem 4 and Theorem 3 we have

γ = γ0
α1=⇒S γ1

α2=⇒S · · ·
αn=⇒S γn = γ′. Moreover, γn−1 = ε(γ), α1, . . . , αn−1 ∈

1R, and αn ∈ 2R. By Theorem 1 there is π ∧∧∧ φ = π0 ∧∧∧ φ0
αs

1=⇒Ss π1 ∧∧∧ φ1
αs

2=⇒Ss

· · ·
αs

n=⇒Ss πn ∧∧∧ φn such that γi |= πi ∧∧∧ φi. We distinguish two cases:

– αs
1, . . . , α

s
n−1 ∈ 1Rs. We have φ = φ0 = · · · = φn−1 and hence πn−1 ∧∧∧ φ is

1Rs-irreducible modulo A (otherwise γn−1 is not irreducible by Theorem 2).
Since α1, . . . , αn−1 have been chosen as being minimal w.r.t. ≺ it follows
that αs

1, . . . , α
s
n−1 are minimal w.r.t. ≺s. Therefore, πn−1 ∧∧∧ φ = εs(π ∧∧∧ φ)

and hence π ∧∧∧ φ→R(Ls) πn ∧∧∧ φn.

18

– There exists i < n such that αi ∈ 2Rs. Let us consider the smallest i with
this property. Assume that πi−1∧∧∧ φi−1 is not 1Rs-irreducible. Then there is

πi−1∧∧∧φi−1
αs

=⇒Ss πα∧∧∧φα with αs ∈ 1Rs, i.e. αs is unconditional. It follows
that α ≺ αi that implies that αi has not been chosen as minimal w.r.t. ≺.
Therefore, πi−1∧∧∧φi−1 is 1Rs-irreducible and hence πi−1∧∧∧φ = εs(π∧∧∧φ) and
π ∧∧∧ φ →R(Ls) πi ∧∧∧ φi, as in the previous case. We proceed similarly for the
next i < n with αi ∈ 2Rs, and so on.

⊓⊔

Theorem 5 (Coverage for Approximate Rewrite Theories). Let L =
(Σ, T ,S) be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an
approximate encoding of L. For every concrete execution γ0 −→R(L) γ1 −→R(L)

· · · −→R(L) γn −→R(L) · · · there is a symbolic execution π0 ∧∧∧ φ0 −→+
R(Ls) π1 ∧∧∧

φ1 −→+
R(Ls) · · · −→

+
R(Ls) πn∧∧∧φn −→+

R(Ls) · · · such that γi ∈ [[πi∧∧∧φi]] for i = 0, 1,

Proof. Assume γ0 −→R(L) γ1 −→R(L) · · · −→R(L) γn −→R(L) · · · . Then, for each
γi −→R(L) γi+1, where i = 0, 1, . . ., (using Lemma 2) there exists a transition

πi ∧∧∧ φi −→
+
R(Ls) πi+1 ∧∧∧ φi+1 such that γi |= πi ∧∧∧ φi and γi |= πi+1 ∧∧∧ φi+1. ⊓⊔

Lemma 3. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be an approximate encoding of L such that 1R includes only un-
conditional rules. If π ∧∧∧ φ →R(Ls) π

′ ∧∧∧ φ′ and there is γ′ such that γ′ |= π′ ∧∧∧ φ′

then there exists γ such that γ →R(L) γ
′ and γ |= π ∧∧∧ φ.

Proof. Assume π∧∧∧φ→R(Ls) π
′∧∧∧φ′. By the proof of Theorem 4 and Theorem 3

we have π ∧∧∧ φ = π0 ∧∧∧ φ0
αs

1=⇒Ss π1 ∧∧∧ φ1
αs

2=⇒Ss · · ·
αs

n=⇒Ss πn ∧∧∧ φn = π′ ∧∧∧ φ′,
where αs

1, α
s
2, . . . , α

s
n−1 ∈ 1Rs and αs

n ∈ 2Rs. By Theorem 2 there is γ0
α1=⇒S

γ1
α2=⇒S · · ·

αn=⇒S γn = γ′, such that γi |= πi ∧∧∧ φi. So, based on the fact that
1R includes only unconditional rules and αs

1, . . . , α
s
n−1 have been chosen (εs) as

being minimal w.r.t. ≺s which means that α1, . . . , αn−1 are minimal too w.r.t.
≺, we can choose γ = γ0, where γ0 |= π ∧∧∧ φ. ⊓⊔

Theorem 6 (precision for approximate rewrite theories). Let L = (Σ, T ,S)
be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of L such that 1R includes only unconditional rules (hence 1Rs =
{αs | α ∈ 1R}). For every symbolic execution π0 ∧∧∧ φ0 −→R(Ls) π1 ∧∧∧ φ1 −→R(Ls)

· · · −→R(Ls) πn∧∧∧φn −→R(Ls) · · · there is a concrete execution γ0 −→R(L) γ1 −→R(L)

· · · −→R(L) γn −→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

Proof. Assume π0 ∧∧∧ φ0 −→R(Ls) π1 ∧∧∧ φ1 −→R(Ls) · · · −→R(Ls) πn ∧∧∧ φn −→R(Ls) · · · .
Since each πi∧∧∧φi is satisfiable, there is γi such that γi |= πi∧∧∧φi, for i = 0, 1,
Then, applying Lemma 3, we may choose (γi | i ≥ 0) such that there is a
transition γi →R(L) γi+1, for i = 0, 1, . . . and γi |= πi ∧∧∧ φi, for i = 0, 1, ⊓⊔

19

B Running paper examples

In this section we exemplify how the use of the K framework in order to execute
the examples shown in Figure 4. The rewrite theory R corresponding to CinK
definition is obtained as follows:

$ kompile cink

When running program counter we obtain a single solution, that is:

$ krun counter.cink

<T>

<in>

ListItem(#buffer (""))

ListItem(#istream (0))

</in>

<out>

ListItem(#ostream (1))

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

3

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</env>

</control>

<genv>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</genv>

20

<store>

#symScalLoc(1) |-> 1

#symScalLoc(2) |-> lambda (.Decls @ (return (++ counter) ;))

#symScalLoc(3) |-> lambda (.Decls @ (return (-- counter) ;))

#symScalLoc(4) |-> lambda (.Decls @ (return ((inc (’.Exps(.KList)))

+ (dec (’.Exps(.KList)))) ;))

</store>

</T>

By default, the tool evaluates the arguments of + operator in an arbitrary, but
fixed order. The above solution corresponds to the case when inc() is evaluated
before dec(), so the computation of the return value evolves as follows:

inc()+dec() (heating)

inc() y �+dec() (function lookup)

+ + counter y �+dec() (heating)

counter y ++� y �+dec() (lookup)

1 y ++� y �+dec() (cooling)

++1 y �+dec() (increment)

2 y �+dec() (cooling)

2+dec() (heating)

dec() y 2+� (function lookup)

−− counter y 2+� (heating)

counter y −−� y 2+� (lookup)

2 y −−� y 2+� (cooling)

−−2 y 2+� (decrement)

1 y 2+� (cooling)

2+1 (plus)

2 +Int 1 (evaluate + in the integers domain)

3

Note that we abstracted the function application and we omitted the application
of the rules for statements. If we want to obtain both behaviours, which capture
the non-determinism of + operation, then we have to compile the definition using
the –superheat option:

$ kompile cink --superheat plus

$ krun counter.cink --search

Search results:

Solution 1:

<T>

21

<in>

ListItem(#buffer ("\n"))

</in>

<out>

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

1

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</env>

</control>

<genv>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</genv>

<store>

#symScalLoc(1) |-> 1

#symScalLoc(2) |-> lambda (.Decls @ (return (++ counter) ;))

#symScalLoc(3) |-> lambda (.Decls @ (return (-- counter) ;))

#symScalLoc(4) |-> lambda (.Decls @ (return ((inc (’.Exps(.KList)))

+ (dec (’.Exps(.KList)))) ;))

</store>

</T>

Solution 2:

<T>

<in>

ListItem(#buffer ("\n"))

22

</in>

<out>

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

3

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</env>

</control>

<genv>

counter |-> #symScalLoc(1)

dec |-> #symScalLoc(3)

inc |-> #symScalLoc(2)

main |-> #symScalLoc(4)

</genv>

<store>

#symScalLoc(1) |-> 1

#symScalLoc(2) |-> lambda (.Decls @ (return (++ counter) ;))

#symScalLoc(3) |-> lambda (.Decls @ (return (-- counter) ;))

#symScalLoc(4) |-> lambda (.Decls @ (return ((inc (’.Exps(.KList)))

+ (dec (’.Exps(.KList)))) ;))

</store>

</T>

B.1 Running programs with symbolic values

Translating a language definition such that it can execute programs which op-
erate with symbolic values is done automatically by the K tool:

$ kompile cink --backend symbolic

23

The symbolic values are represented as K meta-variables (e.g. A:Int). Pro-
grams containing loops which depend on symbolic values may not terminate.
In this case we have to limit the infinite exploration of the state space using a
bound:

$ krun log.cink --search --bound 3 -cIN=".List" -cPC=true

Search results:

Solution 1:

<path-condition>

(((A:Int >Int 0) ==Bool true) andBool (((A divInt 2) >Int 0) ==Bool true))

andBool ((((A divInt 2) divInt 2) >Int 0) ==Bool false)

</path-condition>

<T>

<in>

ListItem(#buffer ("\n"))

</in>

<out>

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

noVal

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

main |-> #symScalLoc(1)

</env>

</control>

<store>

#symScalLoc(1) |-> lambda (.Decls @ ((((((int k) ;) ((int x) ;))

((x = A) ;)) ((k = 0) ;)) (while ((x > 0)) ({ (((++ k) ;) ((x = (x

/ 2)) ;)) }))))

#symScalLoc(2) |-> 2

#symScalLoc(3) |-> (A divInt 2) divInt 2

</store>

<genv>

main |-> #symScalLoc(1)

24

</genv>

</T>

Solution 2:

<path-condition>

((A:Int >Int 0) ==Bool true) andBool (((A divInt 2) >Int 0) ==Bool false)

</path-condition>

<T>

<in>

ListItem(#buffer ("\n"))

</in>

<out>

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

noVal

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

main |-> #symScalLoc(1)

</env>

</control>

<store>

#symScalLoc(1) |-> lambda (.Decls @ ((((((int k) ;) ((int x) ;))

((x = A) ;)) ((k = 0) ;)) (while ((x > 0)) ({ (((++ k) ;) ((x = (x

/ 2)) ;)) }))))

#symScalLoc(2) |-> 1

#symScalLoc(3) |-> A divInt 2

</store>

<genv>

main |-> #symScalLoc(1)

</genv>

</T>

Solution 3:

<path-condition>

25

(A:Int >Int 0) ==Bool false

</path-condition>

<T>

<in>

ListItem(#buffer ("\n"))

</in>

<out>

ListItem(#buffer (""))

</out>

<control>

<k>

.K

</k>

<return>

noVal

</return>

<fstack>

.List

</fstack>

<sideEffects>

.Bag

</sideEffects>

<env>

main |-> #symScalLoc(1)

</env>

</control>

<store>

#symScalLoc(1) |-> lambda (.Decls @ ((((((int k) ;) ((int x) ;))

((x = A) ;)) ((k = 0) ;)) (while ((x > 0)) ({ (((++ k) ;) ((x = (x

/ 2)) ;)) }))))

#symScalLoc(2) |-> 0

#symScalLoc(3) |-> A

</store>

<genv>

main |-> #symScalLoc(1)

</genv>

</T>

All the solutions contain a special cell named path-condition which holds the
formula collected during the symbolic execution. We can easily observe that its
size increases while the tool explores more and more execution paths.

26

	Language Definitions as Rewrite Theories

