6 research outputs found

    End-to-End Intelligent Framework for Rockfall Detection

    Full text link
    Rockfall detection is a crucial procedure in the field of geology, which helps to reduce the associated risks. Currently, geologists identify rockfall events almost manually utilizing point cloud and imagery data obtained from different caption devices such as Terrestrial Laser Scanner or digital cameras. Multi-temporal comparison of the point clouds obtained with these techniques requires a tedious visual inspection to identify rockfall events which implies inaccuracies that depend on several factors such as human expertise and the sensibility of the sensors. This paper addresses this issue and provides an intelligent framework for rockfall event detection for any individual working in the intersection of the geology domain and decision support systems. The development of such an analysis framework poses significant research challenges and justifies intensive experimental analysis. In particular, we propose an intelligent system that utilizes multiple machine learning algorithms to detect rockfall clusters of point cloud data. Due to the extremely imbalanced nature of the problem, a plethora of state-of-the-art resampling techniques accompanied by multiple models and feature selection procedures are being investigated. Various machine learning pipeline combinations have been benchmarked and compared applying well-known metrics to be incorporated into our system. Specifically, we developed statistical and machine learning techniques and applied them to analyze point cloud data extracted from Terrestrial Laser Scanner in two distinct case studies, involving different geological contexts: the basaltic cliff of Castellfollit de la Roca and the conglomerate Montserrat Massif, both located in Spain. Our experimental data suggest that some of the above-mentioned machine learning pipelines can be utilized to detect rockfall incidents on mountain walls, with experimentally proven accuracy

    Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms

    Get PDF
    AbstractLandslides are considered as major natural hazards that cause enormous property damages and fatalities in Qinghai-Tibetan Plateau (QTP). In this article, we evaluated the landslide susceptibility, and its spatial differencing in the whole Qinghai-Tibetan Plateau region using five state-of-the-art learning algorithms; deep neural network (DNN), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and support vector machine (SVM), differing from previous studies only in local areas of QTP. The 671 landslide events were considered, and thirteen landslide conditioning factors (LCFs) were derived for database generation, including annual rainfall, distance to drainage (Dsd){(\mathrm{Ds}}_{\mathrm{d}}) ( Ds d ) , distance to faults (Dsf){(\mathrm{Ds}}_{\mathrm{f}}) ( Ds f ) , drainage density (Dd){D}_{d}) D d ) , elevation (Elev), fault density (Fd)({F}_{d}) ( F d ) , lithology, normalized difference vegetation index (NDVI), plan curvature (Plc){(\mathrm{Pl}}_{\mathrm{c}}) ( Pl c ) , profile curvature (Prc){(\mathrm{Pr}}_{\mathrm{c}}) ( Pr c ) , slope (S){(S}^{^\circ }) ( S ∘ ) , stream power index (SPI), and topographic wetness index (TWI). The multi-collinearity analysis and mean decrease Gini (MDG) were used to assess the suitability and predictability of these factors. Consequently, five landslide susceptibility prediction (LSP) maps were generated and validated using accuracy, area under the receiver operatic characteristic curve, sensitivity, and specificity. The MDG results demonstrated that the rainfall, elevation, and lithology were the most significant landslide conditioning factors ruling the occurrence of landslides in Qinghai-Tibetan Plateau. The LSP maps depicted that the north-northwestern and south-southeastern regions ( 45% of total area). Moreover, among the five models with a high goodness-of-fit, RF model was highlighted as the superior one, by which higher accuracy of landslide susceptibility assessment and better prone areas management in QTP can be achieved compared to previous results. Graphical Abstrac

    Landslide Susceptibility Assessment Using Integrated Deep Learning Algorithm along the China-Nepal Highway

    No full text
    The China-Nepal Highway is a vital land route in the Kush-Himalayan region. The occurrence of mountain hazards in this area is a matter of serious concern. Thus, it is of great importance to perform hazard assessments in a more accurate and real-time way. Based on temporal and spatial sensor data, this study tries to use data-driven algorithms to predict landslide susceptibility. Ten landslide instability factors were prepared, including elevation, slope angle, slope aspect, plan curvature, vegetation index, built-up index, stream power, lithology, precipitation intensity, and cumulative precipitation index. Four machine learning algorithms, namely decision tree (DT), support vector machines (SVM), Back Propagation neural network (BPNN), and Long Short Term Memory (LSTM) are implemented, and their final prediction accuracies are compared. The experimental results showed that the prediction accuracies of BPNN, SVM, DT, and LSTM in the test areas are 62.0%, 72.9%, 60.4%, and 81.2%, respectively. LSTM outperformed the other three models due to its capability to learn time series with long temporal dependencies. It indicates that the dynamic change course of geological and geographic parameters is an important indicator in reflecting landslide susceptibility

    Landslide Risk Assessment in Cut Locations Using Artificial Intelligence Based on Right-of-Way Videos and Geophysical Data

    Get PDF
    69A3551847103Sidehill and through cuts are often used in the construction of new railroad rights-of-way to limit the length, curvature, and grade of the route. However, rights-of-way that utilize cuts are susceptible to damage from falling debris driven by slope failure events such as shallow landslides and rockfalls. At-risk slopes, or geohazards, are traditionally analyzed using intensive field investigations and historical failure events to determine their likelihood of failure and the potential consequences of failure. Anticipating slope failures that may occur due to everyday weather events and other catalysts in the region helps protect railroad assets and employees, ensuring safe operations. Many rights-of-way have a large density of geohazards; thus, performing in-situ measurements to determine their failure likelihood requires extensive resources. In addition, installing infrastructure to detect or inhibit debris flow is expensive and often unrealistic for all geohazards. This study aimed to create a new slope stability risk framework for railroad cut sections by processing digital images of railroad rights-of-way recorded by inspection vehicles and related geophysical data. A geohazard-affected track section along the Harrisburg Line was used as the study area. Computer vision techniques were used to identify and quantify geohazard features that indicated slope instability. An object detection model based on deep learning (DL) was trained to detect these slope instability indicators and generate risk scores from rights-of-way inspection videos. Moreover, a landslide inventory was compiled, and a landslide susceptibility model was developed for the study area based on available geophysical data. The object detection model and the landslide susceptibility model were combined using a relative risk assessment framework to determine which sections were most at-risk of landslide, and results were compared with the railroad identified geohazard sections across the study area

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    corecore