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C H A P T E R  1  

Introduction 

BACKGROUND 

Roads and railroad rights-of-way are typically constructed with minimal inclines, declines, and curves to 
ensure safe and comfortable route traversal. While motor vehicles can handle steeper grades under ideal 
conditions, trains are much heavier and must reduce speed to traverse steep grades. It is atypical for freight 
trains to have a ruling grade steeper than 2% (i.e., the steepest gradient a train can climb) based on the 
motive power and train weight, and a ruling grade steeper than 3% for high-speed passenger trains. Since 
track systems must also minimize the use of tight curves to reduce large centrifugal forces on trains, 
mountainous and hilly terrain present unique construction challenges for new track systems. Building 
around elevated terrain usually requires train speed reduction due to the presence of tight curves. To avoid 
the use of tight curves, railroads often opt to use cuts or tunnels to create routes through elevated terrain, 
the benefits of which depend on the cost of the infrastructure versus the benefits to operational efficiency 
and safety of the alternate route. Since trains must reduce speed to navigate abrupt directional changes, 
track operations are made most efficient when a well-maintained tangent, level track is used. 

PROBLEM STATEMENT 

A cut in railroad engineering is an area where soil or rock is removed to construct a new right-of-way 
(ROW), often reducing the length, curvature, and grade of the route. Consequently, the use of cuts can 
introduce slopes whose base lies in the right-of-way and which vary in height and steepness depending on 
how much material was removed. Figure 1.1 shows an example of a through-cut where the right-of-way is 
cut such that geohazards (i.e., geological sites with features that may lead to widespread damage or risk) 
on both sides slope toward the track. A sidehill cut indicates a cut where only one side has a geohazard that 
slopes toward the track. Cuts in rights-of-way pose the risk of slope failures dumping debris onto the track 
system. 

Although the study area used for this research effort only contains cuts with relatively short slopes 
near the railroad, slope failure events have occurred, dumping debris on the track and halting operations. 
Figure 1.2 shows a photograph of debris obscuring the track after a slope failure event occurred due to 
heavy rainfall. Landslides are typically major soil movements that are detectable from satellites due to their 
size and fresh soil exposure. Although a failure event like the one pictured would not be detectable in the 
same way, it was severe enough to halt operations and raise concern that track infrastructure was damaged. 
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Figure 1.1. Example of a through-cut. 

 

 
Figure 1.2. A slope failure event near MP 40.5 occurred on 6/8/2021. 

SCOPE AND OBJECTIVES 

The research detailed in this report introduces a process to analyze geohazards present in ROW 
videos for relative failure likelihood by analyzing geohazards found adjacent to the railroad. The 
proposed algorithm includes only publicly available satellite images, historical landslide locations, 
and ROW recordings as source data. The geohazards shown in the videos were analyzed by 
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identifying and localizing slope features that indicate slope instability using an object detection 
algorithm. Additionally, important geographical and geological parameters were quantified using 
geospatial images of the study area. Several variables were calculated or extracted that summarize 
the geohazard’s current and past condition. Each geohazard’s relative health was investigated using 
a relative risk assessment matrix based on these values. The proposed algorithm serves as a 
preliminary slope stability analysis that informs engineers which geohazards are of primary 
concern in this study area. 

REPORT ORGANIZATION 

This report is organized into six chapters. A brief outline of each chapter is provided as follows: 
Chapter 1 outlines the background of this research and identifies the need for a more 

comprehensive risk assessment framework for slope failures along the railway cut sections. The 
main objectives of this report and the research program required to accomplish these objectives 
are briefly described. 

Chapter 2 details the literature review of slope failure causes, effects, and methods of the 
study performed to prepare for this research activity. Quantitative techniques commonly used to 
perform slope assessment methods are also discussed. 

Chapter 3 discusses all available datasets for this research effort and how they were 
prepared for analysis. This includes detailing what right-of-way images were available, what 
landslide inventory was used based on the location of the study route, and the origin of used 
geospatial parameters. 

Chapter 4 outlines all analytical methods applied to study the available data detailed in 
Chapter 3. Analysis techniques are covered generally and with respect to their application in this 
research effort. 

Chapter 5 presents all results obtained using the analysis techniques explored in Chapter 
4. This includes testing a successfully trained object detector and validating a landslide prediction 
model. Furthermore, efforts to combine the results obtained by studying the right-of-way images 
and geospatial parameters to perform a relative risk assessment are discussed. 

Chapter 6 concludes the project report by summarizing the research detailed herein and 
discussing future research directions. 
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C H A P T E R  2  

Literature Review 

INTRODUCTION 

This chapter covers the scope of the literature review performed for this research activity. This included 
reviewing literature investigating the causes of slope failure events and their effects on railroad 
infrastructure and operational safety and efficiency. Furthermore, proposed methods of studying at-risk 
slopes using right-of-way recording and geophysical methods were reviewed. This included a review of 
landslide susceptibility modeling techniques and conventional machine learning (ML) methods. 

SLOPE FAILURE CAUSES AND EFFECTS 

When using cuts in railroad track systems, methods of mitigating infrastructure damage caused by slope 
failure events must be considered. Slope failures have caused an average of $3M in reportable damages per 
year over the past ten years to railroad infrastructure, as determined by the number of type-M101 accidents 
identified in the Federal Railroad Administration (FRA) safety database (Federal Railroad Administration, 
2002). The actual cost of damage associated with these accidents is likely higher if cleanup costs and costs 
associated with fixing the right-of-way are included. Studies by the Association of American Railroads 
(AAR) suggest that the actual cost of an FRA-reported derailment is approximately double the reported 
amount. Geohazards must be periodically analyzed to determine if they are at a high risk of failure and what 
potential damages to infrastructure could be sustained from their failure to reduce the frequency of train 
accidents due to geohazard failures. Once at-risk geohazard sections are determined, mitigation efforts can 
be performed. Although it is often difficult to stop shallow, rapid landslides or rockslides from occurring, 
methods such as installing piles or retaining walls, changing the material composition of the slope, or 
modifying slope geometry to reinforce at-risk slopes will typically stop large debris flows from occurring 
(e.g., Chen et al., 2016; Ai et al., 2021). More often, railroads will opt to install structures to monitor at-risk 
slopes for failure events, which are significantly cheaper. Slide fences, for example, are fence structures 
built in front of geohazards that are wired into the railway signaling system to notify the railroad if a 
rockslide event has breached the fence. Thus, trains will not unknowingly pass over track sections covered 
in debris. 

Several methods have been developed to determine where slope failure prevention and mitigation 
efforts should be prioritized. Soil geohazards are primarily assessed for risk by making geotechnical 
measurements to determine the slope’s material composition, geometry, and internal stress conditions. 
Physics-based models have been developed to use geotechnical measurements to determine failure surfaces 
and the factor of safety against failure. One commonly used method of slope stability analysis, limit 
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equilibrium analysis, compares forces causing instability with forces resisting movement in a soil mass 
tending to slide toward the ground under the influence of gravity (Duncan, 1996; Hatheway, 1996). The 
method of slices is employed in many slope stability analysis tools and ranges from simplified to detailed 
analysis. The method divides the slope into several vertical slices whose free body diagrams are analyzed 
individually. Comparative analyses of the various methods have shown that the calculated safety factors 
vary little (Duncan and Wright, 1980). 

Once a factor of safety is calculated for a geohazard section, further analysis can be performed to 
determine the likelihood of a failure event based on known or likely catalysts. Since most shallow landslide 
events are triggered by weather events, analyses often consider precipitation and earthquake events of 
varying severity. Rainfall threshold models, for example, consider a geohazard’s composition and its risk 
for landslides based on the amount of rainfall in a given period (Pradhan et al., 2019; Wu et al., 2015). 
However, rockfalls and rockslides are governed by different models, since they fail under different 
mechanisms (Agliardi and Crosta, 2003; Alvioli et al., 2021; Dorren, 2003). The use of these models is 
challenging because an accurate factor of safety is not obtainable. Thus, on-site measurement of geohazards 
is often a crucial step in slope stability analysis such that a satisfactory factor of safety can be used to predict 
failure likelihood. 

SLOPE ASSESSMENT USING RIGHT-OF-WAY RECORDINGS 

This research was conducted to introduce a new method of assessing slope conditions to aid in determining 
where on-site measurement and remediation efforts should be prioritized. Specifically, videos of the right-
of-way recorded by inspection vehicles were used to find indicators of geohazard instability using computer 
vision techniques. Inspection vehicle ROW videos are typically utilized for inspection-based assessment of 
the track superstructure, while sophisticated measurement systems collect data on the track’s geometry. The 
videos were used to collect further numerical information about the track system using digital image 
processing techniques. While many inspection vehicles do not have high-resolution cameras installed, 
research beginning in the 1990s showed that ROW recordings are useful beyond inspective monitoring 
purposes (Velten et al., 1999; Resendiz et al., 2013). For example, artificial intelligence algorithms have 
been created to identify objects obstructing the right-of-way in real-time such as debris or trespassers 
(Zhang et al., 2018; Zaman et al., 2019; Boussik et al., 2021). Computer vision techniques have also been 
developed to monitor the health of specific track components (Guo et al., 2021a and b).  

SLOPE ASSESSMENT USING GEOPHYSICAL DATA 

Landslide Susceptibility Modeling 

A slope failure or landslide is usually considered the movement of a mass of rock, debris, or earth down a 
slope. It occurs when the shear stress exerted by gravity or other forces exceeds the shear strength of slope 
materials. 2.4.1 Landslide Susceptibility Modeling (LSM) is often carried out in geoscience applications 
to produce a landslide probability map on a regional level. LSM predicts landslides based on existing 
landslide inventory. Statistical analyses are subsequently carried out to discover the hillslope condition at 
landslide locations. Areas with similar topographical patterns are determined to be landslide hazard areas. 
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LSM answers the question of where the landslides would occur (Guzzetti et al., 2005). The final product of 
LSM is a series of maps showing landslide probability at any geographical location in the study area. 
Methods used to determine areas susceptible to landslides can be broadly classified into physics-based and 
statistically based methods. Among these two categories, the physics-based methods rely on simplified soil 
mechanics models to determine the stability condition of a given slope through limit equilibrium analysis. 
The statistically based methods establish functional relationships between landslide-contributing factors 
and past/present landslide locations. For LSM, a few assumptions need to be satisfied despite the difference 
between these two methods: (1) landslides leave noticeable signs on the earth’s surface that can be mapped 
into landslide inventories; (2) the occurrence of landslides obeys physical laws that can be evaluated both 
empirically and deterministically; and (3) conditions that caused past slope instability are likely to 
contribute to future landslides (Reichenbach et al., 2018). The complex nature of landslides has limited the 
application of physics-based approaches for LSM. So far, research attention has focused on conducting 
LSM through empirical methods worldwide (i.e., statistically based methods). More than a half-thousand 
research articles have been published on this topic in the past four decades (Reichenbach et al. 2018). 

Workflow of Statistically-Based LSM 

A comprehensive review by Reichenbach et al. (2018) identified six critical steps required for any 
statistically based LSMs. A comprehensive chart describing the workflow of LSM can be found in Figure 
2.1. The steps are briefly summarized as follows: 

1. Organizing landslide information (i.e., response variable): this step compiles a landslide inventory 
for the study area. The landslide inventory should contain the spatial (i.e., location of landslides) 
and temporal (i.e., date of the event) information. It is also essential to include the failure mode 
of individual landslides and their triggers. 

2. Gathering thematic information (i.e., explanatory variable): this step identifies contributing 
factors that lead to potential slope instabilities, such as elevation, vegetation coverage, soil 
moisture, soil topography, and bedrock depth. 

3. Selecting appropriate mapping units: this step determines mapping techniques suitable for the 
input and output data, such as grid-based analysis or slope-based analysis. 

4. Determining appropriate statistical models: this step determines suitable models to establish 
functional relationships between input and output variables. When selecting models, one should 
consider the type of landslide inventories, the format of thematic information, and the extent of 
the study area. 

5. Evaluating model performance: this step evaluates the robustness of the fitted model in terms of 
training accuracy, validation accuracy, and model uncertainties. 

6. Model deployment: this step applies the landslide probability map to landslide protocols, which 
benefits hazard prediction, mitigations, and land planning. 



 
 7          r3utc.psu.edu 

 
Figure 2.1. Summary of workflow and modeling framework for LSM (from Ma et al., 2021). 

APPLICATION OF ML IN LSM 

Analysis of landslide susceptibility can be considered a classification problem, where features of 
input variables (e.g., landslide contributing factors) are extracted and grouped based on their relationships 
and contributions to the response variable (i.e., landslide/non-landslide). Unlike traditional statistical 
methods (e.g., logistic regression), ML algorithms stand out in this type of application due to their excellent 
data clustering and classification capability. Recent advances in LSM with the application of ML methods 
are briefly summarized in this section. 

Conventional ML Methods 

The support vector machine (SVM) is a type of supervised ML method that has been widely 
adopted in various classification and regression analyses. The objective of the SVM algorithm is to find a 
hyperplane in N-dimensional space (e.g., groups of landslide contributing factors) that distinctly classifies 
the data points (i.e., landslides/non-landslides). For example, Lee et al. (2017) conducted an LSM for 
rainfall-induced landslides using SVM. In their study, 18 causative factors related to topography, geology, 
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soil, forest, and land use were first stacked into layers of 2D arrays and subsequently included in their model 
for training and validation. The results from two selected regions show that the developed SVM model is 
able to achieve a prediction accuracy of 81.36% for the training set and 77.49% for the test set. 

K-means is a method of vector quantization that aims to partition N observations into K clusters in 
which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), 
serving as a prototype of the cluster. Wang et al. (2017) conducted an LSM for the Three Gorges area in 
China using logistic regression with causative factors for landslides classified based on information theory 
(i.e., Shannon’s entropy). The K-means clustering is subsequently applied to enhance prediction accuracy. 
Their developed model can boost the overall accuracy to 91.76%. 

Decision tree (DT) is a flowchart-like structure in which each internal node represents a “test” on 
an attribute (e.g., a different range of slopes or different elevation intervals), each branch represents the 
outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). 
The paths from the root to the leaf represent classification rules. DT has been considered one of the most 
popular supervised classification algorithms due to its simplicity and interpretability. Tsangaratos and Ilia 
(2015) conducted LSM in Xanthi, Greece, using a modified DT classifier. A total of eight landslide 
contribution factors were analyzed and included in their study. Their trained model can achieve an overall 
accuracy of 96%. 

DL Methods 

 DL methods are a subset of ML using algorithms inspired by the structure and function of the brain 
(i.e., artificial neural networks). The past decade has witnessed the rapid development of DL algorithms. 
DL methods have proven to be extremely powerful in dealing with tasks like image recognition and natural 
language processing. Recently, state-of-the-art DL methods have been applied to the area of LSM. DL 
algorithms consist of layered structures; each layer digests input quantities and transforms the data to 
increase the selectivity and the invariance of the representation (i.e., they gradually learn features from the 
input layer by layer). As a result, DL models are able to extract optimal features and establish indirect 
relationships between input and output. 

Convolutional neural network (CNN) is a typical supervised DL method. It can extract and classify 
features from high-dimensional data by hierarchically composing simple local features into complex 
models; thus, CNN is ideal for learning features from raster data (Ma et al., 2021). Wang et al. (2019) 
evaluated the performance of different CNN architectures for LSM. In their study, landslide-contributing 
factors were gathered into raster formats. Techniques were subsequently used to convert these data into 
different representations: namely, 1D vector, 2D array, and 3D matrix. Three different CNN models were 
constructed based on the format of different data representations: 1D-CNN, 2D-CNN, and 3D-CNN. 
Among these different CNN architectures, 2D-CNN achieved the best prediction accuracy. The unique 
characteristics of different CNN architectures are summarized as follows: 

• For 1D-CNN, it could exploit the local correction and gradually learn more intricate 
representations from the factor vectors.  

• For 2D-CNN, it was able to extract the valuable hidden features sufficiently.  
• For 3D-CNN, it not only learned factor representations but also extracted local spatial information.  
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Besides CNN, as a unique type of recurrent neural network (RNN), the long short-term memory (LSTM) 
network inherits RNN’s capability of sequence learning. It is able to learn time-series data with long 
temporal dependency and automatically determines the optimal result by applying the gate control 
mechanism (Xiao et al., 2018). The gate control mechanism allows the network to only pass learned rules 
to the next time-step from the previous time step. Therefore, the LSTM networks are robust to noises and 
errors and can handle long time-series data. Xiao et al. (2018) presented an LSM framework that first 
extracted the earth’s surface feature from high-resolution remote sensing images using CNN and combined 
it with other remotely sensed data. The classified features from CNN were subsequently combined with 
LSTM. Their proposed framework is able to handle dynamic evolution characteristics of mountains and 
landslide displacement, thus improving the prediction accuracy. Their results indicate that the developed 
CNN-LSTM model can outperform traditional ML techniques (e.g., SVM, DT) and assess landslide 
probability dynamically. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 10          r3utc.psu.edu 

C H A P T E R  3  

Data Availability 

INTRODUCTION 

This research project aimed to assess a collection of geohazards in a selected railroad right-of-way 
using publicly available data and videos from track inspection runs. This chapter discusses the chosen study 
area, the scope of the available right-of-way recordings, and the publicly available data that had to be 
obtained and analyzed to complete this research task. This chapter exhaustively covers all data used in this 
research project. 

DESCRIPTION OF STUDY AREA 

A large population of geohazards exists in the Harrisburg railway line from milepost (MP) 83 
(eastern end) to 95 (western end), which was the focus area of this study. Figure 3.1 shows a map of the 
studied track segment (in orange) illustrating the high density of geohazards (in blue). Table 3.1 lists the 
geohazards shown in Figure 3.1 by the index of the cut, starting milepost, ending milepost, and centerline 
milepost (S MP, E MP, and CL MP), type (R for rock slopes and S for soil slopes), side (B for both sides of 
the track and S for the south side of the track), height, and length. An additional map was created to 
demonstrate the large density of through-cuts in the study area. Figure 3.2 shows a slope map of the study 
area where the color of each pixel indicates the pitch of the slope (darker pixels indicate steeper slopes). 
Due to the large population of geohazards, the track section used in the present study is clearly visible on 
the map without being specifically indicated. The density of geohazards makes this track section an ideal 
area of study for assessing at-risk geohazards. 
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Figure 3.1. Map of Harrisburg Line (orange) with geohazard sections indicated (blue).  

 

 
Figure 3.2. Slope map of the Harrisburg Line. 
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Table 3.1. Railroad identified geohazard sections. 
Index S MP E MP CL MP Type Side Height (ft) Length (ft) 

1 84.80 85.26 85.03 R B 40 2,430 
2 85.66 85.98 85.82 R B 70 1,690 
3 87.00 87.37 87.19 R B 40 1,950 
4 87.63 87.75 87.69 R S 20 630 
5 87.90 87.95 87.93 R B 20 260 
6 88.17 88.44 88.31 R B 20 1,430 
7 89.54 90.14 89.84 S B 20 630 
8 90.30 90.35 90.33 R B 20 260 
9 90.79 91.02 90.91 S B 20 1,210 
10 91.24 91.56 91.40 S B 30 1,690 
11 93.03 93.46 93.25 R B 40 2,270 

DATA AVAILABILITY FOR OBJECTION DETECTION 

Right-of-way videos were recorded in approximately 6-month intervals by an inspection vehicle 
on a mainline track segment in Pennsylvania. The geohazard inventory for the Harrisburg Line was 
primarily used to identify which ROW images show a geohazard, but most of the information can be 
recovered using digital image processing techniques. The available recordings were taken by a camera on 
the end of a track geometry inspection vehicle. The recording produced digital red-green-blue (RGB) 
frames with 480x720-pixel resolution. RGB digital images are colored using the RGB color model. Each 
color frame has integer pixel values ranging from 0 to 255, creating 2563 unique colors when stacking the 
frames. Thirty frames were captured per second, meaning a new frame was recorded every 3 to 5 ft based 
on the speed of the inspection vehicle. To guarantee unique scenes in the image frames and to limit the size 
of the dataset, two frames were extracted per second. Figure 3.3 shows an example image of a geohazard 
section extracted from a ROW video. The information box at the top of the image details the location and 
speed of the inspection vehicle throughout its run. The current milepost of the vehicle was used to identify 
geohazards per Table 3.1 as the train passes them. Table 3.2 summarizes the available ROW videos by 
recording date, traffic direction, and track traversed upon. 
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Figure 3.3. Example ROW image. 

 
Table 3.2. Available right-of-way recordings. 

Survey ID Recording Date Start MP End MP Traffic Track 
Rheems-Roy-217028 03/07/2017 94.6 83 East North 

Rheems-Roy-217191 12/12/2017 83.1 94.3 West South 

Rheems-Roy-218075 05/22/2018 94.5 83.8 East North 

Rheems-Roy-218223 12/04/2018 94.4 82.8 East North 

Rheems-Roy-219166 09/10/2019 84.5 94.4 West North 

Rheems-Roy-219259 12/17/2019 83.3 104.7 West South 

Rheems-Roy-220014 02/11/2020 83.5 104.6 West South 

Rheems-Roy-220194 12/01/2020 82.6 94.3 West South 

Rheems-Roy-221048 02/17/2021 83.3 94.4 West South 

Rheems-Roy-221048-TK4 02/17/2021 39.6 41 West North 

Rheems-Roy-221048-TK1 02/17/2021 41.8 39.8 East South 

Rheems-Roy-221064-TK4 03/30/2021 39.4 40.9 West North 

Rheems-Roy-221064-TK1 03/30/2021 41.5 39.7 East South 

Rheems-Roy-221084-TK4 06/03/2021 39.9 41.1 West North 

Rheems-Roy-221084-TK1 06/03/2021 41.7 39.6 East South 
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DATA PREPARATION FOR LSM 

Landslide Inventory 

The United States Geological Survey (USGS) provides a nationwide landslide inventory for the 
United States. The database contains more than 300,000 landslide point and polygon records and provides 
related information for the landslide event, such as the extent (when available) and times (when available) 
of landslide occurrence (Mirus et al., 2020). As the USGS landslide inventory is compiled from many 
different sources, the accuracy and quality vary between landslide records. The USGS landslide inventory 
uses a semi-quantitative classification to rank the relative confidence in landslide occurrence and position 
for landslide records in their inventory. Five integer values are used to represent certainties of landslide 
records. These values are “1” (very low confidence), “2,” “3,” “5,” and “8” (very high confidence) (Mirus 
et al., 2020). This study only focused on landslide point records with a confidence level of at least “5”. 

Unfortunately, the USGS landslide inventory does not contain enough high-confidence landslide 
records for Pennsylvania; it only reports 12 landslide records in Pennsylvania with a confidence level of 
“5” (11 around the Pittsburgh area and one around the Philadelphia area). For the present study, landslide 
records in New Jersey were considered to obtain sufficient landslide inventory for developing LSM models. 
New Jersey shares similar ecoregions with the southeast part of Pennsylvania (i.e., they share a similar hill 
slope environment and climate) (McMahon et al., 2001). Thus, landslide locations in New Jersey can be 
used as a complementary data source for the present study. The landslide inventory used in this study 
contains 12 landslide records in Pennsylvania and 154 landslide records in New Jersey (166 landslides in 
total). Figure 3.4 presents a map showing the location of landslide records used in this study and the location 
of our study area. It should be noted that these landslides are not closely located in the study area due to the 
limited landslide records in the USGS landslide inventory for the study area. However, the underlying 
mechanisms for landslide occurrences share similarities; it is hypothesized that the developed LSM models 
can be generalized to predict landslide risk for the study area. 
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Figure 3.4. Summary of landslide locations used in the present study. 

Landslide Contributing Factors 

Quantitative evaluation of landslide hazards relies on analyzing the topographic features where 
landslides have occurred. The geomorphic requirement for potential slope instability is sufficiently steep 
slopes with material available for transport (Lu and Godt, 2013). This requirement can be stratified through 
different combinations of soil profiles, topographies, and vegetation coverages. Typically, the topography 
features can be obtained through geological maps. With recent advances in satellite, airborne, and ground-
based remote sensing techniques, these data can also be remotely captured through satellites in raster format. 

• Terrain Morphology: The terrain morphology information such as digital elevation model (DEM) 
data can be obtained from various sources, including shuttle radar topography mission (SRTM), 
advanced spaceborne thermal emission and reflection radiometer (ASTER), light detection and 
ranging (LiDAR), and synthetic aperture radar (SAR). The coverage and spatial resolution vary 
among different data sources. 

• Vegetation: The vegetation on top of a slope controls water infiltration, and roots can 
mechanically reinforce soil layers. Therefore, it is essential to consider vegetation coverage when 
analyzing slope stabilities. A lack or shortage of vegetation can increase the susceptibility of slopes 
to landslides; on the other hand, slopes with decent vegetation coverage are less prone to landslides. 
Different vegetations have their unique spectrum characters, and these characters can be captured 
through multispectral images. The vegetation coverage, which is usually quantitively represented 
by the normalized difference vegetation index (NDVI), can be obtained by measuring the 
difference between near-infrared (NIR) bands from satellite images (e.g., Landsat-8 and Sentinal-
2). 

• Soil and Bedrock: Under rainfall events, water infiltrates into the hillslope and changes the stress 
state of soils. Soil hydrologic and mechanical properties have a significant impact on slope 
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stabilities. The permeability of soils varies between soils, and different soil types will have 
different responses to water infiltration and strength behavior. Therefore, it is essential to consider 
soil properties in any landslide analysis. The bedrock profile of a hillslope also significantly affects 
the hillslope response to rainfall as it is often considered a lower boundary for water infiltration. 
A recent study by Moradi et al. (2018) confirmed that the bedrock topography is an essential 
control for the spatial and temporal distribution of the potentially unstable zones in a hillslope. The 
soil and bedrock profile can be obtained from local geological maps. They can also be obtained as 
raster data on various online platforms. For example, SoilGrids (Hengl et al., 2017) provides global 
soil information and bedrock topography with 250 meters per pixel spatial resolution. 

• Precipitation: The selection of appropriate precipitation data is crucial as it directly links to 
rainfall-induced landslides, especially for rainfall-threshold analysis for predicting landslides as 
precipitation is the primary input variable. Rainfall modifies stress conditions in hillslopes creating 
instabilities for landslides. Typically, precipitation data can be obtained from rain gauge 
measurement, radar, and satellite. Each source has its limitations. In general, it is challenging to 
measure precipitation precisely. Some of the most widely used precipitation products include 
NASA TRMM, NASA Daymet, and GSMaP. 

Preparation of Geophysical Data 

For the present study, all the landslide contributing factors were obtained from the Google Earth 
Engine (https://earthengine.google.com/). Google Earth Engine is a powerful online platform that combines 
a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis 
capabilities. 

As the typical size of landslides in Pennsylvania is generally small, the resolution for topographic 
data should be high enough to reflect variations on the terrain surface. In the present study, USGS 3DEP 
was used to obtain high-resolution DEM data with a spatial resolution of 10 meters. These DEM data were 
used to calculate attributes like terrain slopes and aspects. The multi-scale topographic position index (mTPI) 
was also calculated based on the DEM for each location subtracted by the mean elevation within a 
neighborhood. The mTPI distinguishes ridge from valley forms. The soil information was obtained from 
SoilGrids (Hengl et al., 2017), which provides a global estimation of surface soil properties based on 
150,000 soil profiles and remote-sensing data with a spatial resolution of 250 m. The soil information 
includes field capacities, sand/clay content, and soil bulk density. The annual average NDVI calculated 
based on Landsat-8 satellite images was used to represent vegetation coverage. The annual average rainfall 
was obtained from NASA Daymet. Table 3.3 summarizes the geophysical data used in the present study. It 
should be noted that these geophysical data were resized to the same spatial resolution as DEM for 
consistency prior to analysis. In addition, visualization of these geophysical data can be found in Figure 3.5. 
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Table 3.3. Summary of geophysical data. 
No. Factors Resolution Description 

1 Elevation (m) 10 m 
Terrain slope based on high-resolution, seamless 
raster elevation data produced and distributed by 
the USGS 

2 Slope (deg) 10 m 
Terrain slope based on high-resolution, seamless 
raster elevation data produced and distributed by 
the USGS 

3 Aspect (deg) 10 m 
Terrain aspect based on high-resolution, seamless 
raster elevation data produced and distributed by 
the USGS 

4 mTPI (-) 270 m 
Multi-scale topographic position index based on 
DEM that distinguishes ridges from valleys 

5 NDVI (-) 30 m 
Annual average NDVI based on Near-IR and Red 
bands using Landsat-8 images 

6 Sand content (%) 250 m Sand content for surface soils 

7 Clay content (%) 250 m Clay content for surface soils 

8 Bulk density (10 kg/m3) 250 m Soil bulk density (fine earth) for surface soils 

9 Field capacity (%) 250 m 
Soil water content for 33 kPa suctions for surface 
soils 

10 Rainfall (mm) 1000 m 
Annual average precipitation based on daily 
surface weather data on a 1-km grid for North 
America 
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Figure 3.5. Visualizations of landslide contributing factors for the study area. 
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C H A P T E R  4  

Analytical Methods 

INTRODUCTION 

This chapter covers analytical methods applied to study the data. This includes analyses focused 
on the railroad right-of-way images, historical landslide locations, and geospatial parameters. 

EXPLORATORY DATA ANALYSIS 

Digital image pre-processing techniques were applied to the extracted right-of-way image frames 
to study the data and clean them before developing an algorithm to assess slope conditions. This was done 
to further understand the data and to determine what pre-processing steps would be necessary to optimize 
an object detection algorithm. Several procedures were considered and tested throughout this research study. 
Simply, digital image processing techniques aim to treat images as a three-dimensional function f(x,y,b) 
where each integer coordinate (x,y) is b layers deep based on the number of bands in the image (Pratt, 1994). 
For this research study, b = 3, since the extracted images from the videos were RGB images. 

The first technique used to pre-process the images was filtering. Filtering is the process of 
convolving an image to calculate new pixel values from the original ones (Pratt, 1994). Filtering can be 
used to sharpen or blur images based on the intended use case. For the available data in this research study, 
two types of inconsistencies were identified in the images: artifacts on the camera lens (such as rain droplets 
or smears) and defective pixels in the images. A Gaussian filter was passed over the images to remove these 
inconsistencies. A Gaussian filter can be considered a low-pass filter, thus attenuating high-frequency 
signals (Haddad & Akansu, 1991). The larger the size of the Gaussian filter, the more blurring in the 
resulting image. Thus, a small 3x3 Gaussian filter was used, as shown in Figure 4.1. The filter was 
normalized such that the intensity of the image was not changed. Furthermore, since the filter is two-
dimensional, it was passed over each color band individually. The filter was convolved over the ROW 
images, resulting in the blurring effect seen in Figure 4.2. Although the blurring reduces the sharpness of 
the image, several defective pixels seen in the image on the left were removed by convolving the Gaussian 
filter. 
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Figure 4.1. The 3x3 Gaussian filter for image blurring. 

 

 
Figure 4.2. Raw image (left) and Gaussian filter image (right). 

Average Image Intensities 

Exploratory data analysis (EDA) was performed to investigate how the average pixel intensity in 
each image differed across color bands and recording dates. For each image, the average pixel intensity was 
calculated and normalized to have a value between zero and one. Figure 4.3 shows the results of this EDA 
for all westbound inspection runs, and Figure 4.4 shows the results for all eastbound inspection runs. Two 
plots were included in each figure to compare different pairs of calculated intensities by the color band. The 
primary observation made via this EDA was that average pixel intensity values by image vary both within 
the recording and across recording dates. The intensities are linearly correlated across color bands, 
indicating different luminosity in ROW images. Furthermore, certain inspection runs produced more 
significant variations in average pixel intensities, such as Rheems-Roy-218223 in Figure 4.4, which appears 
to be due to heavy shading of the right-of-way in certain parts of the recording due to the time of the 
recording and the weather. In summary, intensity values vary enough that the contrast of images must be 
normalized in some manner to remove the trend. 



 
 21          r3utc.psu.edu 

 
Figure 4.3. Average image pixel intensities by color bands (westbound). 

 

 
Figure 4.4. Average image pixel intensities by color bands (eastbound). 

 
In addition to investigating average image intensity values by recording date, the values were also 

studied by season. Combining all the recordings, and producing a new legend based on the season of the 
recording date, resulted in the plots shown in Figure 4.5. Broadly, images recorded in the winter were more 
likely to be more luminous, while images recorded in the fall were more likely to be less luminous. This 
again supports the need for a contrast normalization algorithm to prepare the image for further study. 
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Figure 4.5. Average pixel intensities by color bands across seasons. 

 
From the EDA, histogram equalization was the first considered algorithm to adjust the 

contrast of ROW images in each color band (Pratt, 1994); this process aims to better distribute 
pixel intensities in an image. This process is beneficial when comparing images recorded at 
different light levels due to the time of day or current weather, which was shown to be the case for 
this study’s available data. Although the intensity values of pixels were found to be inconsistent 
across the three-color bands (as Figure 4.6 shows for a sample image) and across recording dates, 
an alternative method to adjust image intensity was used. Much like histogram equalization, 
normalization, or histogram stretching, was used to adjust all the ROW images to a similar 
intensity scale. This was done to correct the differences in light levels seen as described earlier. 
Each pixel’s intensity value was adjusted per Eq. 4.1 (Pratt, 1994). This process was considered 
satisfactory to prepare the images for input into an object detection algorithm. 

 
Figure 4.6. Histogram of pixel values for a sample image. 
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where: 

 NI : New pixel value. 

 I : Original pixel value. 
 /MIN MAX : Minimum and maximum pixel values in original image. 
 /nMAX nMIN : Desired minimum and maximum pixel values in new image. 

Edge Detection for Rail Identification 

After testing data pre-processing techniques, the ROW images were further analyzed using digital 
image processing algorithms. First, the camera placement on the inspection vehicle and the resulting scene, 
and the location of geohazards and rail sections in the images was of interest. A simple edge detection 
algorithm was used to determine if the camera scene was consistent across all recordings. In digital images, 
edge detection models are used to identify “edges” or locations in an image where pixel values sharply 
change. Numerous techniques exist to perform edge detection, but all aim to find discontinuities in image 
brightness corresponding to variations in depth, surface orientation, material properties, or scene 
illumination (Ziou and Tabbone, 1998). For this research study, edge detection was primarily used in the 
images to identify rail sections and secondarily to identify infrastructure, such as bridges or catenary poles. 

To perform edge detection, a second-order Gaussian derivative was approximated over each image 
in R (Barthelme, 2021; R Development Core Team, 2003). The algorithm was applied across both the 
vertical and horizontal axes to detect edges separately. The expected outcome of applying the algorithm 
was the rail sections being clearly identifiable when detecting edges across the horizontal axis. Figure 4.7 
and Figure 4.8 show the edge detection results horizontally and vertically across a sample ROW image, 
respectively. Brighter pixel values (or pixels that are closer to white in color) indicate a significant change 
value between adjacent pixels. When comparing, the rail, as well as trees in the geohazard and catenary 
poles, have sharply defined edges when edges were detected horizontally across the image. Conversely, the 
bridge is much easier to see in Figure 4.8 than in Figure 4.7. 
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Figure 4.7. Edge detection horizontally. 

 

 
Figure 4.8. Edge detection vertically. 

 
Since the rails produced clearly defined bright pixels, as shown in Figure 4.7, it was determined 

that these pixels could be isolated. By setting a threshold where pixel values above the threshold are white 
and below are black, followed by eliminating white pixels that had no other adjacent white pixels, the rail 
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was able to be isolated. Figure 4.9 shows isolated rail sections for two sample images; the left shows a 
section of tangent track and the right shows a section of curved track. Although additional pixels not 
representative of the railhead still exist in the images, the rail was still clearly identifiable. 

 

 
Figure 4.9. Isolated rail sections in ROW images. 

 
Several analyses were performed using the isolated rail pixels. First, the rail sections were used to 

determine if the camera scene was identical throughout the ROW recordings. Via inspection of the 
collection of recordings, it was clear that the scene would not be identical for all the recordings. This is 
because, as columns four and five of Table 3.2 show, the videos were recorded on inspection runs traveling 
both east and west along the route as well as on the north and south tracks. Thus, it was not expected that 
the scene in all the videos would be identical. Instead, the scenes for sets of recordings with both the same 
inspection run direction and track were of interest. To determine if this was the case, the isolated rail pixels 
for images taken at the same location along the route but on separate dates were overlayed. Since the ROW 
images were previously georeferenced, this process was trivial. Figure 4.10 shows two images recorded at 
the same location along the route (one on 2/11/2020 and one on 12/1/2020), where rail pixels were isolated, 
and the track gauge was identified (red line at the bottom of the image). Although the track gauge calculated 
from the ROW images was identical on both dates (113 pixels), Figure 4.11 shows that the rail pixels do 
not align. This indicates that the camera had the same focus on both dates but was not centered on the same 
portion of the scene. In fact, to align the isolated rail pixels, one of the images had to be both shifted and 
rotated. Further analysis of isolated rail pixels calculated from images recorded on other dates indicated 
that the camera scene was inconsistent throughout the data collection period. This means that images must 
be aligned manually or automatically to investigate changes to the right-of-way or of geohazard features of 
interest over time to a fine detail. 
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Figure 4.10. Isolated rail pixels for two images recorded at the same location. 

 

 
Figure 4.11. Overlayed rail pixels from images in Figure 4.10. 

 
After inspecting the results, an additional use case for the isolated rail pixels was tested. As Figure 

4.9 shows, isolated rail pixels from sections of tangent and curved tracks created different signatures. From 
this, it was hypothesized that the type of track could be determined automatically using the isolated rail 
pixels. To do this, the track centerline was calculated from the isolated pixels. This was done by calculating 
the average horizontal coordinate of every white pixel for each row of a ROW image. The expectation was 
that the centerline would be vertical and linear for the tangent track and skew for the curved track. Figure 
4.12 and Figure 4.13 show, on the left, the isolated rail pixels after removing detected pixels that were not 
a part of the rail, and on the right, the calculated centerline for the isolated rail pixels for a tangent and 
curved track section, respectively. Although the pixel isolation process was not perfect, the difference 



 
 27          r3utc.psu.edu 

between the centerline for both scenarios is clear. The calculated centerline shown in Figure 4.12 is almost 
perfectly vertical, while the calculated centerline in Figure 4.13 is obviously curved. 

 

 
Figure 4.12. Centerline calculation sample for a tangent track. 

 

 
Figure 4.13. Centerline calculation sample for a curved track. 

 
The above calculations were made for sample ROW images to see if curved and tangent track 

sections could be classified accurately. Using the centerline pixel coordinates, regression was used to fit a 
linear model and a second-order polynomial to each centerline. The expectation was that tangent track 
sections would produce low residuals for both fits, while curved track sections would produce low residuals 
for the polynomial fit only. Figure 4.14 was created for a small sample of ROW images and shows the 
squared residuals of the polynomial fit vs. the linear fit for each calculated centerline. The population of 
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data points with nominal residuals for both fits indicates tangent track sections where clean centerlines were 
able to be calculated. Since the centerline calculation technique was imperfect, some of the calculated 
centerlines were also imperfect. Thus, centerline residuals that skew from the line (indicating equal 
residuals for both fits) can be classified as not linear, although the behavior may be due to an imperfect 
centerline or the photographed track section being curved. Regardless, Figure 4.14 indicates that 
determining whether a photographed track section is tangent or curved is possible using this method with 
improvements to the pixel isolation technique. 

 
Figure 4.14. Track centerline fit residuals. 

TRANSFER LEARNING FOR OBJECTION DETECTION 

Feature Selection 

Following exploratory work to learn more about the ROW images, initial steps were made to 
prepare them for use in an object detector. The goal was to use the extracted image frames to investigate 
the identified geohazards (shown in Table 3.1) for features that indicate potential slope instability. While 
rock and soil slopes have different failure mechanisms, unstable slopes generally have comparable forces 
driving slope movement and forces resisting slope movement. Using just the right-of-way videos, 
measurements cannot be made to determine these forces quantitatively. Instead, features that indicate past 
or potential slope movement are the key to determining slope stability. Figure 4.15 shows features that are 
of primary interest when performing slope reconnaissance (Li et al., 2002). These features indicate soil 
creep for soil slopes, meaning that the slope has already experienced progressive soil movement. Thus, a 
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catalyst such as a heavy rainstorm could be enough to trigger a large soil movement event. Figure 4.15 
shows that there are leaning trees and hummocks present in an example geohazard image as well as some 
debris. These unstable slope indicators must be quantified to determine how many indicators are present at 
each geohazard and how that count changes over time. 

 
Figure 4.15. Surface features indicative of slope instability (Li et al., 2002). 

Training Images Labeling 

An object detection algorithm was created to identify and localize unstable slope indicators of 
interest in the right-of-way images. Object detection algorithms utilize CNNs to match patterns in testing 
datasets to existing patterns bounded in training data (Dasiopoulou et al., 2005). Like other ML algorithms, 
CNNs “learn” weights by studying training data. Unlike other neural networks, convolutional ones identify 
features found in a subset of the images using convolutional filters that slide across the image (Zhang et al., 
1990). A training dataset was first created using a subset of the ROW images showing geohazards to 
facilitate accurate supervised learning for this use case. 

With every image georeferenced to the study route, Table 3.1 was used to determine which images 
were recorded within a geohazard section. Of the total 12,000 images extracted from the ROW videos, 
2,789 images were recorded in a geohazard section. Since slopes along the right-of-way only exist in 
geohazard sections, unstable slope features of interest are most likely to be found in these images. Thus, 
determining which images were captured in geohazard sections was an essential preliminary step in creating 
the object detection training dataset. To facilitate supervised ML, 50% of the geohazard images were 
randomly selected for use as training and validation data, while the remaining geohazard images were 
reserved for algorithm testing. For the training and validation images, unstable slope features were bounded 
and labeled manually such that the object detection algorithm can learn the image patterns that represent 
the chosen features. The six chosen features for the first pass of training and the color of their bounding 
boxes in ROW images are shown in Table 4.1. 
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Table 4.1. Legend of chosen unstable slope features 

Feature Color 
Leaning tree Lime green 

Hummock Red 

Rock face Cyan 

Debris Pink 

Moisture Violet 

Tension crack Dark blue 
 
Features were identified and bounded using MATLAB’s imageLabeler application (Mathworks, 

2020). This application allowed rectangular bounding boxes to be drawn onto images in the chosen set. 
After identifying all features of interest in an image, the coordinates of each bounding box were 
automatically recorded. Although more sophisticated types of feature bounding exist, such as polygon and 
pixel bounding, rectangular bounding boxes were considered suitable as an initial feature identification 
method for this use case. To perform manual feature bounding, training and validation images were first 
resized to remove the text box at the top of the scene. This was done to create an image scene that only 
showed the right-of-way. Figure 4.16 shows an example of a training image with features of interest 
bounded. 

 
Figure 4.16. Example of a training image with features bounded. 

 
Several concerns were raised throughout the manual labeling process. First, due to the resolution 

of the images, it was difficult to define the borders of some features accurately. For example, the identified 
hummock in Figure 4.16 was bounded conservatively since the precise feature was hard to identify. Due to 
this, using more sophisticated bounding methods would have been challenging. Additionally, seasonal 
foliage often obscured features of interest, most often leaning trees. Although features of interest such as 
hummocks or leaning trees may exist on the right side of the right-of-way shown in Figure 4.16, they cannot 
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be easily identified and bounding. Due to these reasons, the training data labeling process may be re-
investigated and improved in the future. 

After inspecting all images in the training dataset for unstable slope features, the development of 
the object detection algorithm began. The first step in this process was to inspect the labeling results. Table 
4.2 shows the number of instances of each object class bounded and the number of images that contained 
at least one instance of each object class. The latter shows that several images contained two or more 
instances of certain objects. Table 4.2 also shows that some object classes, specifically tension cracks, were 
not well represented in the study area. This could be due to bias in the labeling process but is more likely 
due to a few instances of tension cracks existing in the study area. Class imbalance in feature training 
examples can lead to learning bias in object detection algorithms (Oksuz et al., 2021). Consequently, only 
the first four object classes of the six in Table 4.2 were used to train the object detection algorithm. Omitting 
debris and tension crack objects yielded a more accurate object detection algorithm. 

 
Table 4.2. Number of labeled objects and images present. 

Feature Count Image Count 
Leaning tree 536 416 

Hummock 725 615 

Rock face 785 489 

Debris 214 190 

Moisture 325 315 

Tension crack 22 22 

Model Selection 

A suitable CNN algorithm and network structure were first determined to develop the object 
detection algorithm. The Faster RCNN structure was used for the sake of simplicity, since it provides 
accurate results in the shortest amount of computation time (Ren et al., 2017). Furthermore, rather than 
developing and training a novel network architecture, transfer learning—a research technique in which an 
ML solution to an existing problem is applied to a different but related problem—was used to adjust a pre-
trained network architecture. This ensures that a network with a history of providing accurate results is used 
as a basis for learning. In short, if training accuracy is not satisfactory, it is much more likely that the dataset 
needs adjustments, not the network structure. The chosen pre-trained network structure for model training 
was the residual network (resnet18) architecture, which was trained on the ImageNet database and was built 
to have 1,000 output classes (Deng et al., 2009; He et al., 2016). The ImageNet visual database was designed 
for use in object recognition software and contains more than 14 million images containing 20,000 different 
categories with bounding boxes and labels included (Deng et al., 2009). Due to the extensivity of the 
database, neural networks trained on it have performed very well. 

The resnet18 architecture is a relatively simple, publicly available network architecture that is easy 
to adjust for transfer learning. The network is only 18 layers deep, meaning transfer learning is not as 
computationally intensive as other network architectures (He et al., 2016). The resnet18 network 
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architecture used to train the object detector is shown in Figure 4.17. Since the object detector was to be 
trained on graphics hardware that is not the state-of-the-art, it was considered beneficial to use a network 
with fewer layers. This network was adjusted to have the correct number of output class labels (four) and 
for those class labels to correspond to a subset of a training image (region proposal) using MATLAB 
(Mathworks, 2020). To limit computation time and ensure that transfer learning would work as intended, 
the ROW images were resized from their original size of [720, 480, 3] to the design network input size of 
[224, 224, 3]. First, images were reduced from their original size to [720, 403, 3] to remove the text box. 
Though the aspect ratio of the images was not preserved by the resizing process, the geohazard features 
were still visible. Furthermore, since features were bounded prior to the second image resizing, the 
bounding boxes were analogously resized. Lastly, as described earlier in this report, the training and 
validation images were normalized to equalize the distribution of pixel intensity values. 

 

Figure 4.17. Adjusted residual network architecture. 

LSM USING ML MODELS 

LSM using ML methods can be considered a supervised classification problem where features of 
input variables (i.e., landslide contributing factors) are extracted and grouped based on their relationships 
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and contributions to the output variable (i.e., landslide/non-landslide labels in a binary classification). A 
complete workflow of LSM for the present study is summarized in Figure 4.18, which includes dataset 
preparation before developing LSM models, LSM model development and evaluation, and determination 
of the final landslide susceptibility map. The following sections will discuss details of the developed 
workflow for developing LSM models. 

 
Figure 4.18. Developed LSM workflow for the present study. 

LSM Model Description 

The present study considered five commonly used ML models for slope stability classifications, 
including logistic regression (LR), SVM, DT, random forest (RF), and gradient boost machine (GBM). 
These models have been successfully used in multiple engineering applications, including slope stability 
predictions (e.g., Qi and Tang, 2018; Zhou et al., 2019). A detailed introduction of these models can be 
found in Kuhn and Johnson (2013), and a brief description of each model is given as follows. 

• LR is a widely used and well-understood statistical model for binary classification problems. In 
LR, the conditional probability of the dependent variable is modeled as a logit-transformed 
multiple linear regression of the explanatory variables.  

• SVM is a supervised ML algorithm based on the structural risk minimization principle (Vapnik, 
1995; Burges, 1998). It can be used in both classification and regression problems. Given a dataset 
with N points, SVM finds a hyperplane that separates the data with the largest margin for linearly 
separable data. Nonlinear kernels are used for linearly inseparable data to allow the algorithm to 
fit the maximum-margin hyperplane in a transformed higher-dimensional feature space. 

• DT is another commonly used supervised ML method for classification and regression. It is a non-
parametric method with no presumed relationships between output and input variables (Qi and 
Tang, 2018). The learning objective for DT is to create a model that predicts target variables by 
learning simple decision rules inferred from input data. It creates a tree-like model to map from 
observations about a sample to conclusions about its target value. 

• RF is an ensemble method in ML. It develops several DTs in parallel with bootstrap sampling. 
Various subsets of training data and different feature subsets are used to develop different DTs 
during model training. Each DT in the RF makes a class prediction, and the class with the most 
votes becomes the final model prediction. RF is considered a more robust model than DT, with 
better generalization capabilities. 

• GBM is a powerful ensemble ML technique that has shown considerable success in many practical 

LSM model application
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…
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applications (Natekin and Knoll, 2013); it can be used for classification and regression problems. 
Unlike RF, GBM combines a group of weak learners (e.g., DTs) in a stage-wise fashion; it 
consecutively reduces error with each additional weak learner until one final model is produced. 
GBM also allows the optimization of arbitrary differentiable loss functions; thus, it provides better 
flexibility during model development. 

Database Preparation 

For the present study, the 166 mapped landslide points in the study area and their corresponded 
values of landslide contributing factors were used as positive samples. For negative samples, non-landslide 
locations were randomly sampled 1 km within and 100 m outside of landslide locations. This approach to 
generating pseudo-negative samples was commonly used in LSM (e.g., Maxwell et al., 2021). These non-
landslide points and their corresponding values of landslide contributing factors were used as negative 
samples. To create a balanced dataset, the number of sampled non-landslide points was equal to the number 
of landslide points. As a result, the dataset for developing LSM models for the present study consists of 332 
samples, and each sample contains ten input features and one output/target (i.e., landslide or non-landslide). 
Tables 4.3 and 4.4 present the descriptive statistics for landslide and non-landslide samples in the database. 
As shown in Tables 4.3 and 4.4, the values of each landslide contributing factor cover a wide range of 
variations; thus, data standardization was used for scaling all the input features to ensure model training 
results. 

Table 4.3. Descriptive statistics for landslide samples in the database. 

 Elevation 
(m) Slope (deg) Aspect 

(deg) mTPI (-) NDVI (-) 

Mean 114.9 13.1 181.0 -7.3 0.4 
Std. 89.5 11.1 98.4 18.4 0.2 
Min. 1.8 0.5 3.9 -82.0 -0.1 
25th 36.4 3.7 97.9 -16.0 0.2 
50th 96.8 9.8 171.5 -4.0 0.4 
75th 178.3 20.8 265.0 4.0 0.6 
Max. 333.0 43.2 358.0 32.0 0.8 

 
Sand 

Content 
(%) 

Clay 
Content 

(%) 

Bulk 
Density (10 

kg/m3) 

Field 
Capacity 

(%) 

Annual 
Average 
Rainfall 

(mm/day) 
Mean 44.6 18.5 153.6 21.5 3.4 
Std. 7.0 4.3 8.1 3.7 0.2 
Min. 26.0 10.0 119.0 14.0 2.8 
25th 40.0 16.0 149.0 19.0 3.3 
50th 45.0 18.0 155.0 21.0 3.4 
75th 49.0 21.0 158.0 24.0 3.6 
Max. 61.0 28.0 174.0 31.0 3.9 
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Table 4.4. Descriptive statistics for non-landslide samples in the database. 

 Elevation 
(m) Slope (deg) Aspect 

(deg) mTPI (-) NDVI (-) 

Mean 133.6 5.9 183.1 1.1 0.4 
Std. 104.6 6.8 104.9 13.0 0.3 
Min. -1.3 0.0 0.0 -34.0 -0.5 
25th 46.7 1.3 100.0 -6.0 0.3 
50th 118.0 3.1 178.0 0.0 0.5 
75th 209.0 8.1 282.5 8.0 0.6 
Max. 399.0 34.8 359.0 46.0 0.8 

 
Sand 

Content 
(%) 

Clay 
Content 

(%) 

Bulk 
Density (10 

kg/m3) 

Field 
Capacity 

(%) 

Annual 
Average 
Rainfall 

(mm/day) 
Mean 43.6 19.3 156.0 21.5 3.4 
Std. 8.3 4.5 6.7 3.6 0.2 
Min. 24.0 10.0 135.0 14.0 2.8 
25th 38.0 16.0 152.0 19.0 3.3 
50th 44.0 19.0 157.0 21.0 3.5 
75th 50.0 22.0 160.0 24.0 3.6 
Max. 63.0 30.0 171.0 36.0 4.0 

LSM Model Development and Hyperparameter Tuning 

The performance of a trained ML model needs to be evaluated on new datasets to test its 
generalization capability. A stratified random sampling technique was used to split 80% of the database for 
training and the remaining 20% for testing. The k-fold cross-validation technique was used for dataset 
partition to reduce sampling bias in the present study (Stone, 1974). In cross-validation, the training dataset 
is divided into k folds, and the ML model is trained using k–1 folds and validated using the remaining one 
fold. This process repeats k times to allow each fold to be served as a validation fold, and the final model 
performance is the average model performance for each validation fold. Five-fold cross-validation was used 
for the present study, corresponding to an 80%/20% sample split. Figure 4.19 illustrates the cross-validation 
procedure for the present study. 

In the present study, all the ML models were developed using Scikit-learn (Pedregosa et al., 2011). 
Each ML model considered in the present study contains hyperparameters; the values of these 
hyperparameters can be tuned to adjust model performance. However, minimum hyperparameter tuning 
was used in the present study to reduce potential overfitting and improve models’ generalization capability, 
as the developed ML models need to be applied to the study area that was not adjacent to these landslide 
locations. The default values of hyperparameters provided by Scikit-learn were used for these ML models. 
For detailed information about these hyperparameters, readers can refer to help documents for Scikit-learn. 
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Figure 4.19. Fivefold cross-validation procedure for developing ML models. 
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C H A P T E R  5  

Results and Discussion 

INTRODUCTION 

This chapter covers all results obtained by applying the analytical methods introduced in Chapter 
4. This includes the performance of an object detector and a landslide susceptibility map. Using these results, 
a relative risk assessment was conducted to compare the geohazard sections identified in the study area. 

TRAINED OBJECT DETECTOR 

Parameter Tuning 

To train an object detector using transfer learning, several structural decisions had to be made. First, 
it was determined that using some of the training images to validate the algorithm would be beneficial. 
Table 5.1 shows the breakdown of image usage to train and validate the object detector. Validation data are 
not used to train the parameters during each training iteration but are instead used to tune the parameters at 
a predefined rate (Yegnanarayana, 1994). When validating the algorithm, improvements in error loss mean 
the hyperparameters are being appropriately trained and the algorithm’s classification capability is 
improving. Thus, validation provides another metric to measure how well the object detector is performing 
as training progresses. 

 
Table 5.1. Breakdown of image usage in transfer learning. 

Image Set Count 
Training 1,132 
Validation 150 

 
Additionally, numerous training options had to be set to determine how the training procedure 

would function. The exhaustive list of training options is shown in Table 5.2. In brief, the algorithm 
processes “mini batch size” random images every training iteration. All images are processed in each epoch, 
meaning there were 187 iterations of training each epoch. The validation frequency instructs the algorithm 
to validate and tune the hyperparameters every 10 iterations. The initial learning rate is a factor that affects 
how much the hyperparameters can change each iteration. The learning rate was slowly reduced every five 
epochs, meaning as the algorithm’s classification accuracy improves, the hyperparameters need to be tuned 
less and less. Since the algorithm is looking to classify portions of the image and not the image itself, 
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regions of the image are internally proposed to represent an object of interest. The number of regions and 
the number of regions sampled each iteration were numerically defined as well. Lastly, the positive and 
negative overlap ranges specify the network to treat region proposals as positive/negative samples by 
calculating the intersection over union of the region and the ground truth input. These parameters were 
adjusted to make both positive and negative samples more dependent on the intersection area. 

 
Table 5.2. Object detector training options. 

Option Value 
Mini Batch Size 6 
Initial Learning Rate 4e-3 
Max Epochs 20 
Validation Frequency 10 
Validation Shuffle Every Epoch 
Learn Rate Schedule Piecewise 
Learn Rate Drop Factor 0.5 
Learn Rate Drop Period 5 
# Strongest Regions 1500 
# Regions to Sample 128 
Negative Overlap Range [0, 0.3] 
Positive Overlap Range [0.6, 1] 

Algorithm Training and Testing 

The object detector performed very well using the augmented resnet18 network architecture via 
transfer learning. After 20 epochs of training, the final model had a validation accuracy of 99.90% and an 
average validation root-mean-square-error (RMSE) of 0.10306, a little on the high side. The training results 
over each iteration, and the validation results over every 10 iterations, are shown in Figure 5.1. Training 
loss gradually shrunk over time and was relatively level when training was halted. Training time was 
roughly 40 minutes per epoch, meaning the total training time was about 13.5 hours. These results were the 
best results obtained following tuning of training options and removal of two of the six object classes 
labeled in the training images per Table 4.1. 
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Figure 5.1. Training accuracy, RMSE, and loss. 

 
To test the detector’s performance, a precision-recall curve was created for each classified feature 

class. These plots are used to inspect the detector’s capability by testing it on training images and measuring 
its precision and recall. Precision is the algorithm’s positive predictive value, while recall is its sensitivity. 
Precision is defined as the true positive accuracy and recall is defined as the true positive rate (Powers, 
2007). Precision and recall scores can be calculated as follows: 

 

Recall TP
TP FN

=
+

               (5.1) 

 Precision TP
TP FP

=
+

               (5.2) 

 
where: 
 TP : True positive. 
 FN : False negative. 

FP : False positive. 
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For object detection algorithms, precision and recall are calculated to determine how accurately the 
detected objects in training images align with the training labels fed into the algorithm. Ideally, the detected 
objects are identical to the training objects. Figure 5.2 shows the precision-recall curves for the four labels 
the detector was trained to identify. The ideal algorithm would result in precision values of one for all recall 
values (a horizontal line at y=1). Considering this, the algorithm performed very well when identifying 
hummocks, rock faces, and moisture and performed less well when identifying leaning trees. 

 
Figure 5.2. Recall-precision curve for trained object detector. 

 
To visualize the algorithm’s performance, training and test images were processed using the object 

detector to determine how well it was detecting objects of interest in the ROW images. Training images 
were used to see how well the detector was replicating the identified “ground truth” objects used to train 
the algorithm and testing images were used to visualize if the algorithm was detecting objects of interest in 
images that were not yet passed through the algorithm. Figure 5.3 and Figure 5.4 were randomly chosen to 
show the algorithm’s ability to replicate ground truth labels. In both of these figures, the image on the left 
shows the “ground truth” (manually labeled) objects and the image on the right shows the objects detected 
by the algorithm. Numerous points of interest can be observed using these two figures. First, Figure 5.3 
shows a section of moisture on the left side of the right-of-way that was properly identified, but interestingly, 
the detected bounding box (shown in the right image) is tighter to the section of moisture than the ground 
truth bounding box was. Although the detected box does not include all the moisture, it also does not 
incorrectly include a portion of the hill above the moisture like the ground truth bound box does. Similarly, 
the detector’s ability is shown in Figure 5.4, where a rock face was correctly detected by the algorithm on 
the right side of the right-of-way that was not labeled. The same is true for the hummock identified on the 
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left side of the right-of-way. These examples indicate that the ground truth labels are not complete, and the 
labeling process could be improved. 

 
Figure 5.3. Detection results on first sample training image. 

 

 
Figure 5.4. Detection results on second sample training image. 

 
Although interesting, the algorithm’s performance on test images is more important. Since the 

training images have already been seen by the algorithm, its predictive capability on them is considered 
biased. Figure 5.5 and Figure 5.6 show the algorithm’s ability to identify objects of interest in sample test 
images. Objects of interest in the two sample images were mostly identified satisfactorily. Figure 5.5, for 
example, shows a leaning tree on the right side of the right-of-way that was identified properly but also 
shows a leaning tree on the left side that was not identified. Unsurprisingly, no leaning trees were identified 
in Figure 5.6 due to the prevalence of foliage. As discussed previously in this report, the density of foliage 
in some of the recorded ROW videos often obscures leaning trees. Similarly, the drape mesh seen on the 
right side of the right-of-way in Figure 5.6 obscures what could be either a hummock or a rock face. Since 
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sections of drape mesh were not labeled as part of the manual labeling process, the algorithm is not sure. 
Interestingly, the drape mesh was identified as a hummock, indicating that the algorithm’s ability to identify 
hummocks is not biased to the color of the feature. Still, this observation indicates that the algorithm may 
have trouble differentiating hummocks from rock faces. Overall, the detector performed satisfactorily based 
on the quality of the images and the manual labels. 

 
Figure 5.5. Detection results on first sample test image. 

 

 
Figure 5.6. Detection results on second sample test image. 

EDA of Identified Features 

To further explore the quality of the ground truth labels, some exploratory data analysis was 
performed to determine why the algorithm’s performance was skewed for one of the three object classes. 
Of interest was both the size and the location of the bounding boxes for each of the object classes. This was 
of interest, since the training images were not rotated or shifted before training the algorithm. Augmenting 
images for computer vision tasks has been shown to improve the algorithm’s classification accuracy by 
removing spatial biases (Zoph et al., 2020). Figure 5.7 shows the location of bounding box centroids in the 
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ROW images. Expectedly, few objects were labeled in the middle of ROW images where the track was 
present. Also expectedly, leaning trees tended to be labeled near the top of training images, whereas 
moisture and debris objects tended to be labeled near the bottom. Lastly, hummocks and rock faces were 
identified in the middle of geohazard sections and spatially were found in similar portions of the images. 
Although this behavior was expected, it shows a pattern of object locations in the images that may have 
caused bias in the training process. Similarly, the bounding box’s size can cause bias when training the 
algorithm. As Figure 5.8 shows, leaning trees had the smallest size variation, most often being tall and 
narrow. Interestingly, the sizes of bounding boxes representing rock faces were often much larger than those 
representing hummocks, indicating a different pattern than the one identified in Figure 5.7. 

 
Figure 5.7. Ground truth bound box centroid locations. 

 

 
Figure 5.8. Ground truth bounding box sizes. 



 
 44          r3utc.psu.edu 

Using the trained object detector, all ROW images extracted from the recorded inspection run 
videos were assessed for features of interest. The algorithm tested random regions of the image to determine 
if an object was present. A low threshold of 0.3 was chosen such that more candidate features were classified 
as object instances. Due to the relatively small size of the training set, a lower threshold makes the detection 
procedure more lenient. This was done to determine both if features were primarily identified in geohazard 
sections versus non-geohazard sections and where features were identified in high density. The latter point 
of interest was used to relatively assess risk of failure of the geohazards in the study area. Several figures 
were created to illustrate the correlation between the location of detected objects in the study area and the 
identified geohazard sections. Figures 5.9 (a)-(d) show where each of the four features learned by the object 
detector were detected across the study area for a single inspection run and their correlation to the identified 
geohazard sections. The green boxes in the plots show which portions of the study area were identified to 
be geohazard sections. Object counts are plotted by number of occurrences in each image spatially across 
the study area and are shown as red lines. Furthermore, Figure 5.9 (b) also shows that leaning trees were 
detected less often than the other three object classes. 

 
(a)                                   (b) 

 
(c)                                   (d) 

Figure 5.9. Identified geohazard objects across the study area (red: identified geohazard objects; 
green: railroad geohazard sections): (a) hummocks; (b) leaning trees; (c) rock faces; (d) moisture. 
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Figures 5.9 (a)-(d) show that most of the object class features were detected more frequently in 
geohazard sections than in non-geohazard sections for the example inspection run. To determine if this was 
the case across all inspection runs, Table 5.3 was created to illustrate the ratio of density of objects in 
geohazard versus non-geohazard sections across each inspection run in the primary study area. Eq. 5.3 was 
used to calculate each cell’s value shown in Table 5.3. The calculated ratio is the density of detected objects 
in geohazard sections (summation of all jth class objects in geohazard sections divided by the number of 
geohazard images) divided by the density of detected objects in non-geohazard sections. Simply, the ratio 
represents how much more likely a detected object was found in a geohazard section than in a non-
geohazard section. Looking at Table 5.3, barring detected moisture sections, features were much more likely 
to be found in geohazard sections than in non-geohazard sections for most inspection videos. Smaller 
calculated ratios were likely due to foliage-obscuring features and thus fewer detected objects in both 
geohazard and non-geohazard sections. 
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where: 

 GI : Number of geohazard images. 

 NGI : Number of non-geohazard images. 

 j : Object classes. 

Table 5.3. Ratio of detected object densities in geohazard and non-geohazard sections. 

Survey ID Leaning 
Tree Moisture Hummock Rock Face 

Rheems-Roy-217028 4.11 0.89 1.78 4.64 
Rheems-Roy-217191 6.02 0.86 9.45 4.49 
Rheems-Roy-218075 N/A 1.11 2.12 3.31 
Rheems-Roy-218223 2.86 1.37 1.72 2.99 
Rheems-Roy-219166 1.49 2.25 4.43 1.69 
Rheems-Roy-219259 7.58 3.58 10.78 5.45 
Rheems-Roy-220014 6.71 3.37 13.36 6.13 
Rheems-Roy-220194 4.91 2.46 6.59 4.55 
Rheems-Roy-221048 2.00 0.83 3.77 5.76 

 
Although it is interesting to numerically show that more features were detected in geohazard 

sections than non-geohazard sections, the calculated ratio of densities carries no information about the 
number of detected objects throughout the inspection run. Furthermore, the number of geohazard and non-
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geohazard images varies between inspection runs due to differences in inspection run distance and speed. 
Thus, Table 5.4 was created to show the number of detected objects in both geohazard sections and across 
the whole inspection video. Comparing Table 5.3 to Table 5.4 illustrates that a high-density ratio does not 
necessarily indicate many found features in geohazard sections. Inspection runs RR-219259 and RR-
220014 are good examples of this observation when comparing the number of detected leaning trees to the 
density ratio. Without including observations drawn from Table 5.3, Table 5.4 shows which inspection 
videos yielded the most features and the distribution of those features across classes and across track section 
type. RR-217191 had detection results, since many features were found for each class and many of those 
features were found in geohazard sections. RR-221048 is satisfactory for similar reasons, but the disparity 
between the number of detected hummocks and rock faces indicates the detector may not have distinguished 
the two accurately. 

 
Table 5.4. Count of detected objects in geohazard sections and in total. 

Survey ID 
Leaning Tree Moisture Hummock Rock Face 
Geoha. Total Geoha. Total Geoha. Total Geoha. Total 

Rheems-Roy-217028 40 65 88 341 128 313 303 471 
Rheems-Roy-217191 62 89 82 332 209 267 298 472 
Rheems-Roy-218075 0 0 144 466 183 398 311 545 
Rheems-Roy-218223 21 40 121 350 162 405 193 360 
Rheems-Roy-219166 3 8 76 160 269 420 227 560 
Rheems-Roy-219259 24 49 241 772 344 596 209 512 
Rheems-Roy-220014 34 77 210 739 321 525 224 534 
Rheems-Roy-220194 51 79 140 293 230 324 260 414 
Rheems-Roy-221048 63 140 204 802 97 160 631 899 

 

While Table 5.3 and Table 5.4 summarize the detection results well, neither indicates the location 
along the study area where features were most identified. Figure 5.9 shows both the number and location 
of identified features across the study area satisfactorily, but only for one inspection run. Thus, a method to 
compare the number of identified features both over the study area and over time was hypothesized. A data 
cube was created to summarize all calculated summary statistics yielded from testing the object detection 
algorithm on ROW images. By extracting and grouping images by geohazard sections (all of which are 
shown in Table 3.1), calculated statistics are dependent on the recording date, the location along the track, 
and the object class, forming a hypercube of data. The number of images used to calculate statistics about 
the object detection predictions is dependent on how many extracted images show the geohazard of interest. 
Thus, the detected object density parameter used earlier was also used to investigate objects in individual 
geohazard sections. Primarily, calculated statistics for individual geohazards allow the geohazards to be 
compared to investigate changes in detected features over time. 

Table 5.5 shows one slice of the proposed data hypercube. The table shows detected object densities 
(the number of object instances over the number of images in the geohazard section) for all 11 identified 
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geohazard sections (per Table 3.1) and for each object class over one inspection run (RR-217028). Table 
5.5 only shows a single statistic calculated from one inspection run to illustrate results in two-dimensions, 
allowing easy demonstration. Numerically, it was expected that some geohazard sections would not contain 
any leaning trees due to poorer algorithm performance for that object class and due to foliage-obscuring 
instances. Regardless, Table 5.5 successfully details differences between object detection rates by 
geohazard section. For this inspection run, geohazard section 11 had far more identified leaning trees than 
other geohazard sections, and geohazard sections 1, 2, 3, and 11 had far more hummocks. This illustrates 
relative differences between the geohazard sections over a single inspection run. 

 
Table 5.5. Rheems-Roy-217028 detected object densities by geohazard section index. 

Geohazard 
Section Index 

Leaning 
Tree Moisture Hummock Rock Face 

1 0.053 0.816 0.605 1.553 
2 0.148 0.222 0.593 2.037 
3 0.040 0.280 1.200 2.080 
4 0.000 0.556 0.444 1.111 
5 0.000 0.333 0.000 0.333 
6 0.000 0.056 0.222 1.667 
7 0.073 0.463 0.317 1.683 
8 0.000 0.333 0.000 0.667 
9 0.000 0.625 0.250 0.063 
10 0.000 0.238 0.143 0.048 
11 0.811 0.054 0.838 0.622 

 

To analyze all inspection runs collectively, several statistics were calculated from the detected 
object density values. Table 5.6 shows the results for the two object classes of primary interest. Statistics 
were calculated using values from each inspection run for each geohazard section. For example, geohazard 
section 1 had a mean of 0.06 identified leaning trees per image across all inspection runs showing that 
geohazard section. Thus, the table summarizes object detection results across all inspection runs by 
geohazard section. Much like the results shown in Table 5.5, Table 5.6 shows that geohazard sections 1, 2, 
3, 10, and 11 had the most identified hummocks per image. Furthermore, geohazard sections 2 and 11 
contained the highest density of leaning trees. Observations of these summary statistics show that certain 
geohazard sections’ representative images were more likely to contain slope features of interest across all 
ROW recordings. Table 5.7 shows the same statistics for moisture and rock face instances. 
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Table 5.6. Statistics of detected object densities by geohazard section (leaning trees  
and hummocks). 

Geohazard 
Section 
Index 

LTs 
Min 

LTs 
Mean 

LTs 
Median 

LTs 
Max 

Hs 
Min 

Hs 
Mean 

Hs 
Median 

Hs 
Max 

1 0.00 0.06 0.05 0.17 0.48 0.98 0.89 1.70 
2 0.00 0.23 0.26 0.54 0.30 0.86 0.93 1.89 
3 0.00 0.09 0.07 0.38 0.20 0.93 1.07 1.77 
4 0.00 0.05 0.00 0.44 0.18 0.79 0.67 1.67 
5 0.00 0.31 0.00 1.50 0.00 0.53 0.67 1.33 
6 0.00 0.05 0.00 0.22 0.16 0.50 0.44 1.20 
7 0.00 0.05 0.05 0.12 0.16 0.62 0.54 1.17 
8 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.33 
9 0.00 0.08 0.00 0.44 0.00 0.74 0.84 1.81 
10 0.00 0.14 0.05 0.52 0.00 0.90 1.23 1.77 
11 0.00 0.29 0.26 0.81 0.34 1.17 1.12 2.10 

 

Table 5.7. Statistics of detected object densities by geohazard section (moisture and rock faces). 
Geohazard 

Section 
Index 

Moisture Moisture Moisture Moisture 
Rock 
Faces 

Rock 
Faces 

Rock 
Faces 

Rock 
Faces 

Min Mean Median Max Min Mean Median Max 
1 0.33 1.04 0.82 2.03 1.10 1.52 1.50 2.54 
2 0.14 0.59 0.78 1.04 0.91 1.84 1.93 2.58 
3 0.00 0.15 0.12 0.41 0.77 1.68 1.62 2.48 
4 0.00 0.55 0.56 1.13 0.50 1.27 1.11 2.82 
5 0.00 0.44 0.33 1.00 0.00 0.56 0.33 2.50 
6 0.04 0.24 0.16 0.94 0.39 0.82 0.61 1.78 
7 0.03 0.52 0.39 1.61 0.78 1.27 1.05 2.25 
8 0.00 0.31 0.00 1.50 0.00 0.64 0.25 3.00 
9 0.05 0.39 0.40 0.80 0.06 0.38 0.27 1.05 

10 0.00 0.20 0.19 0.45 0.05 0.21 0.19 0.37 
11 0.04 0.79 0.77 2.11 0.20 0.58 0.54 1.06 

 

Three-dimensional plots were created for both leaning tree and hummock detected instances to 
visualize the values that were used to calculate the summary statistics shown in Table 5.6. This was done 
to provide another visualization of detection differences across geohazard sections in addition to inspection 
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runs. Figure 5.10 shows detected leaning tree densities, and Figure 5.11 shows detected hummock densities. 
These plots indicate more detected objects in the same group of geohazard sections identified earlier but 
additionally show detection differences between inspection runs. Geohazard section 11 again stands out as 
a high-risk section in Figure 5.10, since a higher density of leaning trees was identified than the average 
across most inspection runs. The same is true for detected hummocks, shown in Figure 5.11 to a slightly 
lesser extent. 

 
Figure 5.10. Detected leaning tree densities by geohazard section index. 
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Figure 5.11. Detected hummock densities by geohazard section index. 

DEVELOPED LSM MODEL 

The performance of classification models is typically evaluated based on the confusion matrix and 
receiver operating characteristic (ROC) curve. The confusion matrix reports the four possible outcomes of 
model predictions: (1) true positive (TP), which represents the number of correctly predicted positive 
samples; (2) true negative (TN), which represents the number of correctly predicted negative samples; (3) 
false positive (FP), which represents the number of incorrectly predicted positive class; and (4) false 
negative (FN), which represents the number of incorrectly predicted negative class. Besides precision and 
recall, four additional performance indicators for classification tasks can be calculated using these four 
parameters, including accuracy, F1, true positive rate (TPR), and false positive rate (FPR). 
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Note that the F1 score provides an aggregate measure of model performance score by combining the 
precision and recall into a single metric. The ROC curve is a 2D plot of FPR vs. TPR for all classification 
thresholds. The area under the ROC curve (AUC) can be calculated based on the ROC curve, providing an 
aggregate measure of model performance. AUC is often used as a single-value evaluation for classification 
models, as it measures the model’s capability to distinguish two classes. A no-skill model (i.e., similar to 
random guessing) will have an AUC score of 0.5, whereas a perfect model will have an AUC score of 1.0. 
Based on all the evaluation metrics described above, five evaluation metrics were considered in the present 
study for a comprehensive model performance evaluation, including accuracy, precision, recall, F1, and 
AUC. 

For the present study, the output of five ML models was the probability of possible outcomes for 
each sample. A default threshold of 0.5 was used to split the model predictions into two categories for binary 
classification; subsequently, the model performance evaluation metrics were calculated according to these 
predicted binary outcomes. Table 5.8 presents the classification performance on the validation dataset based 
on the fivefold cross-validation procedure. As shown in Table 1, the five ML models achieved an average 
AUC score of 0.75 with an average accuracy of 0.69 and an average F1 score of 0.69. These validation 
scores indicate that the developed ML models can reasonably correlate landslide contributing factors with 
landslide occurrences. In addition, it can be noted from Table 5.8 that the performance varies among ML 
models. For example, the DT and the SVM models exhibited the worst performance due to possible over-
fitting. The LR model and the GBM model exhibited intermediate performance. And the RF model achieved 
the highest classification performance with AUC scores of 0.8, which can be attributed to the ensemble 
modeling technique adopted by the RF model. Typically, a classification model with AUC scores above 0.8 
can be considered a good classifier. Based on the AUC score, the RF and the GBM models were among the 
best-performing models, and they were selected as the optimal model for developing the landslide 
susceptibility map for the study area. Figures 5.12 and 5.13 present the landslide susceptibility map for the 
study area. It should be noted that applying the developed LSM model to predict landslide risk for the study 
area can be considered an out-of-sample scenario, as the landslide inventory used to develop these ML 
models was not adjacent to the study area. The trained ML models’ generalization capability needs to be 
verified for the study area. By comparing Figure 5.12 and Figure 5.13, it can be noted that values of the 
predicted landslide risk for the study area based on the GBM model were more spread out from zero to one 
than those predicted by the RF model, which indicated that the GBM model was more suitable than the RF 
model for the study area. Therefore, the landslide susceptibility map produced by the GBM model was 
selected for the present study. As shown in Figure 5.13, the developed GBM model was able to identify 
several high landslide risk locations along the railway line. Figure 5.14 presents the landslide susceptibility 
along the track line for the study area vs. the identified geohazard sections. As shown in Figure 5.14, 
landslide risk based on the developed LSM model along the track section generally agreed with identified 
geohazard sections. 
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Table 5.8. Cross-validation results for ML models. 
Model Accuracy Precision Recall F1 AUC 

LR 0.69 0.72 0.63 0.67 0.76 
SVM 0.69 0.73 0.59 0.65 0.75 
DT 0.66 0.65 0.68 0.66 0.66 
RF 0.72 0.72 0.73 0.72 0.80 

GBM 0.69 0.69 0.70 0.69 0.77 
Avg. 0.69 0.70 0.67 0.68 0.75 

 

 
Figure 5.12. Landslide susceptibility map for the study area based on the RF model. 

 

 
Figure 5.13. Landslide susceptibility map for the study area based on the GBM model. 
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Figure 5.14. Landslide susceptibility along the railway track vs. identified geohazard sections (red 

shaded area). 

RELATIVE RISK ASSESSMENT 

In this study, to assess the risk of each identified geohazard section relatively, feature detection 
results using ROW images and landslide location likelihood results using geospatial variables and landslide 
location history were combined. Both parameters were unionized by taking the unweighted square sum, 
thus assuming both parameters equally indicated risks for a particular geohazard section. Prior to calculating 
the unionized relative risk index, both methods required a numerical result ranging from zero to one, thus 
indicating a scaled risk index individually. This approach results in a unionized relative risk index that is 
also scaled from zero to one. 

Several approaches were considered to quantify relative risk using the right-of-way images. As 
shown in the previous chapter, the density of detected objects varied between geohazard sections and 
inspection runs. This was true for all object classes, but only leaning trees and hummocks were indicative 
of geohazard sections, as shown in Table 5.3. Thus, it was determined that relative risk should be calculated 
using detection results for these two object classes and not all trained object classes. Furthermore, slope 
stability analysis shows that observation of these two feature classes is more likely to precede slope failure 
(Li et al., 2002).  

Detected object density calculations for both of these object classes show clearly that certain 
geohazard sections were more likely to contain features of interest. However, the scale of these differences 
varies by inspection run. Furthermore, no discernable pattern based on inspection dates was identified. Thus, 
combining each inspection run to provide a single metric that is indicative of relative risk per geohazard 
section was determined to be the best approach. Several statistics calculated from object density values 
were proposed in Table 5.6 and Table 5.7 and were considered to develop the risk assessment approach. In 
addition, other calculated metrics from the object detection results were also considered. The count of 
objects, for example, indicates how many objects are present in a geohazard section but has the negative 
impact of not scaling counts to the size of the geohazard section, as discussed earlier.  

Additionally, the prediction accuracy from the detection procedure has not been discussed in depth 
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to this point. As introduced earlier, detected objects are identified by feature class, bounding box location, 
and prediction accuracy (the confidence of the algorithm that the proposed image region contains a feature 
of the specified class). A low prediction threshold was chosen to yield a larger population of detected objects 
considering the scope of the dataset used to develop the algorithm. A leaning tree predicted with 100% 
confidence is more interesting than the one with 40% confidence. However, future improvements to an 
object detection algorithm would bolster its predictive capabilities and thus would not require a low 
threshold. Detected features in this study are binary in nature, either present or not, and prediction accuracy 
does not represent severity in this use case. For these reasons, the accuracy metric should not be used as the 
primary assessment method. 

To further investigate this, Figure 5.10 and Figure 5.11 were recreated to consider the object 
detector’s predictive confidence. The object density parameter introduced earlier was adjusted using Eq. 
5.7 such that each identified feature was multiplied element-wise with the detector’s confidence score. Thus, 
Figure 5.15 and Figure 5.16 show the object density values scaled to the feature confidence scores (where 
features detected with higher confidence carry more weight). Though some differences were identified in 
several density values, the resulting plots look essentially the same as their counterparts. Due to this and 
the reasons mentioned earlier, predictive confidence was not used to assess geohazards for relative risk 
using the right-of-way images. 
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Figure 5.15. Detected leaning tree score-adjusted densities by geohazard section index. 
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Figure 5.16. Detected hummock score-adjusted densities by geohazard section index. 

 
After considering alternative metrics to assess the geohazards, it was determined that the detected 

object density metric is satisfactory. As previously mentioned, the risk was assessed across identified 
geohazard sections only and not over time. This is primarily due to inconsistent inspection run timing and 
identified differences in the inspection runs (such as the weather and seasonal effects dependent on the 
recording date) that resulted in varied object detector performance. Additionally, the research presented in 
this report did not contain a more rigorous investigation into change detection over time for individual 
objects or the number of objects. Thus, the evolution of features over time was not considered when 
developing the risk assessment approach. These points and others are discussed further in the final chapter 
of this report. 

It was determined that detected object density values would be used to quantify relative risk. 
However, using the maximum calculated density value would put too much weight into the detector’s 
predictions on one inspection run. Furthermore, while eliminating outlier inspection runs, the median 
calculated density value does not consider each inspection run equally. Thus, using the mean of the 
calculated density values was determined to be the best approach. The calculated mean values (shown in 
Table 5.6) were scaled to instead fall between zero and one to weigh both the detector’s performance on 
hummocks and leaning trees equally. Afterward, the average of the two detected object density mean values 
was calculated across geohazard section indices. These resulting values define the relative risk of each 
geohazard section calculated by assessing the right-of-way images and are shown in Table 5.9. The 
calculated risk indices show apparent detection differences between the eleven identified geohazard 
sections. The risk index indicates geohazard section 11 is of the highest concern, while geohazard sections 
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2, 5, and 10 are also of concern. Interestingly, this collection of geohazard sections makes up some of the 
tallest in the study area per Table 3.1, providing some confirmation to this assessment method. 

 
Table 5.9. Relative risk assessment of geohazard sections using ROW images. 

Geohazard 
Section 
Index 

Leaning 
Trees 

(scaled 
mean) 

Hummocks 
(scaled 
mean) 

Risk Index 
(average) 

1 0.19 0.82 0.51 
2 0.73 0.72 0.72 
3 0.29 0.78 0.53 
4 0.16 0.65 0.40 
5 1.00 0.40 0.70 
6 0.16 0.37 0.27 
7 0.17 0.48 0.32 
8 0.00 0.00 0.00 
9 0.24 0.60 0.42 

10 0.43 0.75 0.59 
11 0.92 1.00 0.96 

 

Based on the relative risk assessment of geohazard sections using ROW images and the object 
detection model, leaning trees and hummocks were identified as suitable indicators for geohazards along 
the railway section. Using Eq. 5.7, the score-weighted object densities for both leaning trees and hummocks 
were combined and calculated. Figure 5.17 presents the score-adjusted density vs. identified geohazard 
section. As shown in Figure 5.17, the score-adjusted density based on the object detection model generally 
agreed with the identified geohazard sections. The trained object detection and LSM models can be used to 
evaluate slope failure risk along the railway line. However, the object detection model using ROW images 
could not consider geophysical conditions related to slope stability, and the LSM model cannot produce 
detailed predictions along the railway line due to coarse spatial resolution. Therefore, a relative assessment 
for geohazards along the track section is necessary to combine the results from both the object detection 
model and the LSM model so that each method can complement the other method. For the present study, 
the combined risk scores for each milepost were obtained using outputs from the object detection model 
multiplied by outputs from the LSM model, as shown in Figure 5.18. It can be noted from Figure 5.18 that 
the combined risk scores were able to yield better agreement with identified geohazard sections compared 
to each model on their own (see Figures 5.16 and 5.17). 
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Figure 5.17. Score-adjusted density based on object detection model along the railway track  

vs. identified geohazard sections (red shaded area). 
 

 
Figure 5.18. Combined risk score along the railway track vs. identified geohazard sections  

(red shaded area). 
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C H A P T E R  6  

Concluding Remarks 

INTRODUCTION 

The research detailed in this paper shows that geohazard sections along railways created by through 
and side-cuts can be assessed for relative risk using right-of-way videos and remote sensing data. Notably, 
risk assessment was performed without on-site measurements of the geohazards. The model framework 
proposed satisfactorily assessed geohazards in the study area, determining the most at-risk ones that should 
be prioritized for further measurement and potential remediation efforts. 

SUMMARY OF RESEARCH 

The research conducted herein aimed to investigate methods of assessing geohazards along railroad 
rights-of-way created via cuts using videos recorded by inspection videos and publicly available data. First, 
the right-of-way videos were pre-processed and explored to detail the scope of available data. It was 
determined that transfer learning could be used to train an object detection algorithm to identify unstable 
slope features of interest from extracted ROW images. Furthermore, a landslide susceptibility model was 
developed to identify slope failure risks by comparing geospatial parameters to the locations of historical 
landslides. Using the class, location, and time of detected features in the ROW images injunction with the 
identified slope failure risks allowed geohazards to be relatively assessed.  

Without on-site measurements detailing the soil composition, stress-strain, and slope geometry of 
identified geohazards, conventional slope stability assessment methods could not be feasibly implemented 
to assess the risk of slope failure. Slope reconnaissance is typically used to identify slope features indicative 
of instability when assessing geohazards to support on-site measurement. This study performed slope 
reconnaissance by identifying features of interest in ROW images. This was done by encasing features of 
interest with bounding boxes, which allows the coordinates and class of features of interest to be encoded 
in a select set of ROW images. Using the labeled “training images,” an object detection algorithm was 
trained to identify features of interest in unlabeled ROW images. Thus, slope reconnaissance was 
algorithmically performed on all ROW images. 

For the present study, geospatial parameters for the study area were collected, representing hillslope 
geometries, surface hydrology, and soil conditions. In addition, a landslide inventory was developed based 
on historical landslides adjacent to the study area and within similar ecoregions. Based on the geospatial 
parameters and landslide inventory, an LSM model was developed using ML techniques to predict landslide 
susceptibility for the study area. Based on the result analysis, the landslide risk predicted by the developed 
LSM model was generally consistent with the identified geohazard sections. 
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Using both the detected features and geospatial parameters, a large dataset was created that 
summarizes the study area. Moreover, a relative risk assessment framework was developed to evaluate 
slope failure risk across the study area by combining the results from both the object detection model and 
the LSM model. It should be noted that every calculated or retrieved parameter is dependent on the time 
and location of measurement. Furthermore, object detection parameters are dependent on the list of possible 
class labels. Thus, each identified parameter must be considered in multiple dimensions to fully visualize 
its scope. 

FUTURE RESEARCH 

The research presented in the report details a framework to assess geohazards for risk relatively, 
showing promise for a limited dataset. Since the study area only covers about 15 miles of track, the object 
detection and landslide susceptibility models are biased on the landscape and topography of the area where 
data were recorded. Furthermore, the size of the dataset limits the scope of the presented results. 

The second phase of this research effort will involve acquiring further data to refine the framework 
steps presented herein and to further develop the risk assessment methodology. The object detection model 
will be retrained using more ROW training and validation images to improve its accuracy. Furthermore, 
additional ROW images will require manual labeling. Since bounding boxes are not the most precise way 
to encase objects of interest, more sophisticated approaches such as semantic segmentation (in which the 
pixels associated with an object are identified rather than a region of an image) will be considered (Wang 
et al., 2018). As part of this process, slope reconnaissance will be revisited to determine if additional labels 
should be included to diversify the object detectors’ capabilities. With a more accurate object detector, 
objects will be predicted with higher confidence and will additionally be identified with higher frequency. 

For the landslide susceptibility models, the current methods only considered landslides that 
occurred adjacent to the study area, which may not be sufficient to represent landslides that occurred along 
the railway cut sections (e.g., some of the landslides happened on natural terrain). In order to improve LSM 
models’ performance to predict landslide risk along the railway cut sections, additional landslide records 
need to be obtained. Ideally, these landslide locations should be along the railway lines. Moreover, the 
benefits of additional geospatial parameters on landslide risk prediction should be explored, such as 
collecting geospatial parameters containing additional features or different spatial resolutions.  

Several other avenues to study the right-of-way images will be considered to develop the risk 
assessment framework further. First, additional information will be gathered from the right-of-way images 
beyond detecting features of interest. It has been hypothesized that the height of the slope in geohazard 
sections can be approximated. This can be used to provide more localized information about the study area 
beyond what is provided by geospatial data. Additionally, more comprehensive methods of studying 
identified features of interest have been proposed. While it is interesting to identify local features in 
geohazards, the severity of individual features has not been studied. Additionally, the evolution of features 
over time, which can be indicative of soil creep, for example, has not been explored. As more measurements 
of the geohazards are made, the risk framework will become more comprehensive and accurate in assessing 
slope stability. 

After revising each portion of the framework proposed herein, the model will be tested on a wider 
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variety of geohazards to determine its accuracy and effectiveness. The authors are confident that the model 
is of sound design and will be an accurate tool for geohazard assessment in real-time using only publicly 
available data and ROW recordings. With this model, railroads will be able to optimize measurement and 
remediation efforts to only the most at-risk geohazards along their rights-of-way. 
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