181 research outputs found

    General decay lag anti-synchronization of multi-weighted delayed coupled neural networks with reaction–diffusion terms

    Get PDF
    We propose a new anti-synchronization concept, called general decay lag anti-synchronization, by combining the definitions of decay synchronization and lag synchronization. Novel criteria for the decay lag anti-synchronization of multi-weighted delayed coupled reaction–diffusion neural networks (MWDCRDNNs) with and without bounded distributed delays are derived by constructing an appropriate nonlinear controller and using the Lyapunov functional method. Moreover, the robust decay lag anti-synchronization of MWDCRDNNs with and without bounded distributed delays is considered. Finally, two numerical simulations are performed to validate the obtained results

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Projective Synchronization Analysis of Drive-Response Coupled Dynamical Network with Multiple Time-Varying Delays via Impulsive Control

    Get PDF
    The problem of projective synchronization of drive-response coupled dynamical network with delayed system nodes and multiple coupling time-varying delays is investigated. Some sufficient conditions are derived to ensure projective synchronization of drive-response coupled network under the impulsive controller by utilizing the stability analysis of the impulsive functional differential equation and comparison theory. Numerical simulations on coupled time delay Lorenz chaotic systems are exploited finally to illustrate the effectiveness of the obtained results

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism

    Synchronization of Complex-Valued Dynamical Networks

    Get PDF
    Dynamical networks (DNs) have been broadly applied to describe natural and human systems consisting of a large number of interactive individuals. Common examples include Internet, food webs, social networks, neural networks, etc. One of the crucial and significant collective behaviors of DNs is known as synchronization. In reality, synchronization phenomena may occur either inside a network or between two or more networks, which are called “inner synchronization” and “outer synchronization”, respectively. On the other hand, many real systems are more suitably characterized by complex-valued dynamical systems, such as quantum systems, complex Lorenz system, and complex-valued neural networks. The main focus of this thesis is on synchronization of complex-valued dynamical networks (CVDNs). In this thesis, we firstly design a delay-dependent pinning impulsive controller to study synchronization of time-delay CVDNs. By taking advantage of the Lyapunov function in the complex field, some delay-independent synchronization criteria of CVDNs are established, which generalizes some existing synchronization results. Then, by employing the Lyapunov functional in the complex field, several delay-dependent sufficient conditions on synchronization of CVDNs with various sizes of delays are constructed. Moreover, we study synchronization of CVDNs with time-varying delays under distributed impulsive controllers. By taking advantage of time-varying Lyapunov function/ functional in the complex domain, several synchronization criteria for CVDNs with time-varying delays are derived in terms of complex-valued linear matrix inequalities (LMIs). Then, we propose a memory-based event-triggered impulsive control (ETIC) scheme with three levels of events in the complex field to investigate the synchronization problem of CVDNs with both discrete and distributed time delays, and we further consider an event-triggered pinning impulsive control (ETPIC) scheme combining the proposed ETIC and a pinning algorithm to study synchronization of time-delay CVDNs. Results show that the proposed ETIC scheme and ETPIC scheme can effectively synchronize CVDNs with the desired trajectory. Secondly, we study generalized outer synchronization of drive-response time-delayed CVDNs via hybrid control. A hybrid controller is proposed in the complex domain to construct response complex-valued networks. Some generalized outer synchronization criteria for drive-response CVDNs are established, which extend the existing generalized outer synchronization results to the complex field. Thirdly, we study the average-consensus problem of potential complex-valued multi-agent systems. A complex-variable hybrid consensus protocol is proposed, and time delays are taken into account in both the continuous-time protocol and the discrete-time protocol. Delay-dependent sufficient conditions are established to guarantee the proposed complex-variable hybrid consensus protocol can solve the average-consensus problem. Lastly, as a practical application for complex-valued networked systems, the synchronization problem of master-slave complex-valued neural networks (CVNNs) is studied via hybrid control and delayed ETPIC, respectively. We also investigate the state estimation problem of CVNNs by designing the adaptive impulsive observer in the complex field

    Impulsive Control of Dynamical Networks

    Get PDF
    Dynamical networks (DNs) consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made networks such as social networks, food networks, neural networks, WorldWideWeb, electrical power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs, we firstly construct stability results for general nonlinear time-delay systems with delayed impulses by using the method of Lyapunov functionals and Razumikhin technique. Secondly, we study the consensus problem of multi-agent systems with both fixed and switching topologies. A hybrid consensus protocol is proposed to take into consideration of continuous-time communications among agents and delayed instant information exchanges on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically changing interaction topologies is designed to take the time-delay into account in both the continuous-time communication among agents and the instant information exchange at discrete moments. We also study the consensus problem of networked multi-agent systems. Distributed delays are considered in both the agent dynamics and the proposed impulsive consensus protocols. Lastly, stabilization and synchronization problems of DNs under pinning impulsive control are studied. A pinning algorithm is incorporated with the impulsive control method. We propose a delay-dependent pinning impulsive controller to investigate the synchronization of linear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent pinning impulsive controller can successfully stabilize and synchronize DNs with/without time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on the network states at history moments (not on the states at each impulsive instant). Sufficient conditions on stabilization of time-delay networks are obtained, and results show that the proposed pinning impulsive controller can effectively stabilize the network even though only time-delay states are available to the pinning controller at each impulsive instant. We further consider the pinning impulsive controllers with both discrete and distributed time-delay effects to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. As an extension study of pinning impulsive control approach, we investigate the synchronization problem of systems and networks governed by PDEs

    Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback

    Get PDF
    published_or_final_versio

    Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies

    Get PDF
    This paper solves the event-triggered passivity problem for multiple-weighted coupled delayed reaction-diffusion memristive neural networks (MWCDRDMNNs) with fixed and switching topologies. On the one side, by designing appropriate event-triggered controllers, several passivity criteria for MWCDRDMNNs with fixed topology are derived based on the Lyapunov functional method and some inequality techniques. Moreover, some adequate conditions for ensuring asymptotical stability of the event-triggered passive network are presented. On the other side, we take the switching topology in network model into consideration, and investigate the event-triggered passivity and passivity-based synchronization for MWCDRDMNNs with switching topology. Finally, two examples with numerical simulation results are provided to illustrate the effectiveness of the obtained theoretical results
    • …
    corecore