9 research outputs found

    Labelled Tableaux For Non-Normal Modal Logics

    Get PDF
    In this paper we show how to extend KEM, a tableaux-like proof system for normal modal logic, in order to deal with classes of non-normal modal logic, such as monotonic and regular, in a uniform and modular way

    Labelled Modal Sequents

    Get PDF
    In this paper we present a new labelled sequent calculus for modal logic. The proof method works with a more ``liberal'' modal language which allows inferential steps where different formulas refer to different labels without moving to a particular world and there computing if the consequence holds. World-paths can be composed, decomposed and manipulated through unification algorithms and formulas in different worlds can be compared even if they are sub-formulas which do not depend directly on the main connective. Accordingly, such a sequent system can provide a general definition of modal consequence relation. Finally, we briefly sketch a proof of the soundness and completeness results

    A Fibred Tableau Calculus for BDI Logics

    Get PDF
    In [12,16] we showed how to combine propositional BDI logics using Gabbay's fibring methodology. In this paper we extend the above mentioned works by providing a tableau-based decision procedure for the combined/fibred logics. To achieve this end we first outline with an example two types of tableau systems, (graph and path), and discuss why both are inadequate in the case of fibring. Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori's labelled tableau system KEM

    Labelled Modal Tableaux

    Get PDF
    Labelled tableaux are extensions of semantic tableaux with annotations (labels, indices) whose main function is to enrich the modal object language with semantic elements. This paper consists of three parts. In the first part we consider some options for labels: simple constant labels vs labels with free variables, logic depended inference rules vs labels manipulation based on a label algebra. In the second and third part we concentrate on a particular labelled tableaux system called KEM using free variable and a specialised label algebra. Specifically in the second part we show how labelled tableaux (KEM) can account for different types of logics (e.g., non-normal modal logics and conditional logics). In the third and final part we investigate the relative complexity of labelled tableaux systems and we show that the uses of KEM's label algebra can lead to speed up on proofs

    A Fibred Tableau Calculus for Modal Logics of Agents

    Get PDF
    In previous works we showed how to combine propositional multimodal logics using Gabbay's \emph{fibring} methodology. In this paper we extend the above mentioned works by providing a tableau-based proof technique for the combined/fibred logics. To achieve this end we first make a comparison between two types of tableau proof systems, (\emph{graph} &\& \emph{path}), with the help of a scenario (The Friend's Puzzle). Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori's labelled tableau system \KEM. We conclude with a discussion on \KEM's features

    On the Relative Complexity of Modal Tableaux

    Get PDF
    We investigate the relative complexity of two free-variable labelled modal tableaux (KEM and Single Step Tableaux, SST). We discuss the reasons why p-simulation is not a proper measure of the relative complexity of tableaux-like proof systems, and we propose an improved comparison scale (p-search-simulation). Finally we show that KEM p-search-simulates SST while SST cannot p-search-simulate KEM

    Tractable depth-bounded approximations to FDE and its satellites

    Get PDF
    FDE, LP and K3 are closely related to each other and admit of an intuitive informational interpretation. However, all these logics are co-NP complete, and so idealized models of how an agent can think. We address this issue by shifting to signed formulae, where the signs express imprecise values associated with two bipartitions of the corresponding set of standard values. We present proof systems whose operational rules are all linear and have only two structural branching rules that express a generalized Principle of Bivalence. Each of these systems leads to defining an infinite hierarchy of tractable approximations to the respective logic, in terms of the maximum number of allowed nested applications of the two branching rules. Further, each resulting hierarchy admits of an intuitive 5-valued non-deterministic semantics

    Labelled tableaux for non-normal modal logics

    No full text
    Abstract. In this paper we show how to extend KEM, a tableaux-like proof system for normal modal logic, in order to deal with classes of non-normal modal logic, such as monotonic and regular, in a uniform and modular way.
    corecore