
CATS 2003 Preliminary Version

On the Relative Complexity of Labelled Modal
Tableaux

Guido Governatori

School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane, QLD 4072, Australia
email: guido@itee.uq.edu.au

Abstract

We investigate the relative complexity of two free-variable labelled modal tableaux
(KEM and Single Step Tableaux, SST). We discuss the reasons why p-simulation is
not a proper measure of the relative complexity of tableaux-like proof systems, and
we propose an improved comparison scale (p-search-simulation). Finally we show
that KEM p-search-simulates SST while SST cannot p-search-simulate KEM.

1 Introduction

In the last few years several comparisons (competitions) of theorem provers
for modal logic have been held (cf. [2,16,18]) and experimental research has
been carried out (cf. [13,12]). Despite the potential interest for eventual ap-
plications, we believe that this kind of research provided little or no insight
on better theoretical architectures for modal theorem provers. Very often
the overall performance is heavily influenced by external factors such as, for
example, language specific optimisations of the implementation.

In this paper we perform a theoretical comparison of two labelled tableaux
for modal logic. This means that we do not consider implementation issues,
but only logical ones; in particular, we are not interested in the propositional
features and in the interaction of modal operators and propositional connec-
tives, but only in the modal characteristics.

To prove that a proof system A is essentially better than a proof system
B we have to exhibit at least one formula (or a class of formulas) for which
A is better than B, and for all formulas A is not essentially worse than B. 1

There are many distinct modal logics, and it is possible that the result in one
logic does not apply to a different logic. Moreover A may cover some modal

1 We shall give a precise definition of what “better” and “worse” mean in this context in
Section 4.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Governatori

logics which are not covered by B and the other way around. However, any
general purpose modal theorem prover should cover the basic fifteen normal
modal logics. Among them, some offer too simple modal structures while other
lend themselves to specialised optimisation procedures (in particular the logics
with a finite number of distinct modalities). In both cases, these logics do not
provide the better scenario to really test the theoretical architecture behind a
modal theorem prover. Therefore we have to identify a modal logic with the
following properties:

(i) it is one of the basic fifteen normal modal logics;

(ii) the proof procedures are modular for both systems, that is, they are the
combination of the proof procedures of the single components of the logic;
and

(iii) there are no specialised proof procedures.

As we shall see the basic normal modal logic DB satisfies the criteria listed
above to be a representative candidate to test the capability of a theorem
prover for modal logic. In the rest of the paper we shall concentrate on this
logic. Briefly, DB is the normal modal logic obtained from the basic modal
logic K by adding the axiom D (2A → 3A), which characterises the class
of serial frames, and the axiom B (A → 23A), which characterises the class
of symmetric frames. Thus DB is semantically characterised by the class of
serial and symmetric frames. 2 Moreover, due to some well-known difficulties
[7], symmetric logics lie outside most of the current modal theorem prover
methods (e.g., Wallen’s matrix proof method [23]), though they play an im-
portant role in non-monotonic reasoning [14], knowledge representation [20],
and information systems [21].

The paper is organised as follows: in Section 2 we briefly describe the basic
ideas of labelled tableaux and we introduce the systems at hand (Section
2.2 and Section 2.3). Then, in Section 3, we investigate the complexity of
KEM unification mechanisms; this will enable us to compare theoretically the
relative computational complexity of the two systems (Section 4).

2 Labelled Modal Tableaux

Since the seminal work by Fitch [6] labels have been widely used in modal
logic to simulate possible world semantics in the proof theory to improve,
simplify and speed up proofs. Usually the main function of labels is to import
semantic structures in the object language. Accordingly, in semantic based
proof methods (cf., among others, [19]), labels represent possible worlds and
accessibility relations (using sequences of atomic labels) in Kripke models.

Semantic tableaux (cf., [22]) is one of the most common form of semantic

2 Let 〈W,R〉 be a frame, where W is a set of possible worlds and R is a binary relation over
W . A frame is serial iff ∀x ∈ W∃y ∈ W (xRy), and symmetric iff ∀x, y ∈ W (xRy ⇒ yRx).

2



Governatori

based proof procedures and, we believe, it offers the best format for the use
of labels. The basic idea is to supplement the object language with a label
language and a label algebra. The basic entities of labelled deductions are
labelled formulas, i.e., expressions of the form A : x, where x is a label drawn
form the label language, and A (the declarative unit) is a well-formed formula
of the logic at hand (cf., [8]). Intuitively the meaning of a labelled formula
such as A : x is that the declarative unit (A) is true at the world(s) denoted
be the label x.

In most systems (new) labelled formulas are generated from previous for-
mulas using inference rules that closely resemble the semantic evaluation of
the premises. Given the semantic conditions, it is indeed possible that the
conclusion of a premise holds in a set of possible worlds instead of a single
worlds; for example, just consider the semantic clause for 2A which requires
A to be true in all worlds accessible from the world where 2A is evaluated.
We have two alternative ways for representing such conclusions using labels:

(i) we can use ground labels and generate all possible/relevant instances of
such worlds;

(ii) we can use a label with a free-variable.

In what follows we shall compare two labelled tableaux systems (KEM and
SST) using labels with free-variables.

Before presenting the two systems we give some common notions. As is
well known semantic tableaux calculus is a refutation proof method. Therefore
a proof of A is a failed attempt to provide a model for ¬A. A tableaux for a
formula A is a (binary) tree whose root is A : i0 where i0 is the initial label,
and the nodes are derived from previous nodes according to the inference
rules of the system. A branch is closed iff it contains a pair of complementary
formulas (the notion of complementary formulas may vary from system to
system), otherwise it is open; a tree is closed iff every branch in it is closed.
Finally a proof of A is a closed tree with root ¬A : i0. A tree is complete iff
every rule that can be applied has been applied.

2.1 Label Formalism

In this section we present the KEM label formalism, which will be also used
for SST. In fact most of the differences between the formalisms of the two
systems are just notational ones, and the differences that are not notational
are not relevant for the present investigation.

KEM has two basic kinds of atomic labels: variables and constants. For-
mally, let ΦC = {w1, w2, . . . } and ΦV = {W1, W2, . . . } be two arbitrary sets of
atomic labels : the set of constant world-symbols (or simply constants) and the
set of variable world-symbols (or simply variables). A label is then an element
of the set of labels = defined as follows:

Definition 2.1 = =
⋃

1≤p=p where =p is:

3



Governatori

=1 = ΦC ∪ ΦV

=2 = =1 × ΦC

=n+1 = =1 ×=n, n > 1 .

Thus, a label i is either a variable or a constant or a “structured” sequence
of atomic labels. For a structured label i = (k′, k) we have the following cases:
(i) k′ is an atomic world-symbol and (ii) k ∈ ΦC or k = (m′, m) where (m′, m)
is a label. As we have alluded to in the previous section, we may think of
constant and variable world-symbols as denoting respectively worlds and sets
of worlds in a standard Kripke setting. A label of the form (k′, k) is called
a “world-path”. For instance, the label (W1, w1) represents a path from w1

to the set W1 of worlds accessible from w1; (w2, (W1, w1)) represents a path
which takes us to a world w2 accessible by any world accessible from w1 (i.e.,
accessible by the sub-path (W1, w1)) according to the appropriate accessibility
relation. Thus a label of the form (k′, k) is “structurally” designed to record
information about the accessibility relation when we move from a label (a
world or a set of worlds) to another label. We define the length of a label i,
`(i), as the number of atomic labels in i. From now on we shall use i, j, k, . . .
to denote arbitrary labels.

Definition 2.2 For a label i = (j, k), we shall call j the head and k the body
of i, and denote them by h(i) and b(i) respectively.

The notions of body and head are obviously recursive (they can be defined
as projection functions), and allow us to identify any sub-label of a given label;
thus, if b(i) denotes the body of i, then b(b(i)) will denote the body of b(i),
b(b(b(i))) will denote the body of b(b(i)), and so on. We call each of b(i),
b(b(i)), etc., a segment of i. Let s(i) denote any segment of i (obviously, by
definition every segment s(i) of a label i is a label); h(s(i)) will denote the
head of s(i). With sn(i) we will denote the segment of i of length n, i.e.,
sn(i) = s(i) such that `(s(i)) = n. We shall use hn(i) as an abbreviation for
h(sn(i)).

Definition 2.3 For any label i, `(i) ≥ n, we define the countersegment-n of
i, as follows:

cn(i) = h(i)× (· · · × (hk(i)× (· · · × (hn+1(i), w0)))) for n < k < `(i)

where w0 is a dummy label, i.e., a label not appearing in i (the context in
which such a notion is applied will tell us what w0 stands for).

If n = `(i) we have that cn(i) = w0, and sn(i) = i.

Example 2.4 If i = (w4, (W3, (w3, (W2, w1)))), then `(i) = 5, h3(i) = w3,
s3(i) = (w3, (W2, w1)), and its countersegment-3 is c3(i) = (w4, (W3, w0));
intuitively cn(i), is what remains of i after deleting sn(i).

To clarify the notion of countersegment, which will be used frequently in
this work, we present, in the following table the list of the segments of i in the

4



Governatori

left-hand column and the relative countersegments in the right-hand column.

s1(i) = w1 c1(i) = (w4, (W3, (w3, (W2, w0))))

s2(i) = (W2, w1) c2(i) = (w4, (W3, (w3, w0)))

s3(i) = (w3, (W2, w1)) c3(i) = (w4, (W3, w0))

s4(i) = (W3, (w3, (W2, w1))) c4(i) = (w4, w0)

s5(i) = i c5(i) = w0

The dummy label w0 is considered as an atomic label, and it is used to en-
capsulated complex labels into an atomic one.

2.2 KEM

KEM (see [1,10,9]) is a labelled analytic proof system based on a combination
of tableau and natural deduction inference rules which allows for a suitably re-
stricted (“analytic”) application of the cut rule and a specialised, yet modular,
unification mechanism for the labels.

2.2.1 Unifications

In the course of proofs labels are manipulated in a way closely related to the
semantics of the logic under analysis. Labels are compared and matched using
a specialised logic dependent unification mechanism. The notion of two labels
i and j being unifiable means that the intersection of their denotations is
not empty and that we can “move” to such a set of worlds through the path
corresponding to the result of the unification of the two labels.

The definition of the unification appropriate for the logic DB (or logic
unification) is carried out in several steps with the help of several auxiliary
notions of unification.

First we have to provide the foundation of our unification (σ-unification).
The basic unification is defined, as usual, in terms of a substitution, then we
use the basic unification to define the unifications corresponding to the various
modal axioms (axiom unifications); in the same way a modal logic is obtained
by combining several axioms we combine the axiom unifications in combined
unification. Finally we apply, in a recursive way, the combined unification to
define the unification for the logic (logic unification).

Before presenting the formal machinery for the various unifications we have
to give the notation used for them. Let L be a modal logic, and A1, . . . , An be
the axioms of L. With σAi we denote the unification for the axiom Ai; with
σA1...An the unification obtained from the combination of the σAi-unifications;
and with σL the unification for the logic L. Given two labels i and j and
a unification σ∗ we shall use [i, j]σ∗ to denote both the results of the σ∗-
unification of i and j, and the fact that i and j σ∗-unify.

We are now ready to introduce the unifications for DB. For each unification
we will provide the formal definition as well as a procedure to compute it. We

5



Governatori

begin with the notion of substitution.

Definition 2.5 A substitution is a mapping ρ : =1 → =1 such that

ρ(i) =

{
i i ∈ ΦC

j otherwise

Accordingly we have that two atomic (“world”) labels i and j σ-unify iff
there is a substitution ρ such that ρ(i) = ρ(j). The notion of σ-unification (or
label unification) is extended to the case of composite labels (path labels) as
follows:

Definition 2.6 Let i, j ∈ =

[i, j]σ = k iff ∃ρ : h(k) = ρ(h(i)) = ρ(h(j)) and

b(k) = [b(i), b(j)]σ

Clearly σ is symmetric, i.e., [i, j]σ iff [j, i]σ. Moreover this definition offers
a flexible and powerful mechanism: in [11] we have shown that different classes
of modal logics (in particular classes of non-normal modal logics such as regular
and monotonic modal logics) are determined by conditions on the underlying
substitution but the axiom unifications can be left unchanged. At the same
time it allows for an independent computation of the elements of the result
of the unification, and variables can be freely renamed without affecting the
result of a unification, namely:

Proposition 2.7 Let i and i′ be two labels such that i′ = i(Wn/Wm) (i.e.,
i′ has been obtained from i by replacing a variable by a different variable).
∀j, k ∈ = if [i, j]σ, then [i′, j]σ; and if [[i, j]σ, k]σ then [[i′, j]σ, k]σ.

Proof. Tedious and mundane by case inspection.

The above proposition justifies the following simple algorithms to compute
the unification of two world symbols and the unification of two labels.

Algorithm 1 world-symbol-unification(w,w′)

begin
if w ∈ ΦV

then [w,w′]σ = w′

elseif w′ ∈ ΦV or w′ = w
then [w, w′]σ = w
else fail

endif
endif

end

We extend the algorithm to cover the case of arbitrary labels.

6



Governatori

Algorithm 2 basic-unification(i, j)

begin
if `(i) = `(j)

then world-symbol-unification(h(i), h(j)) and
basic-unification(b(i), b(j))

else fail
endif

end

It is worth noting that the procedure described in Algorithm 2 characterises
the unification for the axiom D, and thus it is also part of DB.

Definition 2.8 Let i, j ∈ =

[i, j]σD = [i, j]σ

The next step involves the definition of the unification corresponding to
the axiom B or σB-unification.

Definition 2.9 Let i, j ∈ =

[i, j]σB =



[s`(i)−2n(i), j]σ if h(i) ∈ ΦV and

[h(i), h(j)]σ = [h`(i)−2n(i), h(j)]σ

[i, s`(j)−2n(j)]σ if h(j) ∈ ΦV and

[h(i), h(j)]σ = [h(i), h`(j)−2n(j)]σ

Where 1 ≤ n ≤ V , and V = `(i) − m, with m such that ∀x, m ≤ x ≤
`(i), hx(i) ∈ ΦV .

The key idea of σB-unification is to match world symbols laying an even
number of steps apart. The number of steps is given by the number of con-
secutive variables occurring in the head of the labels. If the head of a label is
a variable we can go back by two steps. In general we are allowed to go back
two steps for each variable. Accordingly labels like

(W1, (w2, w1)) w1

provide a simple instance of this unification. Intuitively W1 denotes the set of
worlds accessible from w2, but, since w2 is accessible from w1, so, by symmetry,
w1 is one of the world accessible from w2.

Example 2.10 Let us consider the labels

i = (W3, (W2, (w2, (W1, w1)))) j = (W4, (w3, w1)) (1)

The labels i and j σB-unify since i has two variables, so we have two options
for going back: one steps from b(i), or two steps from b(b(i)). In the first case

7



Governatori

we have to see whether (w2, (W1, w1)) = s`(i)−2n(i) for n = 1 and j σ-unify.
In the second case the label that have to σ-unify with j is w1 = s`(i)−2n(i) for
n = 2. But in this case the unification fails.

Algorithm 3 b-axiom-unification(i, j)

begin
if `(i) > `(j) and h(i) ∈ ΦV

then m := i and k := j
else if `(j) > `(i) and h(j) ∈ ΦV

then m := j and k := i
else fail

endif
endif
if (`(m)− `(k)) mod 2 = 0 and

foreach n =
`(m)− `(k)

2 upto `(m)

hn(m) ∈ ΦV

then basic-unification(s`(k)(m), k)
else fail

endif
end

Before introducing the main unification, the unification for the logic DB we
introduce the combined unification (or σDB-unification) and the corresponding
procedure, meant to verify whether two labels either σ- or σB-unify.

Definition 2.11 Let i, j ∈ =

[i, j]σDB =

{
[i, j]σD

[i, j]σB

Algorithm 4 db-axioms-unification(i, j)

begin
basic-unification(i, j) or
b-axiom-unification(i, j)

end

Finally we are ready to give the main unification for DB (or σDB), the unifi-
cation which will be used with the inference rules.

Definition 2.12 Let i, j ∈ =

[i, j]σDB =


[i, j]σDB or

[cn(i), cm(j)]σDB ∃n, m : 1 ≤ n ≤ `(i) and

1 ≤ m ≤ `(j)

8



Governatori

Notice that σBD has a recursive definition and it can be computed using
the following algorithm.

Algorithm 5 db-unification(i, j)

begin
db-axioms-unification(i, j) or
for n = 1 upto `(i)− 1

for m = 1 upto `(j)− 1
if db-axioms-unification(w0, c

`(j)−m(j))
then db-unification(i, s`(j)−m(j))

endif or
if db-axioms-unification(c`(i)−n(i), w0)

then db-unification(s`(i)−n(i), j)
endif or
if db-axioms-unification(c`(i)−n(i), c`(j)−m(j))

then db-unification(s`(i)−n(i), s`(j)−m(j))
endif

endfor
endfor

end

Example 2.13 Let us consider the labels

i = (W2, (w3, (W1, (w2, w1)))) j = w1 (2)

It is easy to see that the above labels σDB-unify, with a recursive applica-
tion of the unification. In fact we have that [c3(i), w0]σ

DB, where j = w0 =
[s3(i), j]σDB: indeed, [s3(i), j]σDB.

Proposition 2.14

• [i, j]σD iff basic-unification(i, j);

• [i, j]σB iff b-axiom-unification(i, j);

• [i, j]σDB iff db-unification(i, j).

Proof. Immediate, modulo renaming of variables, from the definitions of the
unifications and the corresponding algorithms.

2.2.2 Inference Rules

For the presentation of the inference rules of KEM, and subsequently of SST
we shall assume familiarity with Smullyan-Fitting α, β, ν, π unifying notation
[7]. For the propositional part we exemplify only the rules for conjunction.

A ∧B : i
A : i

B : i

(α-rules)

9



Governatori

The α-rules are just the familiar linear branch-expansion rules of the tableau
method.

¬(A ∧B) : i

A : j

¬B : [i, j]σDB

¬(A ∧B) : i

B : j

¬A : [i, j]σDB
(β-rules)

The β-rules are nothing but natural inference patterns such as Modus Ponens,
Modus Tollens and Disjunctive syllogism generalised to the modal case. In
order to apply such rules it is required that the labels of the premises unify
and the label of the conclusion is the result of their unification.

3A : i

A : (wn, i)

¬2A : i

¬A : (wn, i)
(π-rules)

where wn is new, that is, it does not occur in the tree.

2A : i

A : (Wn, i)

¬3A : i

¬A : (Wn, i)
(ν-rules)

where Wn is new.

ν- and π- rules allow us to expand labels according to the intended seman-
tics, where, with “new” we mean that the label does not occur previously in
the tree.

A : i | ¬A : i
(PB)

PB (the “Principle of Bivalence”) represents the semantic counterpart of the
cut rule of the sequent calculus (intuitive meaning: a formula A is either true
or false in any given world). PB is a zero-premise inference rule, so in its
unrestricted version can be applied whenever we like. However, we impose a
restriction on its application. Then PB can be only applied w.r.t. immediate
sub-formulas of unanalysed β-formulas, that is β formulas for which we have
no immediate sub-formulas with the appropriate labels in the branch (tree).

A : i

¬A : j

×
(PNC)

if [i, j]σDB.

The rule PNC (Principle of Non-Contradiction) states that two labelled
formulas are σDB-complementary when the two formulas are complementary
and their labels σDB-unify.

With `KEM(DB) A we mean that there is a close KEM-tree for ¬A : w1; or,
in other words, that KEM proves that A is a theorem of DB.

Theorem 2.15 `KEM(DB) A iff |=DB A.

Proof. For the proof and for detailed accounts of KEM see [1,10,9].

10



Governatori

2.3 Single Step Tableaux (SST)

Single Step Tableaux [15] originate from and add modularity to Fitting’s pre-
fix tableaux [7]. The free-variable version we shall focus on here has been
proposed by Beckert and Goré [3].

The basic idea of SST is that (modal) formulas are used to move the
evaluation point to the “neighbourhood” of the labels they are associated with,
that is, each time we are allowed to move only to one step apart. In other
words the information that can be extracted from a formula is propagated
only to the labels that the current label extends immediately or an are an
immediate extension of the current label.

SST has the following inference rules. For the propositional part we give
only the rules for ∧.

A ∧B : i
A : i

B : i

(α-rules)

¬(A ∧B) : i

¬A : i | ¬B : i
(β-rules)

3A : i

A : (wdπe, i)

¬2A : i

¬A : (wdπe, i)
(π-rules)

where d·e is an arbitrary but fixed bijection from the set of formulas to N

2A : i

A : (Wn, i)

¬3A : i

¬A : (Wn, i)
(νD-rules)

2A : i

A : b(i)

¬3A : i

¬A : b(i)
(νB-rules)

The α-, π-, and νD-rules are common to KEM and SST and the β-rules are the
usual branching rules of tableau methods. The νB-rules are the specific rules
for symmetric logics. The intuition behind the latter is that symmetry allows
us to travel backward in the accessibility relation. The main consequence of
two sets of ν-rule is that every time we have a formula of type ν we have to
introduce two new labelled formulas.

We say that two labelled formulas A : i and B : j are complementary in
SST when B = ¬A and there exists a substitution ρ which is a unifier of i
and j.

With `SST(DB) A we mean that there is a close SST-tree for ¬A : w1; or,
in other words, that SST proves that A is a theorem of DB.

Theorem 2.16 `SST(DB) A iff |=DB A.

11



Governatori

Proof. For the proof and for detailed accounts of SST see [3,17].

3 The Complexity of KEM Unifications

To provide a comparison of the two methods at hand first we have to study
the complexity of the KEM unification procedure. We start by showing that
the unification of two world symbols can be computed in constant time.

Lemma 3.1 The σ-unification of two world symbols w and w′ can be com-
puted in constant time.

Proof. It is immediate to see that the unification of two world symbols re-
quires at most three steps, and thus it has constant complexity.

As we have seen the unification of two world symbols is just the first basic
step of the unification. The next step is the σ-unification of two labels; in this
case, we can prove that its complexity is linear in the length of the two labels.

Lemma 3.2 The σ-unification of two labels i and j can be computed in linear
time.

Proof. All we have to do is to see whether the word symbols in the two labels
stepwise unify.

Thus at the end we have to verify n unifications of world symbols, but from
Lemma 3.1, we know that the unification of world symbols can be computed
in constant time. Therefore the σ-unification of two labels can be computed
in linear time.

The next unification we have to examine is the unification for the axiom B.

Lemma 3.3 The σB-unification of two labels i and j can be computed in linear
time.

Proof. Here we have to count the number of consecutive variables in the head
of the longest of the two labels; if such a number is appropriate (see Definition
2.9 and Algorithm 3), then we have to σ-unify the shortest label and a given
segment of the longest; by Lemma 3.2, the σ-unification of two labels has
linear complexity. Therefore the complexity of σB is linear.

Unfortunately we cannot prove such good complexity results for σDB; however,
for special labels we can prove the following result.

Lemma 3.4 The σDB-unification of two labels i and j such that `(i) = 1 can
be computed in quadratic time.

12



Governatori

Proof. For a label j of length n there are n distinct segments and n distinct
countersegments, namely

cn(j) = w0 sn(j) = j

cn−1(j) = (hn(j), w0) sn−1(j) = b(j)

cn−2(j) = (hn(j), (hn−1(j), w0)) sn−2(j) = b(b(j))
...

...

Now we have to see whether i either σB- or σ-unifies with the countersegments
and whether i σDB-unifies with the segments. Thus we have to compute 2n
linear unifications and n σDB-unifications. Let us examine the first of these,
i.e., [sn−1(j), i]σDB. This time the length of sn−1(j) is n− 1, and thus we have
n− 1 ways to split it in segments and countersegments. That is: 3

cn−1(cn−1(j)) = w0 sn−1(j) = b(j)

cn−2(cn−1(j)) = (hn−1(j), w0) sn−2(j) = b(b(j))
...

...

A close inspection shows that only the countersegments are different from the
previous step. Therefore we can repeat this process for all the segments of j,
and each time we can replace the σDB unification for the appropriate segment
of length m, with 2m linear unifications. Hence, at the end, the number of
linear unifications we have to compute is

2

n=`(j)∑
n=1

n = O(n2)

which shows that the σDB-unification for the case at hand is quadratic.

4 KEM vs SST

So far the standard way to compare the relative complexity of two proof
systems was given by the notion of p-simulation.

Definition 4.1 A proof system A p-simulates a proof system B iff there is a
function g, computable in polynomial time, which maps derivations in B for
any given formula φ, to derivations in A for φ (cf. [4]).

The main problem with p-simulation is that it considers only proofs, i.e.,
closed trees in tableaux terminology, and it says nothing about open trees.
While this notion is fully appropriate for semi-decidable logics and non deter-
ministic proof systems, it does not offer a good measure to compare tableaux-
like proof-systems for decidable modal propositional logics. The main point

3 Notice that for m ≤ n sm(sn(i)) = sm(i).

13



Governatori

is that this notion does not contemplate proof-procedures. Modal tableaux
proof-procedures, in effect, are systematic searches for models that make the
initial formula true with respect to the initial world. In this perspective modal
tableaux can show that a formula is not a theorem by showing that the nega-
tion of the formula is satisfiable. However, to show that a formula is satisfiable
we have to complete its tree. In general, to complete a tree we have to explore
the whole search space generated by the formula.

Therefore, to obviate the above problem, we propose a stepwise simulation.
Here the main idea is that a proof system A stepwise simulates a proof sys-
tem B iff A does not perform any inference steps for which no corresponding
inference steps exist in B.

Definition 4.2 A proof system A p-search-simulates a proof system B iff
there is a polynomial function g such that for any formula φ, g maps deriva-
tions (trees) from φ in A to derivations (trees) from φ in B (cf. [5]).

Note that a stepwise simulation is independent of whether the considered
derivations are proofs or not.

We are now ready to present the main result of the paper. To prove it we
have to identify a formula (or a class of formulas) whose complete KEM-tree
is polynomial while the complete SST-tree is exponential. Surprisingly the
formula is extremely simple, namely:

p → (23)np (3)

As we shall see (3) involves only one propositional linear step and there are no
interaction between propositional connectives and modal operators. Therefore
the discriminant is only the way the two proof systems deal with modalities.

Theorem 4.3 The length of the complete proof of p → (23)np in KEM is
O(n2).

Proof.

1. ¬(p → (23)np) : w1

2. p : w1

3. ¬(23)np : w1

4. ¬3(23)n−1p : (w2, w1)

5. ¬(23)n−1p : (W1, (w2, w1))
...

2n + 3. ¬p : (Wn, (wn+1, (. . . , (W1, (w2, w1)) . . . )))

The initial formula, i.e., ¬(p → (23)np) : w1, is of type α, then we expand the
tree with two nodes both labelled with w1: the first of such nodes (2) consists
of p which is atomic and does not need further investigations; the second node

14



Governatori

(3) contains a formula of type π labelled with w1. From (3) we obtain (4),
which is of type ν. Applying the ν-rule on it, we get (5). We repeat the above
steps n− 1 times, for a total of 2n + 3 steps (nodes).

At this point we have two complementary formulas, the formulas in (2)
and (2n + 3). We have to verify whether the two labels σDB-unify.

From Lemma 3.4 we know that the complexity of the σDB-unification at
hand is quadratic. Therefore the complexity of the complete KEM-proof of
p → (23)np is 2n + 3 + O(n2) = O(n2).

Theorem 4.4 The length of the complete proof of p → (23)np in SST is
O(2n+1).

Proof.

1. ¬(p → (23)np) : w1

2. p : w1

3. ¬(23)np : w1

4. ¬3(23)n−1p : (w2, w1)

5. ¬(23)n−1p : (W1, (w2, w1))

6. ¬(23)n−1p : w1

7. ¬3(23)n−2p : (w3, (W1, (w2, w1)))

8. ¬3(23)n−2p : (w3, w1)

9. ¬(23)n−2p : (W2, (w3, (W1, (w2, w1))))

10. ¬(23)n−2p : (w2, w1)

11. ¬(23)n−2p : (W2, (w3, w1))

12. ¬(23)n−2p : w1

...

The formula we start with (¬(p → (23)np) : w1) is of type α, and then we
obtain two formulas p : w1 and ¬(23)np : w1. At this point we have an
atomic formula and a formula of type π. We apply the π-rule on it deriving
¬3(23)n−1p : (w2, w1). Now we have a formula of type ν, and we have to
apply both the ν-rule for D and B, thus we have to produce the formulas
¬(23)n−1p : w1 and ¬(23)n−1p : (W1, (w2, w1)). These last two formulas are
of type π, and from them we obtain ¬3(23)n−2p : (w3, w1) and ¬3(23)n−2p :
(w3, (W1, (w2, w1))); both formulas produce two new formulas. It is then clear
that each formula of type ν produces two new formulas of less complexity,
showing thus a geometrical progression; it is then immediate to see that the

15



Governatori

formula determining the number of steps is

2
n∑

m=1

2m−1 + 2m = 2

(
2(n−1)+1 − 1

2− 1

)
+ 2n

= 2(2n − 1) + 2n

= 2n+1 + 2n − 2

thus the complexity of the complete proof of p → (23)np in SST is O(2n+1).

It is true that there are shorter proofs for (3) in SST. However, if we consider
the formula

p → (23)nq (4)

which is not a theorem of DB, then the search space for it is O(2n+1), since (4)
has the same modal structure as (3). This is the reason why when we compare
proof systems using p-search-simulation we have to consider exhaustive proof-
search procedures and worst-case scenarios.

Theorem 4.5 SST cannot p-search-simulate KEM.

Proof. From Theorem 4.3 and Theorem 4.4 it follows that SST cannot p-
simulate KEM since the complexity of p → (23)np is O(2n+1) for SST, while
for KEM it is O(n2).

Let us now examine the question whether KEM p-search-simulates SST or
whether the two systems cannot p-search-simulate each other. To show that
a system A p-search-simulates a system B we have to define a polynomial
procedure that transforms a tree for φ in A in a tree for φ in B.

Lemma 4.6 The rule νB is a derived rule in KEM, and it can be derived in
polynomial time.

Proof.
ν : i

ν0 : b(i) ν0 : b(i)

ν0 : (Wn, i)

×

We apply PB with respect to ν0, and with label b(i); in the right branch we
apply the ν rule and we obtain ν0 : (wn, i), but [b(i), (Wn, i)]σDB, and thus the
branch is closed. In particular it is possible to show that the labels involved σB-
unify, and we have seen (Lemma 3.3) that the σB-unification can be computed
in linear time. Therefore the derivation of νB has linear complexity.

Lemma 4.6 allows us to define a proof-search in KEM where we use both the
new derived ν-rule and the original ν-rules of KEM, and the unification is

16



Governatori

restricted to σ. It is immediate to see that this proof procedure corresponds
to SST, and the components involved have linear complexity, we have thus
proved the following theorem.

Theorem 4.7 KEM p-search-simulates SST.

5 Conclusions

In this paper we have compared two modal tableaux systems from a theoret-
ical perspective, and we have investigated their relative complexity. We have
shown that label unification algorithms could lead to theoretical speed-ups,
therefore we believe that the study of relative complexity of modal proof sys-
tems is beneficial to the design of better modal theorem provers and better
implementations.

References

[1] Artosi, A., P. Benassi, G. Governatori and A. Rotolo, Shakespearian modal logic:
A labelled treatment of modal identity, in: M. Kracht, M. de Rijke, H. Wansing
and M. Zakharyaschev, editors, Advances in Modal Logic. Volume 1, CSLI
Publications, Stanford, 1998 pp. 1–21.

[2] Balsiger, P. and A. Heuerding, Comparison of theorem provers for modal logics
– introduction and summary, in: H. C. M. de Swart, editor, TABLEAUX’98,
number 1397 in LNCS (1998), pp. 25–26.

[3] Beckert, B. and R. Goré, Free variable tableaux for propositional modal logics,
Studia Logica 69 (2001), pp. 59–96.

[4] Cook, S. A. and R. A. Reckhow, The relative efficiency of propositional proof
systems, Journal of Symbolic Logic 44 (1979), pp. 36–50.

[5] de Nivelle, H., R. Schmidt and U. Hustadt, Resolution-based methods for modal
logics, Logic Journal of IGPL 8 (2000), pp. 265–292.

[6] Fitch, F. B., Tree proofs in modal logic, Journal of Symbolic Logic 31 (1966),
p. 152.

[7] Fitting, M., “Proof Methods for Modal and Intuitionistic Logics,” Reidel,
Dordrecht, 1983.

[8] Gabbay, D. M., “Labelled Deductive System,” Oxford University Press, 1996.

[9] Gabbay, D. M. and G. Governatori, Fibred modal tableaux, in: D. Basin,
M. D’Agostino, D. Gabbay, S. Matthews and L. Viganó, editors, Labelled
Deduction, Applied Logic Series 17, Kluwer, Dordrecht, 2000 pp. 163–194.

[10] Governatori, G., “Un modello formale per il ragionamento giuridico,” Ph.D.
thesis, CIRFID, University of Bologna, Bologna (1997).
URL www.itee.uq.edu.au/~guido/Papers/_KEM/tesi.pdf

17

www.itee.uq.edu.au/~guido/Papers/_KEM/tesi.pdf


Governatori

[11] Governatori, G. and A. Luppi, Labelled tableaux for non-normal modal logics, in:
E. Lamma and P. Mello, editors, AI*IA 99: Advances in Artificial Intelligence,
LNAI 1792 (2000), pp. 119–130.
URL www.itee.uq.edu.au/~guido/Papers/_KEM/aixia.pdf

[12] Horrocks, I., P. F. Patel-Schneider and R. Sebastiani, An analysis of empirical
testing for modal decision procedures, Logic Journal of IGPL 8 (2000), pp. 293–
323.

[13] Hustadt, U. and R. Schmidt, On evaluating decision procedures for modal logic,
in: Proc. of the 15th Iternational Joint Conference on Artificial Intelligence
(IJCAI’97), 1997, pp. 202–207.

[14] Marek, V., G. Shwarz and M. Truszczynski, Modal non-monotonic logics:
Ranges, characterization, computation, Journal of the ACM 40 (1993), pp. 963–
990.

[15] Massacci, F., Strongly analytic tableaux for normal modal logic, in: A. Bundy,
editor, CADE-12, number 814 in LNAI (1994), pp. 723–737.

[16] Massacci, F., Design and results of the tableaux-99 non-classical (modal)
systems comparison, in: N. V. Murray, editor, TABLEAUX’99, number 1617
in LNCS (1999), pp. 14–18.

[17] Massacci, F., Single step tableaux for modal logic, Journal of Automated
Reasoning 24 (2000), pp. 319–364.

[18] Massacci, F. and F. M. Donini, Design and results of tancs-2000 non-classical
(modal) systems comparison, in: R. Dyckhoff, editor, TABLEAUX 2000, number
1847 in LNCS (2000), pp. 52–56.

[19] Ohlbach, H. J., Semantic based translation methods for modal logics, Journal of
Logic and Computation 1 (1991), pp. 691–746.

[20] Or lowska, E., Logic for reasoning about knowledge, Zeitschrift für mathematiske
Logik und Grundlagen der Mathematik 35 (1989), pp. 559–572.

[21] Or lowska, E. and Z. Pawlak, Representastion of nondeterministic information,
Theoretical Computer Science 29 (1984), pp. 27–39.

[22] Smullyan, R. M., “First-Order Logic,” Springer-Verlag, Berlin, 1968.

[23] Wallen, L., “Automated Deduction in Nonclassical Logics,” MIT Press,
Cambridge Mass., 1990.

18

www.itee.uq.edu.au/~guido/Papers/_KEM/aixia.pdf

	Introduction
	Labelled Modal Tableaux
	Label Formalism
	KEM
	Single Step Tableaux (SST)

	The Complexity of KEM Unifications
	KEM vs SST
	Conclusions
	References

