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Abstract. In [I5[19] we showed how to combine propositional multimddg-

ics using Gabbay’fibring methodology. In this paper we extend the above men-
tioned works by providing a tableau-based proof techniquéte combined/fibred
logics. To achieve this end we first make a comparison betwwertypes of
tableau proof systemsgiaph & path), with the help of a scenario (The Friend’s
Puzzle). Having done that we show how to uniformly consteutableau calcu-
lus for the combined logic using Governatori’s labelledé¢aln systenKEM . We
conclude with a discussion &¢EM ’s features.

1 Introduction

Modelling and reasoning about cognitive attitudes likewlealge, belief, desire, goals,
intention etc. of agents is an active research area witlgrattificial intelligence com-
munity [B[23]. It is often the case that norfatultimodal logics are used to formalise
these mental notions. Multimodal logics generalise modgick allowing more than
one modal operator to appear in formulae, i.e., a modal epeianamed by means of
a label, for instance; which identifies it. Hence a formula like; ¢ could be interpreted
as¢ is known by the agent i af is believed by agent i eteepresenting respectively the
knowledge and belief of an agent. In addition to the aboveasgmtation, multimodal
logics of agentsNIMA ) impose constraints between the different mental attglide
the form ofinteraction axiomsFor instance, if we consid&MA ’s like BDI [20] then
we can find interaction axioms of the form IN@) — DES(¢), DES(¢) — BEL(¢)
denoting respectively intentions being stronger thanrdssind desires being stronger
than beliefs. Moreover, these interaction axiomsreme-homogeneous the sense that
every modal operator is not restricted to the same system the underlying axiom
systems for DES i& andD of modal logic whereas that of BEL KD45. Hence the
basic BDI logiclL can be seen as a combination of different component logicsthke
two interaction axioms as given below

L = (®{L;KD45ge1, ) @ (2L,KDpes) © (2L, KDin;) )

+ {INTi¢ — DES¢}+{DES¢ — BEL¢}
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In a similar manner anMIMA consists of a combined system of logic of knowl-
edge, beliefs, desires, goals and intentions as mentids@eaThey are basically well
understood standard modal logicsmbined togetheto model different facets of the
agents. A number of researchers have provided such combysteims for different
reasons and different applications. However, investigatinto a general methodology
for combining the different logics involved has been maimdglected to a large extent.
Recently [15,19] it has been shown tHadring/dovetailing[8] can be adopted as a
semantic methodology to characterise multimodal logics.iB that work we did not
provide any proof techniques for the fibred logics. In thipgrave extend our previous
work so as to provide a tableau proof technique for the fiboggclwhich in turn is
based on the labelled tableau syst€&EM [LI[10.1].

The key feature of our tableau system is that it is neitheetb@s resolution nor
on standard sequent/tableau techniques. It combines timgl@au expansion rules with
natural deduction rules and an analytic version of the clat fThe tableau rules are
supplemented with a powerful and flexible label algebra @fiatvs the system to deal
with a large class of intensional logics admitting possileteld semantics (non-normal
modal logic [14], multi-modal logics$111] and conditionalics [2]). The label algebra
is intended to simulate the possible world semantics arakithvery strong relationship
with fibring [10].

As far as the field oEombining logicds concerned, it has been an active research
area since some time now and powerful results about the et of important
properties of the logics being combined has been obtalm@d|A2]. Also, investiga-
tions related to using fibring as a combining technique iftoverdomains has produced
a wealth of results as found in works likell8l24(21,5]. Theelty of combining log-
ics is the aim to develogeneral techniquethat allow us to produce combinations of
existingand well understood logics. Such general techniques amedder formalis-
ing complex systems in a systematic way. Such a methodolagyhelp decompose
the problem of designing a complex system into developingmmnents (logics) and
combining them.

One of the main advantages of using fibring as a semantic meligy for combin-
ing multimodal logics as compared to other combining teghes likefusiond is that
the later has the problem of not being able to express irtteraaxioms, much needed
for Multi-Agent-System (MAS) theories. Fibring is more pexful because of the pos-
sibility of adding conditions on the fibring function. Thesenditions could encode
interactions between the two classes of models that arg leeimbined and therefore
could represent interaction axioms between the two lo@c® such result was shown
in [15]. Moreover, fibring does not require the logics to bemal. This allows fibring
to be used to model combinations of epistemic logic withceihg forced to suffer
from the logical omniscience problem. The drawbacks of otieenbining techniques
like embeddin@ndindependent combinatiomhen compared to fibring have been dis-
cussed at length i [18]. Another advantage is that fibringewédt possible to combine
logics at different levels, obtaining hierarchical modaiits, i.e., a logic with another
logic embedded in it, or more precisely a logic with two modpkrators such that

2 Normal bimodal and polymodal logics without any interastiamxioms are well studied as
fusionsof normal monomodal logics [16.22].



the first can occur in the scope of the other but not the othgramaund; see[9] for
applications of hierarchical logics. For the second cagepbssible to combine logic
with different semantics. We can combine, let us say, a nbtemaporal logic whose
semantics is given in terms of Kripke models and an epistamicnormal modal logic
with a neighbourhood semantics. This is not possible witleotombining techniques
where the semantics for the logics to be combined must be enemus. Finally the
fibring methodology allows us to study the structure of thenbimed logic based on
the structures of the component logics, and often it giveuslitions under which im-
portant meta-theoretical properties of the componentk(goundness, completeness,
decidability and so on) are preserved by the combination.

The paper is structured as follows. The next section pravalerief introduction
to the technique of fibring. Section 3 outlines the path-bas®l graph-based tableau
procedures. Section 4 describes KM tableau system. The paper concludes with
some final remarks.

2 Fibring Multimodal Logics

Consider the basic BDI logit. given in [A) which is defined from three component
logics, viz.,KD45, for belief, andKD , for desires and intentions. For sake of clarity,
consider two of the component logios; (KD45) andv,(KD ) and their corresponding
languagesZy, ,.Zy, built from the respective se®; and@, of atoms having classes of
modelsty, , My, and satisfaction relatiorfs; and=,. Hence we are dealing with two
different systemss; andS, characterised, respectively, by the class of Kripke models
~#1 and J#,. For instance, we know how to evaluatea¢ (BEL(¢)) in 271 (KD45)
andO,¢ (DES(¢)) in 2% (K D). We need a method for evaluating (resp.Oy) with
respect ta’; (resp..#1). In order to do so, we are to link (fibre), vidiaring function
the model forv; with a model forv, and build a fibred model of the combination. The
fibring function can evaluate (give a yes/no) answer witlpeesto a modality irs,,
being inS; and vice versa. The interpretation of a formgilaf the combined language
in the fibred model at a statecan be given as

w = ¢ if and only if #(w) =* ¢

whereF is a fibring function that maps a world to a modeitable for interpretingp
and[=* is the corresponding satisfaction relatiga; for ¥4 or =5 for ¥5).

Example 1.Let v41, ¥, be two modal logics as given above and det= 0O12pg be
a formula on a worldyg of the fibred semanticgt belongs to the languag€; 5 as
the outer connective(;) belongs to the languag#i and the inner connectivie>;)
belongs to the languag#.

By the standard definition we start evaluatifig of 0,5, atwp. Hence according
to the standard definition we have to check whethgy, is true at everyv; accessible
from wy since from the point of view of#; this formula has the fornmip (where
p = <opg is atomic). But atvg we cannot interpret the operatop, because we are in
a model ofw, not of ¥,. In order to do this evaluation we need the fibring functjpn
which atw; points to a world/y, a world in a model suitable to interpret formulae from



v,. (Fig). Now all we have to check is wheth&pyp, is true atvg in this last model
and this can be done in the usual way. Hence the fibred seradatithe combined
language |, ») has models of the formi.%;,wy, vy, ¥1), where. 7, = (Wy,Ry) is a
frame, andy, is the fibring function which associates a mo‘iﬂiﬁ] from % with win
Zie Fi(w) =2,

7"[KBD2

wl vO

w0 /
/ vl
w2

Fig. 1. An Example of Fibring

2.1 Fibring MMA

Let| be a set of labels representing the modal operators for teational states (be-
lief, goal, intention) for a set of agents, amgli € | be modal logics whose respective
modalities ared;,i € 1.

Definition 1 [B] A fibred model is a structuréW,S,R,a, v, 7,F) where

— W is a set of possible worlds;

S is a function giving for each w a set of possible worl&¥,C W;

R is a function giving for each w, a relatidR" C SW x S%;

ais a function giving the actual world" of the model labelled by w;

v is an assignment function(qq) C S%, for each atomiaqyg;

— 1 is the semantical identifying functian: W — |. 7(w) = i means that the model
(SW,R%,a" v"W) is a model in’#, we uséWV; to denote the set of worlds of type i;

— F, is the set of fibring functiong : | x W — W. A fibring functionf is a function
giving for each i and each w W another point (actual world) iW as follows:

oy w ifwe ST and® € 4
Filw) = {a value inW;, otherwise

such that if w£ W then#;(w) # Fi(w). It should be noted that fibring happens when
7(wW) # i. Satisfaction is defined as follows with the usual trutHeatfor Boolean con-
nectives:
w = qq iff v(w,qg) = 1, wheregg is an atom
Wi i iff {WG M andM € 4 andvw (WRW — W = ¢),or
we M, andM ¢ % andVF € F, Fi(w) = 0.

We say the model satisfigsff wg = ¢.



A fibred model forvfIF can be generated from fibring the semantics for the modat$ogi
V;,i € |. The detailed construction is given In]19]. Also, to accooutate the interac-
tion axioms specific constraints need to be given on the fibfumction. In [15] we
outline the specific conditions required on the fibring fimetto accommodate axiom
schemas of the typ@Pcd . We do not want to get into the details here as the main
theme of this paper is with regard to tableau based proohtgaks for fibred logics.
What we want to point out here, however, is that the fibringstrction given in
[15[19] works for normal (multi-)modal logics as well as aoormal modal logics.

3 Multimodal Tableaux

In the previous sections we showed that agent logics ardlyswamal multimodal
logics with a set of interaction axioms and introduced gaktechniques like fibring to
explain such combined systems. In this section, beforéngeitito the details related
to the constructs needed for a tableau calculus for a fibweddned logic, we outline
with an example two types of tableau systegraph& path) that can be used to reason
about the knowledge/beliefs of agents in a multi-agenirgetHaving done that, in the
next section, we describe how to uniformly construct a soamd complete tableau
calculus for the combined logic from calculi for the compotlegics.

Example 2.(The Friends Puzzle)[3] Consider the agents Peter, Johiemdly with
modalitiesOp, Oj, andOy,. John and Peter have appointment. Suppose that Peter
knows thetime of appointment. Peter knows that John knowsghece of their ap-
pointment. Wendy knows that if Peter knows thiee of appointment, then John knows
that too (since John and Peter are friends). Peter knowdf thattin knows theplace
and thetime of their appointment, then John knows that he hasgfointment. Pe-
ter and John satisfy the axioms T and 4. Also, if Wendy knowsething then Peter
knows the same thing (suppose Wendy is Peter’s wife) andtérB@&ows that John
knows something then John knows that Peter knows the santg thi

The Knowledge/belief base for Example 2 can be formallygiae follows;

1. Optime A Tp:Opp— ¢
2. Op0jplace A 4p:0p¢p — OpUpd
3. Ow(Optime— Ojtime) A3 Tj:Ojp—¢
4. OpOj(placentime— appointment A4 4; :0j¢ — OO0 ¢

Ag 33] : Dij¢ HDij(P

Fig. 2. Knowledge base related to the Friend’s puzzle.

So we have a modal language consisting of three modalifieS; andO,, denoting
respectively the agents Peter, John and Wendy and chasectéy the seA = {A; |
i =1,...,6} of interaction axioms. Suppose now that one wants to shotetizh of
the friends knows that the other one knows that he has an @ippent, i.e., one wants
to prove

3 Ga’b’c’doamb‘l’ — 0cOg o



A-rules A ZAU T CAL i Ul ) For any prefixo
o¢ o ¢ o¢
O'lll O"\LIJ O'lll
oOVY o-(pAY) TPy
ogploy o~plo~y o-¢|o~yY

O'—\—\¢

V-rules

For any prefixo

——-rules

For any prefixo

o0i¢p o0 : . .
O-rules if the prefixo.n; is
o.n¢ a.n —¢

new to the branchi € {1,...,m})

o 0; o =<
O-rules LJ ki If the prefixo.n; already
on ¢ a.n ¢

occurs on the branch € {1,...,m})

oQO ag - o
Tprules: p? p? ¢
g¢ o ¢ o Opd
ocoj¢ g0 g¢
Tjrules:
g¢ o-¢ o<j¢
oO g o a.np & o.np -0
4prules: p? p? p Opf p ~Dpf
o.npp¢ 0.Nx0p—¢ o <pd o Opmg
o O g —Oj o.nj < a.n; -0
4jrules: i¢ i¢ i ©i¢ i 0
ongj¢ onbj-¢ 09 oCi-¢
o0Owd 0 -Owd a.np¢
lwprules:
0.y o.np—¢ o Owd

S, rules: 00p0j¢ 0 -OpOjo  0.nj Opd o.nj =Opd
P on0pe onOp¢ 00p010 0 0p0-¢
x) prefix already occurs on the branch
p y

Fig. 3. Tableau rules corresponding to the Friend’s Puzzle.

O;0pappointment Op0jappointment (2)

is a theorem of the knowledge-base. The tableaux rules fagia torresponding to the
Friends puzzle are given in Hi§.37117], and the tableaux pimo() is given in Fid3
[L7]. The tableaux in Fifl4. is a prefixed table&l [7] wher dccessibility relations
are encoded in the structure of the name of the worlds. Sueprasentation is often
termed as gathrepresentation. We show the proof of the first conjunct aedotioof
runs as follows. Item 1 is the negation of the formula to bevpdp 2, 3, 4 and 5 are
from ExampldR; 6 is from 1 by &-rule; 7 is from 6 by ar§;j-rule; 8 is from 7 by a
<&-rule; 9is from 8 by a>-rule; 10 is from 5 by @i-rule; 11 is from 10 by &i-rule. 12
and 24 are from 11 by &-rule; 13 and 16 are from 12 by\arule; 14 is from 3 by a
O-rule; 15 is from 14 by al-rule; the branch closes by 13 and 15; 17 is from 4 by an
lwp-rule; 18 and 22 are from 17 by\arule; 19 is from 18 by &>-rule; 20 is from 2 by

a 4y-rule; 21 is from 20 by al-rule; the branch closes by 19 and 21; 23 is from 22 by
aO-rule; the branch closes by 16 and 23; by 9 and 24 the remalmargch too closes.



—0Oj0pappointment 1.

Optime 2.

OpOjplace 3.

Ow(Optime— Ojtime) 4.
OpOj(placeAntime— appointment 5.
11; —Opappointment 6.

1 OpOj—-appointment 7.

11, <j—appointment 8.

11,.2j —appointment 9.

11, Oj(placentime— appointment 10.

1.1p.2; place/\tiyﬂ ap%

PR R R R

11p.2) —(placentimeg) 12. 11p.2j appointment 24.
11,2 -place 13. 11p.27—time 16.
11, Ojplace 14. 11p Optime— Ojtime 17,

11,.2j place 15.

1.1, ~Optime  18.

11,2, —time 19. 11, Ojtime  22.
11, Optime 20. 11p.2) time 23.
11,2, time 21.

Fig. 4. Proof of O; 0, appointment usingathrepresentation

In a similar manner the tableaux proof f@i (2) usingraphrepresentation where
the accessibility relations are represented by means offadicie and separate graph of
named nodes is given in Hig.6. Each node is associated wihat prefixed formulae
and choice allows any inclusion axiom to be interpretedrasvaiting ruleinto the path
structure of the graph. The proof uses the rules given ifBFighich is often referred
to as the Smullyan-Fitting uniform notation. We will be ugithis notation in the next
section for ouKEM tableaux system. The proof fdd (2) as givenlih [3] runs asfed.
Steps 1-4 are from Fi{g.2 and 5 is the first conjunct®df (2). Ysirrule we get items
6 and 7 (from 5) and 8 and 9 (from 6). We get 10 from 7 using axfgnn Figld and
p-rule in Fig[®. Similarly 11 is from 9 vids andp-rule. By making use of the-rule
in Fig[d we get 12 (from 4 and 10) and 13 (from 12 and 11). 14aladare from 13
usingB-rule (“a” and “b” denote the two branches created by theiapppbn of 3-rule).
Branch “a” (14a) closes with 8. Applying-rule again we get 15ba and 15bb from 14b
(“ba” and “bb” denote the two branches created by the apipdinaf 3-rule). Applying
v-rule we get 16ba (from 3 and 10) and 17ba (from 16ba and 1&ndbr“ba” closes
because of 15ba and 17ba. We get 16bb from 10 via a¥igin Figld andrr-rule in
Fig[H. Similarly from 2 and 16bb by usingrule we get 17bb. We get 18bba and 18bbb
from 17bb by applying thg8-rule (“bba” and “bbb” denote the branches created by
the 3-rule). By usingv-rule we get 19bba (from 18bba and 11). Branch “bba” (19bba)
closes with 15bb. From 18bbb usingrule we get 19bbb and 20bbb. From 10 and



20bbb via axiomA; (in Figld) andp-rule (in Figl3) we get 21bbb. By applyingrule
to 1 and 21bbb we get 22bbb as a result of which the branch “bloises (22bbb and
19bbb).

1 w-a a-rule
@ W:ag

W:ap
2) w:p B-rule

w:B|w: B

W: Vi Wow ) .
3) Wv-rule wherewp;w is availableon the branch
(4) W I7'r rule wherew is newon the branch

w P

W piw

oo W 105, W
(5) WP W\; LPsn p-rule wherew,...,w,,_, arenewon the branch and
Wiy 1 Dil"'Dind)‘}Di’l"'Di’m(pEA
Wh_1Pi, W

a o |az | |B B |B
T@OAY) TOTY| F(OAY) FOIFY| Vi [wo | [T |To
Fovy) FolFy| [T(OVY) T Ty TOid|To | |FOi¢|F
Fo—-WTOFY| T(O—Y)FOIT Y| [FOiPIF] [TOiPT ¢
F(-¢) [To[To[[T(=¢) [F|F¢[(© 0-(d) -

(@) A-formulae (b) V-formulae  formulae  formulae

Fig. 5. Tableaux rules based on uniform notation for propositiomelsion modal log-
ics. [3].

It should be noted that axiom schemas likg. .., As of Exampld® given in Fid12
belong to the class of axioms calledtlusion axiomsln particular they belong to axiom
sets of the form(Jj, ... Oj, — Oy ... Oy (in > 0,if, > 0), which in turn characterise the
class ofnormal modal Iogics:ahedinclusion modal logicsAs shown in[[38], for each
axiom schema of the above type the correspondintysionproperty on theaccessi-
bility relation can be given as

RiloRizo-"RinQRi’loRi’z"'oRi{n )

where ©” denotes the relation compositi®, o Ri, = {(w,w’) € W x W | 3w € W such
that (w,w') € R, and(w,w") € Ri,}. This inclusion property is used to rewrite items
7. (WoRjonnw1) and 9.(wiRpetew2) Of the proof given in Figll6 so as to derive a new
path(WoR petev3) and(wsRjonnW2) as in items 10. and 11. The corresponding tableaux
rule for this property is given gs-rule (5) in Figlb. Also, the type of interaction axiom
schemas of Exampld 2 involves the interaction betweerséimee mental attitudef
different agentsThere is also another type where there is interaction btdiéferent
mental attitude®f the same agentThe interaction axioms given ifl(1) is of the later



type. In the coming sections we will show that tKEM tableau can deal with both
types of interaction axioms.

1. wp: TOptime 14b. wsp : F(placeA time)
2. Wp: TOw(Optime— Ojtime) 15ba. ws: F place
3. wp: TOpOjplace 16ba. ws: TOjplace
4. wp: TOpOj(placeAtime— appointment 17ba. w, : Tplace
5. wp: FOjOpappointment X
6. wi: FOpappointment 15bb. ws : Ftime
7. WoR johnW1 16bb. WRyifeWs
8. wy: Fappointment 17bb. w3 : T(Optime— O;time)
9. WlRpeterW2 18bbaws: T I:thime
10. WoR peteMV3 19bba.ws : Ttime
11. W3R johnW2 X
12. ws: TOj(placentime— appointment  18bbb.ws : FOptime
13. wp: T (placeAtime— appointment 19bbb.w, : Ftime
1l4a.wy : T appointment 20bbb W3R peteVs
X 21bbb. WORpeterW4
22bbb.wy : T time
X

Fig. 6. Proof of 00 usinggraphrepresentation.

As pointed out in[[B], the main difference between the tweetypf tableaux, (graph
and path), is in the use of-rule. In the case opath representation one needs to use
a specificv-rule for each logic as can be seen from[Hig.3. These rules traprop-
erties of the accessibility relations so as to express cexmglations between prefixes
depending on the logic. Whereas in the casgraph representation the accessibility
relations are given explicitly. Also, it has been pointedliai3] that the approach based
on path representation can be used only for some subclaksesusion axioms and
therefore difficult to extend the approach to the whole ctdsaulti-modal systems.

4 Labelled Tableau for Fibred MMA Logic

In this section we show how to adapEM , a labelled modal tableaux system, to deal
with the fibred combination of multimodal agent logics. Ibddled tableaux systems,
the object language is supplemented by labels meant tos@preemantic structures
(possible worlds in the case of modal logics). Thus the fdasof a labelled tableaux
system are expressions of the foAn i, whereA is a formula of the logic andis a
label. The interpretation ok : i is thatA is true at (the possible world(s) denoted hy)

KEM ’s inferential engine is based on a combination of standaldeaux linear
expansion rules and natural deduction rules supplementad hnalytic version of the
cutrule. In addition it utilises a sophisticated but powéldbel formalism that enables
the logic to deal with a large class of modal and non-claskigics. Furthermore the
label mechanism corresponds to fibring and thus it is passillefine tableaux systems
for multi-modal logic by a seamless combination of the (taltlpaux systems for the
component logics of the combination.



It is not possible in this paper to give a full presentatioik&M for fully fledged
multimodal agent logics supplemented with the interactivioms given in Exampléd 2.
(for a comprehensive presentation se€ [10]). Accordingdywill limit ourselves to a
single modal operator for each agent and we will show how svaxtterise the axioms
and the interaction of examle 2.

4.1 Label Formalism

KEM used abelled FormulagL-formulas for short), where dn-formula is an expres-
sion of the formA : i, whereA is a wif of the logic, and is a label. For fiboredMMA
(from now onFMMA ) we need to have labels for various modalities (belief, réesi
intention) for each agent. However, as we have just exptaivewill consider only one
modality and thus will have only labels for the agents.

The set of atomic label§);, is then given as

_ i
= UieAgt @,

whereAgt is the set of agents. Evel@' is partitioned into two (non-empty) sets of
atomic labels®i = {w}, W, ...} the set of constants of typeand®, = {W, Wj,...}
the set of variables of tydeWe also add a set of auxiliary un indexed atomic laldefts
again partitioned into variable®) = {W;,Ws,...} and constant®4 = {wy,ws,...},
that will be used in unifications and proofs.

Definition 1 (labels) A label ue O is either (i) an atomic label, i.e., & 01 or (i) a
path term(u’, u) where (iia) U € ®c U @y and (iib) ue @c or u= (V,v) where(V,v)
is a label.

As an intuitive explanation, we may think of a lalet ¢ as denoting a world (given
one), and a label € @, as denoting a set of worldarfyworld) in some Kripke model.
Alabelu = (V,v) may be viewed as representing a path frota a (set of) world(sy
accessible fromv (the world(s) denoted by).

For any labelu = (V,v) we shall callv the headof u, v the bodyof u, and denote
them byh(u) andb(u) respectively. Notice that these notions are recursivey (toere-
spond to projection functions): B(u) denotes the body af, thenb(b(u)) will denote
the body ofb(u), and so on. We call each ofu), b(b(u)), etc., asegmenbf u. The
length of a label, £(u), is the number of atomic labels in &!(u) will denote the seg-
ment ofu of lengthn and we shall ush"(u) as an abbreviation fd¥(s"(u)). Notice that
h(u) = h™(u). Letu be a label and/ an atomic label. We us@/;u) as a notation for
the label(u’,u) if U’ # h(u), or for u otherwise. For any label, ¢(u) > n, we define the
counter-segment-of u, as follows (fom < k < ¢(u)):

e"(u) = h(u) x (-~ x (W(u) x (-~ x (h""(u), wo))))

wherewp is a dummy label, i.e., a label not appearingiifthe context in which such
a notion occurs will tell us whatyy stands for). The counter-segmantlefines what
remains of a given label after having identified the segmeéletrmthn with a ‘dummy’

labelwg. The appropriate dummy label will be specified in the appilices where such



a notion is used. However, it can be viewed also as an indepgiatbmic label. In the
context of fibringwy can be thought of as denoting the actual world obtained \ga th
fibring function from the world denoted s} (u).

Example 3.Given the labeli = (W, (WX, (w}, (WJ,w))))), according to the above def-
initions its length¢(u) is 5, the headh(u) is W, the bodyb(t) is (WK, (w), (WJ,w))),
the segment of length 3 8(u) = (Wé, (sz ,Wi)), and the relative counter-segment-3 is
¢3(u) = (W, (W, o)), wherewp = s*(u) = (w), (W), w}).

To clarify the notion of counter-segment, which will be ugedjuently in the course
of the present work, we present, in the following table tisedif the segments af in
the left-hand column and the relative counter-segmentsamight-hand column.

suy=w ct(u) = (wh, (VA (w3, (WY, wo))))
S(u) = (Wo,wy) C2(u) = (W, (WK, (Wh, wo)))

§(U) = (Wé’ (W217WJ1)> . CS(“) = (W47 (W,?l;(’WO»

S (u) = (WA, (w3, (W3, w))) € (u) = (W, wo)

s(u)=u S (u) = wo

So far we have provided definitions about the structure ofdhels without regard to
the elements they are made of. The following definitions tllconcerned with the
type of world symbols occurring in a label.

We say that a label is i-preferrediff h(u) € @'; a labelu is i-pureiff each segment
of u of lengthn > 1 isi-preferred. Thus when we consider the labef ExampldB then
uisi-preferredb(u) is k-preferred and®(u) is j-pure and consequentypreferred. We
willuse ™', i € Agt, for the set of-pure labels.

4.2 Label Unifications

The basic mechanism ¢dEM is its logic dependent label unification. In the same
way as each modal logic is characterised by a combinationagfainaxioms (or se-
mantic conditions on the modelkEM defines a unification for each modality and
axiom/semantic condition and then combines them in a reeuend modular way.
In particular we use what we call unification to determine thire the denotation of
two labels have a hon empty intersection, or in other termstiadr two labels can be
mapped to the same possible world in the possible worldssgrea

The second key issue is the ability to split labels and to waitk parts of labels.
The mechanism permits the encapsulation of operations lotagels. This is an im-
portant feature that, in the present context, allows us tetate unifications and fibring
functions. Given the modularity of the approach the firsp siethe construction is to
define unifications (pattern matching for labels) corresjirmmto the single modality in
the logic we want to study.

Every unification is built from a basic unification defined émrhs of a substitution
p : 0y — O such that:

Pl
@, — O for everyi € Agt
@0



The substitutiorp is such that every constant is mapped to itself, while thepimapof
variables depends on their types. For a variable of type Agt, the variable is mapped
to an arbitranyi-pure label, but this restriction is dropped for auxiliagriables, thus
any label can be associated to an auxiliary variable.

Accordingly, we have that two atomic (“world”) labelsandv o-unify iff there is
a substitutiorp such thafo(u) = p(v). We shall uséu;v]o both to indicate that there
is a substitutiorp for u andv, and the result of the substitution. Tlreunification is
extended to the case of composite labels (path labels) lasviol

i:jlo = kit 3p:h(k) = p(h(i)) = p(h(j)) andb(k) = [b(i);b(j)]o

Clearly o is symmetric, i.e.[u;v]o iff [v;u]o. Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent comtjmri of the elements of
the result of the unification, and variables can be freelwanesd without affecting the
result of a unification, and the-unification of any two labels can be computed in linear
time [13].

We are now ready to introduce the unifications corresportditite modal operators
athand, i.e.Jy, O andO, characterised by the axioms in Figlife 2. We can capture the
relationship between,, andT, by extending the substitutigmby allowing a variable
of typew to be mapped to labels of the same type and of fype

pY W%y e OWuDP

Then the unificatioro¥ is obtained from the basic unificatian by replacingp with
the extended substitutignt¥. This procedure must be applied to all pairs of modalities
01,0, related by the interaction axiomy ¢ — Ox¢.

For the unifications fofl, andd; (0P anda’l) we assume that the labels involved
arei-pure. First we notice that these two modal operatorsS#renodalities thus we
have to use the unification for this logic.

[u;v]a® if £(u) = £(v)
[uvjo = { [uv]oT if £(u) < ﬁ(v), (u) € @ (4)
<

It is worth noting that the conditions on axiom unificatiome aeeded in order to pro-
vide a deterministic unification procedure. Thié ando* are defined as follows:

"M (u);v]o if £(u) > £(v), an
uvjo" = vn> f(V [h"(u) ( ))]o = [h(u);h(v)]o
’ [u; "YW (v)]aif £(u) > £(v), and
vn = ((u), [h(u); h(v)]o = [h(u);h(v)]o

The above unification allows us to unify to labels such thatsbgment of the longest
with the length of the other label and the other label unifgvided that all remaining

elements of the longest have a common unification with thel lnéshe shortest. This

means that after a given point the head of the shortest ig/aliwaluded in its extension,
and thus it is accessible from itself, and consequently we heflexivity.



Example 4.For the notion ofo " -unification, take for example the labels
u= (Wg,(Wlp,WE)) V= (Wga(WZlov(WgaW]r_))))

Here (W), wh]o = [wh;w8]o. Then the two labels T -unify to (wh), ( WZ, % ). This in-
tuitively means that the world#, accessible from a sub-pastv) = ,(wh,wh)),
after the deletion dwp fromv, is accessible from any pathwhich turns out to denote
the same world(s) as(u); in fact the step fronwg to sz is irrelevant because of the
reflexivity relation of the model.

In this case we have that the shortest label unifies with thensat with the same
length of the longest and that the head of the shortest ialvariA variable stands for
all worlds accessible from the predecessor of it. Thus,rgiv@nsitivity every element
extending the segment with length of the shortest is addessom this point.

Example 5.For the notion ofo*-unification, take for example the labels

= (W5, (w3, wy) V= (W, (W, (wg, (W5, 1))
Heres'\) (v) = (wj, (WZJ,Wl)) Thenu andv a-unify to (wl, (w, (W, (w), wl)))) since
;@ (v)]o = (WS, (wh,w)); (wh, (W) wh))]o . This intuitively means that all the
worlds accessible from a sub-patf) (v) of v are accessible from any patiwhich
leads to the same world(s) denoted Y (v HereW3 stands for the set of worlds
accessible fronwz, Thenwy, after the unification oth,wl) and (WZ,Wl) is one of
such worldsw;, is accessible frorw3 and, via transitivity, frorrw2 The same fowé.

Then a unification corresponding to axiom A6 from Exaniple 2 is

c™(v) if h(u) € cDV andc"(v) is p-pure, and
h’( )— 1( ) € fD\E’ andc™(s"(v)) is j-pure, and
[$972(u);s"(v)] o
c™(u) |f h(v) € cDV andc"(u) is p-pure, and
v)—1
[s™

[u; VoS =
h‘V=1(v) ¢ fD\’,J andc™(s(u)) is j-pure and

wo = [s"(u); 'V 2(v)]o

This unification allows us to unify two labels such that in amehave a sequence of a

variable of typep followed by a variable of typ¢ and a label where we have a sequence
of labels of typej followed by a sequence of labels of type

Example 6.As an example o&>.i-unification consider the labels

= (W, (W, (wh. w¥)) V= (g, (W}, (wh, (WP, wi)))



Given the two labelsi andv we have that the last two elementswoére, in this order,
a variable of typej, h(u) € @), and a variable of typ@, h3(u) € @. Thus we have
to check that there are two sequenceg-giure andj-pure labels irv. Clearlyct(v) =
(W5, wo) is p-pure andc?(s*(u)) = (Wj, (W}, wo)) is j-pure. Thus the last thing to do
is to verify whethers?(v) ands'(")=2(u) = s?(u) o-unify; it is immediate to verify that

[S%(u); (v)]o. Thus[u; VoS = (wh, (W, (W, (wh, wi)))).

The unification ford, andOj are just the combination of the three unifications
given above. Finally the unification for the logdic defined by the axioms A1-A6 is
obtained from the following recursive unification

e [ [uvio™]
o = { [O™(w);¢"(v)] 0*P) wherewo = [s"(u);s"(v)] oL

o"P1 is the simple combination of the unifications for the threedalmperators. Hav-
ing accounted for the unification we now give the inferendesused ilKEM proofs.

Example 7.To illustrate theoi -unification consider the labels

u= (Wév (WJZ’ (W1J ) (Wlpvw\iv)))) V= (WZJ ) (W:IF_)’ (levw\iv)))

A simple inspection of the label shows that none of the otiméfiaations can be used
here to unify the two labels. The only way is to split the labil appropriate seg-
ments and counter-segments and then useothenification. We split the labels as
follows c3(u) = (W}, (W), Wp)) and c?(v) = (W), wp). Now it is easy to verify that
[c3(u);c?¥]g*. On the other hand we have th&(u) = (W}, (W, w¥)) ands?(v) =
(wi, W), and[s*(u); $%(u)]o™i. Thus we can identifyvp with [s3(u); $%(u)]o™i, and
then|u;v]oy.

Notice that the unification mechanism, in particular thetspg of the labels into
segments and counter-segments and the use of subunifcétiothem follows the
same idea as fibring. As the fibring function takes us to a newaispecific to the
modal operator we evaluate, the decomposition of the utidicallows us to reduce
the unification of complex labels with atomic labels of mpikitypes to unifications of
pure labels, where we can use the unifications for the comydogics.

4.3 Inference Rules

For the inference rules we use the Smullyan-Fitting undyiotation [7].

a-4 (a) 5c:_lj/(i =1,2)
ot 0 (p)
az:u Bs-i : [u;v]oL

The a-rules are just the familiar linear branch-expansion rolethe tableau method.
The -rules are nothing but natural inference patterns such adusl®onens, Modus



Tollens and Disjunctive syllogism generalised to the madak. In order to apply such
rules it is required that the labels of the premises unify taedabel of the conclusion
is the result of their unification.

viiu v) m:u
vh: (Wh, ) 0 (Wh, u)

whereW, is a new label. The and 7t rules are the normal expansion rule for modal
operators of labelled tableaux with free variable. Theititn for the v rule is that if
O;A is true atu, thenA is true at all worlds accessible v from u, and this is the
interpretation of the labeM/,, u); similarly if O;A is false atu (i.e., ~BA is true), then
there must be a world, let us say, accessible fronu, where—A is true. A similar
intuition holds whernu is noti-preferred, but the only difference is that we have to make
use of the fibring function instead of the accessibility tiela

(1)

A:u
—-A:v
AU | oA u(PB) » [if [u;v]aL](PNC)
The Principle of Bivalenc&PB) represents the semantic counterpart of the cut rule of
the sequent calculus (intuitive meaning: a formAilis either true or false in any given
world). PB is a zero-premise inference rule, so in its umietsd version can be applied
whenever we like. However, we impose a restriction on itdiegfion. PB can be only
applied w.r.t. immediate sub-formulas of unanalygérmulas, that is3 formulas
for which we have no immediate sub-formulas with the appgetprdabels in the tree.
The Principle of Non-ContradictioPNC) states that two labelled formulas ane-
complementary when the two formulas are complementaryfaidlabelso -unify.
Itis possible to show that the resulting calculus is sourdi@mplete for the class
of (fibred) models corresponding to the (fibred) logic deiaed by the axiom in Fid12;
see|[10] for the techniques needed to prove the resultsc@ltitat the Knowledge base
of Fig[d does not specify whether the modal operators are aloomnot. While this
could be a problem for other combination techniques anatab! systems, this does
not affect fibring, and&KEM . Itis possible to differentiate normal and non-normal moda
logic in KEM based on additional conditions on the substitution fumgtipsee [14].

4.4 Proof Search

LetI = {Xi,...,Xm} be a set of formulas. Thefr is aKEM -tree forI" if there ex-
ists a finite sequence”7:, %, ..., 7n) such that ()71 is a 1-branch tree consisting of
{X1:t1,..., Xm: tm}; (i) h =7, and (iii) for each < n,.Z% 4 results from.%; by an
application of arule oKEM . A branch@ of aKEM -tree.7 of L-formulas is said to be
o, -closedif it ends with an application dPNC, open otherwise. As usual with tableau
methods, a sat of formulas is checked for consistency by constructirgeaM -tree
for I'. Moreover we say that a formulais a KEM -consequence of a set of formu-
lasl™ = {Xq,..., %} (I Fkem ) A) if a KEM -tree for {X; : ug,...,Xn : Un,~A: v} is
closed using the unification for the lodic wherev € @2, andu; € &). The intuition



behind this definition is thak is a consequence 6f when we takd™ as a set of global
assumptiong]7], i.e., true in every world in a Kripke model.

We now describe a systematic procedureK&M by defining the following no-
tions. Given a branch of aKEM -tree, we call arL-formulaX : u E-analysed ing if
either (i) X is of typea and botha; :t andas : u occur ing; or (ii) X is of typef3 and
one of the following conditions is satisfied: (a)ﬁf : v occurs in6 and[u;v]a, then
alsof, : [u;vjo occurs in@, (b) if BS : v occurs in@ and[u;v]o, then alsB; : [u;v]o
occurs in@; or (ii) X is of typeu andpp : (U,u) occurs inf for some appropriate
U of the right type, not previously occurring th We call a branct® of a KEM -tree
E-completedf every L-formula in it is E-analysed and it contains no complementary
formulas which are not -complementary. We say a bran6hof a KEM -tree com-
pletedif it is E-completed and all the-formulas of typef3 in it either are analysed or
cannot be analysed. We calk&M -treecompletedf every branch is completed.

The following procedure starts from the 1-branch, 1-node tonsisting ofX; :
u,...,Xm : v} and applies the inference rules until the resultifigM -tree is either
closed or completed. At each stage of proof search (i) we sh@am open non com-
pleted branct®. If 8 is notE-completed, then (ii) we apply the 1-premise rules uftil
become<£-completed. If the resulting brand is neither closed nor completed, then
(iii) we apply the 2-premise rules unfl becomeg-completed. If the resulting branch
@’ is neither closed nor completed, then (iv) we choosk-farmula of type which is
not yet analysed in the branch and apPBso that the resultingS-formulas are3; : U/
andB¢ : U (or, equivalentlyB; : U andBS : u'), whereu = U/ if uis restricted (and al-
ready occurring wheh(u) € @), otherwisal' is obtained fromu by instantiatingh(u)
to a constant not occurring i; (v) (“Modal PB") if the branch is notE-completed
nor closed, because of complementary formulas which arginobmplementary, then
we have to see whether a restricted label unifying with bbéhlabels of the comple-
mentary formulas occurs previously in the branch; if sucéiteel exists, or can be built
using already existing labels and the unification rules; the branch is closed, (vi) we
repeat the procedure in each branch generatdeBy

It is possible to give termination conditions fBIEM -trees resulting in canonical
trees. Essentially a canonical tree will examine each coatiain of a formula and label
only once, and it produces finitely many formulas and labEtals, if one proves that
an unification for an axiom terminates and satisfies somenadide algebraic proper-
ties, then theKEM -trees for that axiom terminate. Thus the proof search KEM
tableau for a combination of logids, . ..,L, terminates if each; has a terminating
KEM search procedure, and connecting axioms have unificatadizfysng some safe
conditions. A thorough analysis of the termination comfit forKEM and fibring is
beyond the scope of this paper and it is left for future regdedn particular we want
to study the extent of the termination conditions for canahtrees and label structures
developed in[[12].

Fig[d. shows &KEM tableaux proof using the inference rules in secfion 4.3 and
following the proof search mentioned above to solve thedmsjunct of [2). The proof
goes as follows; 1. is the negation of the formula to be provée formulas in 2-5 are
the global assumptions of the scenario and accordinglytinest hold in every world
of every model for it. Hence we label them with a variaégthat can unify with every



1. FO;Opappt W 9. T(placentime— appt) (le,Wlp,Wo)
2. TOp0j(placeAtime— appt) Wy 10. Fplacentime (W, wi, wo)
3. TDW( ptime— O;time) Wo 11. TOptime— Ojtime  (W)",wp)
4. TOpOjplace W 12.TOjplace (W, wo)
5. TOptime W 13. Tplace (W, W, wio)
6. FOpappt (wl wo)  14.Ftime (wh, wi, wo)
7. Fappt (w l7w1,wo) 15. TOptime (Wi, wo)
8. TOj(placentime— appt) (Wl Wp) 16.Ttime (Wsp,wjl,wo)
X

Fig. 7. Proof of 00, usingKEM representation.

other label. This is used to derive 12. from 11. and 5. usifigale, and for introducing
15.;6.isfrom 1., and 7. from 6. by applyimgrule. Similarly we get 8. from 2., 9. from
8. usingv rule. 10. comes from 9. and 7. through the use of modus tolkspglying

v rule twice we can derive 11. from 3. as well as 13. from 12. Tigtopropositional
reasoning we get 14. from 10. and by usingule on 15. we get 16. (14. and 16.) are
complementary formulas and this results in a closed taklbagause the labels in 14.
and 16. unify, denoting that the contradiction hald¢he same world

5 Concluding Remarks

In this paper we have argued that multimodal logics of ag@nksA ) can be explained
in terms of fibring as combination of simpler modal logicsentwe have outlined three
labelled tableaux systems (path, graph and unificatiom}e&ch of the method we have
seen how they can deal with the Friend’s puzzle as a way taateatheir features.

In the path approach, as mentioned earlier, we need to us#isperule for each
logic whereask EM uses only on@-rule and unification is logic dependent. The graph
approach on the other hand does not require, in general,emyuie, since it uses the
semantic structure to propagate formulas to the apprepladels. It is then suitable
for an approach based on fibring, since the relationshipsd®et two labels can be
given in terms of fibring. But then the advantagek@éM over the graph approach is
in the full flexibility of the application of the rules. In thgraph based approach one
need to apply ther-rules (or thep-rule) before thev-rules whereas ilKEM no such
restrictions exist. AIs.KEM is more suited for fibring because the mechanism it uses
to check and manipulate labels during model generatiorogedo semantic fibring.

KEM, in general similar to the graph approach, does not need ldgpendent
rules, however, similar to the path approach, it needs ldgpendent label unifications.
We have seen that the label algebra can be seen as a form n§fjit], thus simple
fibring does not require special attentionKHiEM ; therefore it allows for a seamless
composition of (sub)tableaux for modal logics. The labgkhka contrary to the graph
reasoning mechanism is not based on first order logic andcgnusleal with complex
structure and is not limited to particular fragment. Ind&&M has been proved able
to deal with complex label schema for non-normal modal Isdgica uniform wayl[14]
as well as other intensional logics such as conditionatl®@]. For these reasons we
believe thaKEM offers a suitable framework for constructing decision pidieres for



multi-modal logic for multi-agent systems. As we only ddéised the static fragment of
MMA logics, (no temporal evolution was considered), the futuek is to extend the
tableaux framework so as to accommodate temporal modalitie
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