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Abstract. In this paper we show how to extend KEM, a tableaux-like proof
system for normal modal logic, in order to deal with classes of non-normal modal
logic, such as monotonic and regular, in a uniform and modular way.

1 Introduction

Non-normal modal logics have a long tradition, however, despite their heritage thay
have been the subject of a very few recent attempts of mechanization [6, 9, 8]. One of the
main reasons for this underdeveloppement is that modern automated proof techniques
are mainly semantic based, and non-normal modal logic have more complex structures
than normal modal logics. Nevertheless Hilbert systems for non-normal modal logic are
very close to those for normal modal logics: they lack the axiom 2> or the equivalent
rule of necessitation (A/2A).

The second objection to non-normal modal logic we would like to answer to is that
concerning their possible applications. The necessitation rule is a very strong inference
rule and it comports significant consequences; for example under the epistemic inter-
pretation of the modal operators, it implies omniscience: the agent must be an ideal
agent, i.e., it must be a perfect reasoner and it must have unlimited computational abil-
ity. This seems to be a very unrealistic assumption so some scholars (see, among others,
[4, 12, 11, 13] suggested to use non-normal modal logics to model epistemic reasoning.
On the other hand one could argue this is not the case with more exact discipline such
as mathematics. However this is not the case: it is well known that provability in Peano
arithmetic can be represented with the normal modal logic GL, but some classes of
arithmetic formulas (i.e., Σ1-sentences) are represented by a non-normal modal logic
[2].

It is not the aim of this work to investigate applications of non-normal modal logics.
Instead we want to present a tableau-like proof system (called KEM) for classes of
non-normal modal logics, namely: regular and monotonic. The main feature of KEM is
its label formalism studied to simulate the semantics of modal logics. The differences
between the various classes of modal logics are embedded in the definition of the basic
unification; however the various extensions (in each class) arising from modal axioms
are dealt in a uniform way wrt the various classes.

In Section 1 we shall resume briefly the basic of non-normal modal logic, then in the
next sections we shall describe KEM in details. More precisely in Section 4 we intro-
duce the label formalism, then in Section 5 we describe the unification mechanism for
dealing with the various classes of non-normal modal logic, and in Section 6 we present
KEM inference rules. Finally in Section 7 we outline the soundness and completeness
proofs.
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2 Non-Normal Modal Logics

We shall consider only modal logics extending classical propositional logic, and where
the modal operators 2 and 3 are the dual of each other (i.e., 2 ↔ ¬3¬).

The rules we use to extend classical propositional logic are:

` (A1 ∧ · · · ∧ An) → A

` (2A1 ∧ · · · ∧ 2An) → 2A
n ≥ 0 (RK)

and, in particular, we shall consider

` A

` 2A
(RK, n = 0) (Nec)

` A → B

` 2A → 2B
(RK, n = 1) (RM)

` (A ∧ B) → C

` (2A ∧ 2B) → 2C
(RK, n = 2) (RR)

We can now classify modal logics according to their deductive power.

Definition 1. A modal logic Σ is:

1. monotonic iff it is closed under RM;
2. regular iff it is closed under RR;
3. normal iff it is closed under RK.

We can now formulate the relationships between the various classes of modal logics

Theorem 1.

1. Every regular logic is monotonic;
2. Every normal logic is regular, and therefore monotonic.

Proof. For the proof see [3, 235].

According to [3] the smallest regular logic is called R, the smallest monotonic logic M,
and the smallest normal logic K.

The semantic of non-normal modal logic is given in terms of neighborhood seman-
tics. A model is a structure

M = 〈W, N, v〉

where W is a set of possible worlds, N is a function from W to P(P(W )) and v is an
evaluation function: v : WFF × W 7→ {T, F}, where WFF is the set of well-formed
formulas.

Before providing the evaluation clauses for the formulas we need to define the no-
tion of truth set.

Definition 2. Let M be a model and A be a formula. The truth set of A wrt to M ,
‖A‖M is thus defined:

‖A‖M = {w ∈ W : v(A, w) = T}



The evaluation clauses for atomic and boolean formulas are as usual while those for
modal operators are given below.

Definition 3. Let w be a world in M = 〈W, N, v〉

1. w |= 2A ⇐⇒ ‖A‖M ∈ Nw.
2. w |= 3A ⇐⇒ W − ‖A‖M 6∈ Nw.

It is natural to add some conditions on the function N in neighborhood models. The
conditions relevant for the present work are given in the following definition.

Definition 4. Let M be a model. For every world w ∈ W and every proposition A,
and B.

(m) If ‖A‖ ∩ ‖B‖ ⊆ Nw, then ‖A‖ ∈ Nw and ‖B‖ ∈ Nw

(c) If ‖A‖ ∈ Nw and ‖B‖ ∈ Nw, then ‖A‖ ∩ ‖B‖ ∈ Nw.
(n) W ∈ Nw.

According as N in a neighborhood model satisfies condition (m), (c), or (n), we shall
say that the model is supplemented, is closed under intersections, or contains the unit.
When a model is both supplemented and closed under intersections then we shall call it
a quasi-filter; when a quasi-filter contains the unit it is a filter.

We are now able to state the correspondence theorem for non-normal modal logics.

Theorem 2.

1. M is characterized by the class of supplemented models;
2. R is characterized by the class of quasi-filters;
3. K is characterized by the class of filters.

Proof. For the proof see [3, 257]

From now on we shall use |=Σ A to denote that A is valid in the class of model charac-
terizing Σ.

3 KEM

KEM (see [1, 10]) is a labelled analytic proof system based on a combination of tableau
and natural deduction inference rules which allows for a suitably restricted (“analytic”)
application of the cut rule; the label scheme arises from an alphabet of constant and
variable “world” symbols. A “world” label is a world-symbol or a “structured” sequence
of world-symbols we call a “world-path”. Constant and variable world-symbols denote
worlds and set of neighbors respectively (in a neighborhood model), while a world-
path conveys information about access between the worlds in it. We attach labels to
signed formulas (i.e. formulas prefixed with a “T ” or “F ”) to yield labelled signed
formulas (LS-formulas). A LS-formula TA, i (FA, i) means that A is true (false) at
the (last) world (on the path) i. In the course of proofs labels are manipulated in a
way closely related to the modal semantics and “matched” using (specialized, logic-
dependent) unification algorithms.



4 Label Formalism

The set = of labels arises from two (non empty) sets ΦC = {w1, w2, . . . } (the set of
constant world symbols), and ΦV = {W1, W2, . . . } (the set of variable world symbols)
through the following

Definition 5.

= =
⋃

1≤i

=i where =i is :

=1 = ΦC ∪ ΦV ;

=2 = =1 × ΦC ;

=n+1 = =1 ×=n, n > 1.

That is, a world-label is either (i) an element of the set ΦC , or (ii) an element of the set
ΦV , or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC∪ΦV and (iiib) k ∈ ΦC or k = (i′, i)
where (i′, i) is a label. From now on we shall use i, j, k, . . . to denote arbitrary labels.

For any label i = (k′, k) we shall call k′ the head of i, k the body of i, and denote
them by h(i) and b(i) respectively. Notice that these notions are recursive (they corre-
spond to projection functions): if b(i) denotes the body of i, then b(b(i)) will denote the
body of b(i), b(b(b(i))) will denote the body of b(b(i)); and so on. We call each of b(i),
b(b(i)), etc., a segment of i. Let s(i) denote any segment of i (obviously, by definition
every segment s(i) of a label i is a label); then h(s(i)) will denote the head of s(i).

For any label i, we define the length of i, `(i), as the number of world-symbols
in i, i.e., `(i) = n ⇔ i ∈ =n. sn(i) will denote the segment of i of length n, i.e.,
sn(i) = s(i) such that `(s(i)) = n. We shall use hn(i) as an abbreviation for h(sn(i)).

For any label i, `(i) > n, we define the countersegment-n of i, as follows:

cn(i) = h(i) × (· · · × (hk(i) × (· · · × (hn+1(i), w0))))(n < k < l(i))

where w0 is a dummy label. In other words the countersegment-n of a label i is the
label obtained from i by replacing sn(i) with a dummy world symbol.

5 Unifications

The key feature of KEM is that in the course of proof labels are manipulated in a way
closely related to the semantics of modal operators and “matched” using a specialized
unification algorithm. That two labels i and k are unifiable means, intuitively, that the
set of worlds they “denote” have a non-null intersection. The basic element of the uni-
fication is the substitution function which maps each variable in labels to a label, and
each constant to itself.

The label unification is the core of KEM. The unifications for the various logics,
as usual, are defined from a substitution and imposing conditions on the substitution
produces the basic unification for the classes of logics we are dealing with.

Let ρC be a substitution function defined on labels. We first build a basic unification
for the classes of logics, then we define the unifications corresponding to the various



modal axioms relying on basic unifications, finally we compose the axiom unifications
into the unifications for the corresponding logics.

For two labels i and j, and a substitution ρ, if ρ is a unifier of i and j then we
shall say that i, j are σC-unifiable. We shall use (i, j)σC to denote both that i and j are
σC-unifiable and the result of their unification. In particular

∀i, j, k ∈ =, (i, j)σC = k iff ∃ρC(ρC(i) = ρC(j) and ρC(i) = k)

On this basis we may define several specialised, logic-dependent notions of σ-unification
characterizing the various modal logic. The first step in order to define the unifications
characterizing the various modal logic is to define unifications (axiom unifications) cor-
responding to the modal axioms. Then in the same way a modal logic is obtained by
combining several axiom we define combined unifications, that, when applied recur-
sively produce the logic unifications.

The general form of a σCA unification is:

(i, j)σCA ⇐⇒ (fA(i), gA(j))σC and CA

where fA and gA are given logic-dependent functions from labels to labels and CA is a
set of constraints (see [10, 1, 7] for example of logic unifications).

A combined unification σCA1···An is generally defined as the combination of the
axiom unifications for the axioms characterizing the logic

(i, j)σCA1···An ⇐⇒















(i, j)σCA1 CA1

...
...

(i, j)σCAn CAn

Applying recursively the above σCA1···An unification we obtain the logic unification
σΣ .

(i, j)σΣ =

{

(i, j)σCA1···An

(cn(i), cm(j))σCA1 ···An

where w0 = (sn(i), sm(j))σΣ .
We shall denote the constants occurring in labels obtained as the result of an unifi-

cation with ∗, and we shall denote the set of such constants by Φ∗
C .

It is worth noting that the variables can be mapped on more than a label in the course
of a proof; imposing restriction on the quantity of labels a variable can be mapped to
in the course of a proof we are able to characterize the classes of modal logic at hand.
More precisely

Monotonic Logic

ρM : ΦV 7→ =branch injective

1Φ∗

C

The condition for monotonic logics states that a variable can be mapped to a unique
label in a branch of a KEM-proof, while constants are mapped on themselves only if
they are the result of a unification. It is worth noting that it is now possible to map a
variable on different labels if they occur in distinct branches.



Regular Logic

ρR : ΦV 7→ =

1Φ∗

C

For regular logics the restriction on variables is released, while that on constants still
obtains.

Normal Logic

ρK : ΦV 7→ =

1ΦC

The substitution for normal logics is obtained from that for regular by dropping the
restriction on constants.

6 Inference Rules

In displaying the rules of KEM we shall use Smullyan-Fitting α, β, ν, π unifying no-
tation [6]. If X is an LS-formula, XC denotes the conjugate of X , i.e., the result of
changing the sign of X to its opposite; two LS-formulas X, i and XC , k such that
(i, k)σΣ will be called σΣ-complementary.

α, i

αn, i
[n = 1, 2] (α)

The α rules are just the familiar linear branch-expansion rules of the tableau method.

β, i

βC
n , j

β3−n(i, j)σΣ

[(i, j)σΣ , n = 1, 2] (β)

The β are nothing else than natural inference patterns such as Modus Ponens, Modus
Tollens and Disjunctive syllogism generalized to the modal case. In order to apply such
rules it is required that the labels of the premises unify and the label of the conclusion
is the result of their unification.

ν, i

ν0, (Wn, i)
[Wn new] (ν)

π, i

π0, (wn, i)
[wn new] (π)

ν and π rules allow us to expand labels according to the intended semantics, where,
with new we means that the label does not occur previously in the tree. It is worth
noting that the proviso Wn new is not necessary for normal logics, but this is not the
case for non-normal ones; this is due to the fact that the meaning of Wn wrt to normal



modal logic is the set of worlds accessible from i, while for non-normal modal logic it
denotes a set of neighbors of i, and a world may have several sets of neighbors.

X, i XC , i
[i restricted] (PB)

PB (the “Principle of Bivalence”) represents the (LS-version of the) semantic counter-
part of the cut rule of the sequent calculus (intuitive meaning: a formula A is either true
or false in any given world).

X, i

XC , j

×
[(i, j)σΣ ] (PNC)

PNC (the “Principle of Non-Contradiction”) corresponds to the familiar branch-closure
rule of the tableau method, saying that from a contradiction of the form (occurrence of
a pair of σΣ-complementary LS-formulas) X, i and XC , j on a branch we may infer
the closure of the branch. The (i, j)σΣ in the “conclusion” of PNC means that the
contradiction holds “in the same world”.

As usual with refutation methods, a proof of a formula A of Σ consists of attempting
to construct a countermodel for A by assuming that A is false in some arbitrary model
for Σ. Every successful proof discovers a contradiction in the putative countermodel.
In what follows by a KEM-tree we shall mean a tree generated by the inference rules
of KEM. A branch τ of a KEM-tree will be said to be σΣ-closed if it ends with an
application of PNC. A KEM-tree T will be said to be σΣ-closed if all its branches are
σΣ-closed. Finally, by a Σ-proof of a formula A we shall mean σΣ-closed KEM-tree
starting with FA, i, where i is a constant world-symbol. We shall use `KEM(Σ) A to
denote that there is a Σ-proof of A.

7 Soundness and Completeness

In order to prove soundness and completeness of KEM with respect to the classes of
logics and models of Theorem 2, we have to show that the rules , RM, RR, and RK are
derived rules in KEM. This can be easily achieved by drawing a KEM-proof for them.
Here we just provide the proof for RM in M; the proofs for the remaining rules and
logics are similar.

6. TA → B (w2, w1)
8. TB (w∗

2 , w1)
9. × (w∗

2 , w1)

7. FA → B (w2, w1)
10. B (w∗

2 , w1)
11. ×

1. F2A → 2B w1

2. T2A w1

3. F2B w1

4. TA (W1, w1)
5. FB (w2, w1)

To show that there is a KEM-proof we have to provide a closed KEM-tree for F2A →
2B given that a KEM-tree (B) for FA ↔ B closes. The steps 1–5 are immediate; at



this point we apply PB wrt to A → B, and label (w2, w1). In the left branch we can
apply a β-rule on 4 and 6, thus obtaining 8 and closing the branch. In the right branch
we can repeat the proof for FA → B with label (w∗

2 , w1), and so also this branch is
closed.

D’Agostino and Mondadori [5] have proved that the Modus Ponens (if ` A, and
` A → B, them ` B) is a derived rule of KE, the propositional modulo of KEM.
Moreover they proved that KE is sound and complete with respect to classical proposi-
tional logic.

From the above considerations and Theorem 2 we can conclude

Theorem 3. |=Σ A ⇒`KEM(Σ) A

To prove the second part of the correspondence theorem for KEM, we have to show
that KEM rules and unifications are sound with respect to the appropriate model. To this
end we define some functions mapping LS-formulas on elements of models, according
to the structure of the labels.

Let g be a function from = to P(W ) such that:

g(i) =

{

h(i) = {h(i)} h(i) ∈ ΦC

h(i) = {wi ∈ W : ∃X (X ∈ Ng∗(b(i)) ∧ wi ∈ X )} h(i) ∈ ΦV

where g∗ is a function over g(i); if h(i) ∈ ΦC and `(i) > 1:

g(i) = {h(i)} ⊆ {wi ∈ W : ∃X (X ∈ Ng∗(b(i)) ∧ wi ∈ X )}

Let r be a function from = to
⋃

Nw such that:

r(i) =

{

∅ `(i) = 1

g∗(i1)N g(i2), . . . , g∗(in−1)N g(in) `(i) > 1

Finally let f be a function from the set of LS-formulas to v such that:

f(S A, i) =def v(A, wj) = S

for every wj ∈ g(i).
Let F be a set of LS-formulas and L be the set of labels occurring in F ; the func-

tion gΣ, Σ = M, R, from L to PP(W) produces an Σ-model starting from the LS-
formulas in F .

gΣ(L) = ∀i ∈ L
⋃

g(i), such that ∀i, j, k ∈ L

Σ = M : if g(i) ⊆ g(k) and g(i) ∈ Ng∗(j) then g(k) ∈ Ng∗(j)

Σ = R : if g(i) ∈ Ng∗(j) and g(k) ∈ Ng∗(j) then g(i) ∩ g(k) ∈ Ng∗(j).

A KEM-tree with n branches is a collection of F1, . . . ,Fn where
⋂

Fn 6= ∅ since it
contains at least the origin of the tree.

Lemma 1. For any i, k ∈ = if (i, k)σL then g(i) ∩ g(k) 6= ∅.



Proof. The proof is similar to that given by [1, 10] for normal modal logics.

This lemma shows that if two labels unify, then the result of their σΣ-unification cor-
responds to an element of the appropriate model. In this way, we are able to build the
neighborhood model for the labels involved in a KEM-proof, and so we can check every
rule of KEM in a standard semantic setting:

Theorem 4. `KEM(Σ) A ⇒ |=Σ A.

From theorems 3 and 4 we obtain:

Theorem 5. `KEM(Σ) A ⇐⇒ |=Σ A.

8 Conclusion

In this paper we have provided a uniform and modular automated proof system for
non-normal modal logics. The system enjoys two orthogonal kinds of modularity: the
first one with respect to the substitutions determining the classes of modal logic and the
second one with respect to the unifications corresponding to the various modal axioms.

It is possible to claim that the system here presented is more efficient than the system
proposed in [6]. Such a method takes a direct approach and uses prefixes to keep trace
of the relation among possible worlds. However, it suffers from the drawback of dupli-
cating formulas. It is easy to see that when the duplicate formulas behave disjunctively,
the duplication implies an exponential increase of the complexity. On the other hand the
complexity of KEM unification algorithm is linear (at least for the basic cases), so we
can build examples such that the length of KEM proof is linear while Fitting’s prefix
tableaux has exponential proofs.
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