110 research outputs found

    Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults

    Get PDF
    The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) suffers from voltage and frequency fluctuations due to the stochastic nature of wind speed as well as nonlinear loads. Moreover, the high penetration of wind energy into the power grid is a challenge for its smooth operation. Hence, symmetrical faults are most intense, inflicting the stator winding to low voltage, disturbing the low-voltage ride-through (LVRT) functionality of a DFIG. The vector control strategy with proportional–integral (PI) controllers was used to control rotor-side converter (RSC) and grid-side converter (GSC) parameters. During a symmetrical fault, however, a series grid-side converter (SGSC) with a shunt injection transformer on the stator side was used to keep the rotor current at an acceptable level in accordance with grid code requirements (GCRs). For the validation of results, the proposed scheme of PI + SGSC is compared with PI and a combination of PI with Dynamic Impedance Fault Current Limiter (DIFCL). The MATLAB simulation results demonstrate that the proposed scheme provides superior performance by providing 77.6% and 20.61% improved performance in rotor current compared to that of PI and PI + DIFCL control schemes for improving the LVRT performance of DFIG

    Low Voltage Capability of Generator for Frequency Regulation of Wind Energy System

    Get PDF
    For the extraction of wind energy through a doubly fed induction generator (DFIG), low voltage is major particular essential controlled by the transmission structure executive. Under a structure issue condition, DFIG should remain with respect to the lattice for a particular least period and deal open power support on a case-by-case basis by the Transmission framework administrator. A pleasant control plot involving gear course of action through a superconducting resistance type issue current limiter (R-SFCL) and programming plan based on the rotor reference current direction control system (RRCOCS) with transient voltage control (TVC), is proposed in this paper to address the Low voltage essential. The results got by the proposed procedure are differentiated and RRCOCS and RRCOCS-TVC

    The control of power electronic converters for grid code compliance in wind energy generation systems

    Get PDF
    This research report reviews some of the latest control schemes for the power electronic converters found in modern variable speed wind turbines in order to comply with various grid codes. Various control schemes, in order to comply with low voltage ride-through requirements, active and reactive power control and frequency control, are presented. The report first investigates the South African grid code requirements for wind energy generation, and then makes a comparison to grid codes of countries with significant penetration levels and vast experience in wind energy generation. This is followed by a review of the state of the art in fixed and variable speed wind turbine technologies. The research revealed that Type 3 generators offer significant advantages over others but suffer due to grid faults. Various active control schemes for fault ride-through were researched and the method of increasing the rotor speed to accommodate the power imbalance was found to be the most popular. It was found that Type 4 generators offer the best fault ride-through capabilities due to their full scale converters. The research will assist power system operators to develop appropriate and effective grid codes to enable a stable and reliable power system. The research will also provide turbine manufacturers and independent power producers with a comprehensive view on grid codes and relate them to the associated turbine technologies

    Improved FRT Control Scheme for DFIG Wind Turbine Connected to a Weak Grid

    Get PDF

    Mitigation of Harmonics and Inter-Harmonics with LVRT and HVRT Enhancement in Grid-Connected Wind Energy Systems Using Genetic Algorithm-Optimized PWM and Fuzzy Adaptive PID Control

    Get PDF
    © 2021 Author(s). This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1063/5.0015579The growing installed wind capacity over the last decade has led many energy regulators to define specific grid codes for wind energy generation systems connecting to the electricity grid. These requirements impose strict laws regarding the Low Voltage Ride Though (LVRT) and High Voltage Ride Though (HVRT) capabilities of wind turbines during voltage disturbances. The main aim of this paper is to propose LVRT and HVRT strategies that allow wind systems to remain connected during severe grid voltage disturbances. Power quality issues associated with harmonics and inter-harmonics are also discussed and a control scheme for the grid-side converter is proposed to make the Wind Energy Conversion System insensitive to external disturbances and parametric variations. The Selective Harmonic Elimination Pulse Width Modulation technique based on Genetic Algorithm optimization is employed to overcome over-modulation problems, reduce the amplitudes of harmonics, and thus reduce the Total Harmonic Distortion in the current and voltage waveforms. Furthermore, to compensate for the fluctuations of the wind speed due to turbulence at the blades of the turbine, a fuzzy Proportional-Integral-Derivative controller with adaptive gains is proposed to control the converter on the generator side.Peer reviewedFinal Accepted Versio

    STATCOM and SVC with Wind Turbines

    Get PDF
    The large wind parks are the feasible solution in order to generate clean energy compared with conventional power plants. Therefore, the interest in the Wind Energy Conversion System (WECS) is quickly increasing to reduce the fossil fuels dependencies. While the penetration of the WECS increases into the grid, many of the technical challenges have appeared. Low voltage Ride Through (LVRT) is the new requirement which needs to be fulfill when the amount of wind power generation increases, to be able to guarantee the power system reliability and stability. The voltage dips that result from faults in the grid can lead to a loss generation unit. According to the LVRT, WTs are required to be always connect during the fault, and to support the power system by supplying reactive power to ensure grid stability. The main purpose of the thesis was to investigate that how the LVRT of Doubly Fed Induction Generator (DFIG) based Wind Turbine Generator (WTG) can be enhanced using shunt connected Flexible AC Transmission System (FACTS) devices Static Synchronous Compensator (STATCOM) and Static Var Compensator (SVC). The theoretical background related to the LVRT enhancement using STATCOM and SVC is performed, and results are verified by the simulation model. This thesis is constructed in 5 Chapters, Chapter 1 gives an overview about the problems related to wind power. Chapter 2 explains the different grid codes and different topologies of the wind turbine technologies. Chapter 3 explains the working principle, construction and applications of the STATCOM and SVC. A comprehensive comparison between the STATCOM and SVC is also explained in this chapter. The operation of DFIG wind turbine during voltage dip is analyzed by using the simulation model in the next Chapter. In the first case, the effect of a three-phase fault on the power system was analyzed without using any compensation device. The LVRT requirements were not fulfilled without any compensation device. Therefore, in the second case, SVC was added in the model. Some improvement was observed in this case, but it was not enough to fulfill very strict LVRT requirements such as German Grid Codes (GGCs).Therefore, in the third case, SVC is replaced by STATCOM to meet the LVRT requirement of GGCs. In the last case, three different ratings of STATCOM were utilized to see the effect on the grid voltage and reactive power support by STATCOMs. The key findings of this thesis work are reported by Chapter 5

    Transient stability analysis and enhancement of renewable energy conversion system during LVRT

    Get PDF
    Grid-connected renewable energy conversion systems (RECSs) are usually required by grid codes to possess the low voltage ride through (LVRT) and reactive power support capabilities so as to cope with grid voltage sags. During LVRT, RECS's terminal voltage becomes sensitive and changeable with its output current, which brings a great challenge for the RECS to resynchronize with the grid by means of phase-locked loops (PLLs). This paper indicates that loss of synchronism (LOS) of PLLs is responsible for the transient instability of grid-connected RECSs during LVRT, and the LOS is essentially due to the transient interaction between the PLL and the weak terminal voltage. For achieving a quantitative analysis, an equivalent swing equation model is developed to describe the transient interaction. Based on the model, the transient instability mechanism of RECSs during LVRT is clarified. Furthermore, a transient stability enhancement method is proposed to avoid the possibility of transient instability. Simulations performed on the New England 39-bus test system verify the effectiveness of the method

    Symmetrical Short-Circuit Parameters Comparison of DFIG–WT

    Get PDF
    Renewable energy with new resources is depleting the fossil fuel-based energy resources. Renewable energy sources (such as wind energy) based power generators are important energy conversion machines and have widely industrial and commercial applications due to their superior performance, and the fact that they endure faults well and are environmentally friendly. The study of the transient behavior of such generators under fault condition has drawn much attention. This study presents Doubly-Fed Induction Generator (DFIG) perturbation during a symmetrical (three-phase) short circuit (SSC) at different points. Simulation results reveal that after a fault occurs, there is decay of SC parameters (transient time, maximum current, steady-state and voltage dip) at the point of common coupling (PCC) and the grid-side converter (GSC) of DFIG. Simulation results depict a more sensitive and robust point during a SSC of DFIG. Current findings present the main difference between the PCC and the GSC during SSC faults. These comparisons provide a more precise understanding of fault diagnosis reliability with reduced complexity, stability, and optimization of the system. This study verified by the simulation results helps us understand and improve the performance of sensor sensibility (measurements), develop control schemes, protection strategy and select a more accurate and proficient system among other wind energy conversion systems (WECS)
    • …
    corecore