1,017 research outputs found

    LTE-Advanced - Evolving LTE towards IMT-Advanced

    Get PDF
    Abstract — This paper provides a high-level overview of some technology components currently considered for the evolution of LTE including complete fulfillment of the IMT-Advanced requirements. These technology components include extended spectrum flexibility, multi-antenna solutions, coordinated multipoint transmission/reception, and the use of advanced repeaters/relaying. A simple performance assessment is also included, indicating potential for significantly increased performance. Keywords-LTE, IMT-Advanced, LTE-Advanced, 4G I

    5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This article analyzes the challenges and opportunities that the upcoming definition of future 5G mobile networks brings to the mobile broadband and broadcast industries to form a single converged network. It reviews the state-of-the-art in mobile and broadcast technologies and the current trends for convergence between both industries. This article describes the requirements and functionalities that the future 5G must address in order to make an efficient and flexible cellular-broadcasting convergence. Both industries would benefit from this convergence by exploiting synergies and enabling an optimum use of spectrum based on coordinated spectrum sharing.The authors would like to thank the funding received from the Spanish Ministry of Science and Innovation within the Project number TEC2011-27723-C02-02.Calabuig Gaspar, J.; Monserrat Del Río, JF.; Gómez Barquero, D. (2015). 5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services. IEEE Communications Magazine. 53(2):198-205. https://doi.org/10.1109/MCOM.2015.7045409S19820553

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Uplink Overhead Analysis and Outage Protection for Multi-Carrier LTE-Advanced Systems

    Get PDF

    Desarrollo de las tecnologías de cuarta generación en las comunicaciones móviles 4g

    Get PDF
    La telefonía móvil constituye uno de los bloques de servicios de telecomunicaciones de mayor crecimiento. La evolución que ha experimentado ha ido propiciando una serie de mejoras y una notoria ampliación de los servicios que se incorporan junto con el transporte de voz por medios móviles. En El Salvador el despliegue de tecnologías de tercera generación ha comenzado. Esta generación incorpora facilidades de convergencia móvil, integrando a los servicios de voz, los datos y vídeo, a tal punto que en la actualidad prefiere hablarse de terminales móviles y no tanto de teléfonos móviles (ya que no se trata de dispositivos exclusivamente diseñados para la comunicación de voz). Las expectativas de desarrollo en generaciones futuras son grandes y requieren de replanteamientos determinantes. Con este trabajo se explorarán esas expectativas y los planteamientos de abordaje tecnológico de las mismas, las implicaciones del tipo de protocolos que se emplearán y las perspectivas de ampliación de aplicaciones, sobre todo en nuestro medio, que estas han de tene

    Carrier Load Balancing Methods with Bursty Traffic for LTE-Advanced Systems

    Get PDF

    The history of WiMAX: a complete survey of the evolution in certification and standarization for IEEE 802.16 and WiMAX

    Get PDF
    Most researchers are familiar with the technical features of WiMAX technology but the evolution that WiMAX went through, in terms of standardization and certification, is missing and unknown to most people. Knowledge of this historical process would however aid to understand how WiMAX has become the widespread technology that it is today. Furthermore, it would give insight in the steps to undertake for anyone aiming at introducing a new wireless technology on a worldwide scale. Therefore, this article presents a survey on all relevant activities that took place within three important organizations: the 802.16 Working Group of the IEEE (Institute of Electrical and Electronics Engineers) for technology development and standardization, the WiMAX Forum for product certification and the ITU (International Telecommunication Union) for international recognition. An elaborated and comprehensive overview of all those activities is given, which reveals the importance of the willingness to innovate and to continuously incorporate new ideas in the IEEE standardization process and the importance of the WiMAX Forum certification label granting process to ensure interoperability. We also emphasize the steps that were taken in cooperating with the ITU to improve the international esteem of the technology. Finally, a WiMAX trend analysis is made. We showed how industry interest has fluctuated over time and quantified the evolution in WiMAX product certification and deployments. It is shown that most interest went to the 2.5 GHz and 3.5GHz frequencies, that most deployments are in geographic regions with a lot of developing countries and that the highest people coverage is achieved in Asia Pacific. This elaborated description of all standardization and certification activities, from the very start up to now, will make the reader comprehend how past and future steps are taken in the development process of new WiMAX features
    • …
    corecore