31 research outputs found

    Time of Arrival and Angle of Arrival Estimation of LTE Signals for Positioning Applications

    Get PDF
    With the increase of services that need accurate location of the user, new techniques that cooperate with the Global Navigation Satellite System (GNSS) are necessary. Toward this objective, this thesis presents our research work about the estimation of the time of arrival (TOA) and of the angle of arrival (AOA) exploiting modern cellular signals. In particular, we focus on the Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard, and in particular uplink and downlink reference signals are exploited to this purposes. The current release of the 3GPP LTE specification supports a UTDOA localization technique based on the Sounding Reference Signal (SRS). In real environments, however, user equipments (UE) are rarely set up to transmit this particular signal. The main original contribution of this thesis consists in a new TOA estimation method based on uplink transmission. In particular, we explore the possibility of performing radio localization exploiting the uplink Demodulation Reference Signal (DM-RS), which is always sent by UEs during data transmission. Real uplink transmissions are modeled in simulations and the performance of known algorithms like SAGE and IAA-APES are evaluated for TOA estimation. A new method to estimate the initial conditions of the SAGE algorithm is proposed and the estimation performance in uplink scenarios is evaluated. The analysis revealed that the proposed method outperforms the non-coherent initial conditions estimation proposed in the literature, when uplink transmission are used. Then, the benefits of our proposal are evaluated and the feasibility of TOA estimation exploiting the DM-RS is demonstrated by means of experiments using real DM-RS signals generated by an LTE module. A second original contribution is given by AOA estimation. In particular, the independence of AOA estimation with respect to uplink and downlink transmission is verified. According to this result, the performance of IAA-APES and SAGE in real-world AOA experiments is evaluated in the downlink scenarios. Based on the overall results, we conclude that the proposed radio localization method, exploiting the uplink Demodulation Reference Signal (DM-RS), can be extended also to joint TOA, AOA using SAGE, for hybrid localization techniques. We can also conclude that the proposed method can be easily extended to downlink transmission exploiting the cell specific reference signal (CRS)

    Towards the Next Generation of Location-Aware Communications

    Get PDF
    This thesis is motivated by the expected implementation of the next generation mobile networks (5G) from 2020, which is being designed with a radical paradigm shift towards millimeter-wave technology (mmWave). Operating in 30--300 GHz frequency band (1--10 mm wavelengths), massive antenna arrays that provide a high angular resolution, while being packed on a small area will be used. Moreover, since the abundant mmWave spectrum is barely occupied, large bandwidth allocation is possible and will enable low-error time estimation. With this high spatiotemporal resolution, mmWave technology readily lends itself to extremely accurate localization that can be harnessed in the network design and optimization, as well as utilized in many modern applications. Localization in 5G is still in early stages, and very little is known about its performance and feasibility. In this thesis, we contribute to the understanding of 5G mmWave localization by focusing on challenges pertaining to this emerging technology. Towards that, we start by considering a conventional cellular system and propose a positioning method under outdoor LOS/NLOS conditions that, although approaches the Cram\'er-Rao lower bound (CRLB), provides accuracy in the order of meters. This shows that conventional systems have limited range of location-aware applications. Next, we focus on mmWave localization in three stages. Firstly, we tackle the initial access (IA) problem, whereby user equipment (UE) attempts to establish a link with a base station (BS). The challenge in this problem stems from the high directivity of mmWave. We investigate two beamforming schemes: directional and random. Subsequently, we address 3D localization beyond IA phase. Devices nowadays have higher computational capabilities and may perform localization in the downlink. However, beamforming on the UE side is sensitive to the device orientation. Thus, we study localization in both the uplink and downlink under multipath propagation and derive the position (PEB) and orientation error bounds (OEB). We also investigate the impact of the number of antennas and the number of beams on these bounds. Finally, the above components assume that the system is synchronized. However, synchronization in communication systems is not usually tight enough for localization. Therefore, we study two-way localization as a means to alleviate the synchronization requirement and investigate two protocols: distributed (DLP) and centralized (CLP). Our results show that random-phase beamforming is more appropriate IA approach in the studied scenarios. We also observe that the uplink and downlink are not equivalent, in that the error bounds scale differently with the number of antennas, and that uplink localization is sensitive to the UE orientation, while downlink is not. Furthermore, we find that NLOS paths generally boost localization. The investigation of the two-way protocols shows that CLP outperforms DLP by a significant margin. We also observe that mmWave localization is mainly limited by angular rather than temporal estimation. In conclusion, we show that mmWave systems are capable of localizing a UE with sub-meter position error, and sub-degree orientation error, which asserts that mmWave will play a central role in communication network optimization and unlock opportunities that were not available in the previous generation

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Resource allocation in non-orthogonal multiple access technologies for 5G networks and beyond.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The increasing demand of mobile and device connectivity poses challenging requirements for 5G wireless communications, such as high energy- and spectral-efficiency and low latency. This necessitates a shift from orthogonal multiple access (OMA) to Non-Orthogonal Multiple Access (NOMA) techniques, namely, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). The basic idea behind NOMA schemes is to co-multiplex different users on the same resource elements (time slot, OFDMA sub-carrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter while permitting controllable interference, and their successful multi-user detection (MUD) at the receiver albeit, increased computational complexity. In this work, an analysis on the performance of the existing NOMA schemes is carried out. Furthermore, we investigate the feasibility of a proposed uplink hybrid-NOMA scheme namely power domain sparse code multiple access (PD-SCMA) that integrates PD-NOMA and CD-NOMA based sparse code multiple access (SCMA) on heterogeneous networks (HetNets). Such hybrid schemes come with resource allocation (RA) challenges namely; codebook allocation, user pairing and power allocation. Therefore, hybrid RA schemes namely: Successive Codebook Ordering Assignment (SCOA) for codebook assignment (CA), opportunistic macro cell user equipment (MUE)- small cell user equipment (SUE) pairing (OMSP) for user pairing (UP), and a QoS-aware power allocation (QAPA) for power allocation (PA) are developed for an energy efficient (EE) system. The performance of the RA schemes is analyzed alongside an analytical RA optimization algorithm. Through numerical results, the proposed schemes show significant improvements in the EE of the small cells in comparison with the prevalent schemes. Additionally, there is significant sum rate performance improvement over the conventional SCMA and PD-NOMA. Secondly, we investigate the multiplexing capacity of the hybrid PD-SCMA scheme in HetNets. Particularly, we investigate and derive closed-form solutions for codebook capacity, MUE multiplexing and power capacity bounds. The system’s performance results into low outage when the system’s point of operation is within the multiplexing bounds. To alleviate the RA challenges of such a system at the transmitter, dual parameter ranking (DPR) and alternate search method (ASM) based RA schemes are proposed. The results show significant capacity gain with DPR-RA in comparison with conventional RA schemes. Lastly, we investigate the feasibility of integrating the hybrid PD-SCMA with multiple-input multipleoutput (MIMO) technique namely, M-PD-SCMA. The attention to M-PD-SCMA resides in the need of lower number of antennas while preserving the system capacity thanks to the overload in PDSCMA. To enhance spectral efficiency and error performance we propose spatial multiplexing at the transmitter and a low complex joint MUD scheme based on successive interference cancellation (SIC) and expectation propagation algorithm (EPA) at the receiver are proposed. Numerical results exhibit performance benchmark with PD-SCMA schemes and the proposed receiver achieves guaranteed bit error rate (BER) performance with a bounded increase in the number of transmit and receive antennas. Thus, the feasibility of an M-PD-SCMA system is validated

    Mobility-aware Software-Defined Service-Centric Networking for Service Provisioning in Urban Environments

    Get PDF
    Disruptive applications for mobile devices, such as the Internet of Things, Connected and Autonomous Vehicles, Immersive Media, and others, have requirements that the current Cloud Computing paradigm cannot meet. These unmet requirements bring the necessity to deploy geographically distributed computing architectures, such as Fog and Mobile Edge Computing. However, bringing computing close to users has its costs. One example of cost is the complexity introduced by the management of the mobility of the devices at the edge. This mobility may lead to issues, such as interruption of the communication with service instances hosted at the edge or an increase in communication latency during mobility events, e.g., handover. These issues, caused by the lack of mobility-aware service management solutions, result in degradation in service provisioning. The present thesis proposes a series of protocols and algorithms to handle user and service mobility at the edge of the network. User mobility is characterized when user change access points of wireless networks, while service mobility happens when services have to be provisioned from different hosts. It assembles them in a solution for mobility-aware service orchestration based on Information-Centric Networking (ICN) and runs on top of Software-Defined Networking (SDN). This solution addresses three issues related to handling user mobility at the edge: (i) proactive support for user mobility events, (ii) service instance addressing management, and (iii) distributed application state data management. For (i), we propose a proactive SDN-based handover scheme. For (ii), we propose an ICN addressing strategy to remove the necessity of updating addresses after service mobility events. For (iii), we propose a graph-based framework for state data placement in the network nodes that accounts for user mobility and latency requirements. The protocols and algorithms proposed in this thesis were compared with different approaches from the literature through simulation. Our results show that the proposed solution can reduce service interruption and latency in the presence of user and service mobility events while maintaining reasonable overhead costs regarding control messages sent in the network by the SDN controller

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks
    corecore