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Abstract

With the increase of services that need accurate location of the user, new techniques that
cooperate with the Global Navigation Satellite System (GNSS) are necessary. Toward this
objective, this thesis presents our research work about the estimation of the time of arrival
(TOA) and of the angle of arrival (AOA) exploiting modern cellular signals. In particular,
we focus on the Third Generation Partnership Project (3GPP) Long Term Evolution (LTE)
standard, and in particular uplink and downlink reference signals are exploited to this
purposes. The current release of the 3GPP LTE specification supports uplink time difference
of arrival (UTDOA) localization technique based on the Sounding Reference Signal (SRS).
In real environments, however, user equipments (UE) are rarely set up to transmit this
particular signal.

The main original contribution of this thesis consists in a new TOA estimation method
based on uplink transmission. In particular, we explore the possibility of performing radio
localization exploiting the uplink Demodulation Reference Signal (DM-RS), which is always
sent by UEs during data transmission. Real uplink transmissions are modeled in simulations
and the performance of known algorithms like SAGE and IAA-APES are evaluated for TOA
estimation. A new method to estimate the initial conditions of the SAGE algorithm is
proposed and the estimation performance in uplink scenarios is evaluated. The analysis
revealed that the proposed method outperforms the non-coherent initial conditions estimation
proposed in the literature, when uplink transmission are used. Then, the benefits of our
proposal are evaluated and the feasibility of TOA estimation exploiting the DM-RS is
demonstrated by means of experiments using real DM-RS signals generated by an LTE
module.

A second original contribution is given by AOA estimation. In particular, the independence
of AOA estimation with respect to uplink and downlink transmission is verified. According
to this result, the performance of IAA-APES and SAGE in real-world AOA experiments
is evaluated in the downlink scenarios. Based on the overall results, we conclude that the
proposed radio localization method, exploiting the uplink Demodulation Reference Signal
(DM-RS), can be extended also to joint TOA, AOA using SAGE, for hybrid localization
techniques. We can also conclude that the proposed method can be easily extended to
downlink transmission exploiting the cell specific reference signal (CRS).
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Chapter 1

Introduction

The contributions presented in this thesis are the results of a three year PhD study as
a student at the University of Udine. This work has been developed with the technical
support of u-blox, a company that creates wireless semiconductors and modules for
consumer, automotive and industrial markets.

Nowadays, positioning and navigation technologies are commonly used in a large
variety of contexts [1–5]. The most popular applications are in the transportation
field, where positioning systems are used to guide the users. In the majority of
the positioning applications, the localization task is performed by global navigation
satellite systems (GNSSs), which are typically very precise and require a cheap end
user receiver. However, in some scenarios, the GNSSs may not work effectively [6], for
instance in urban canyons and indoor environments. Urban canyons correspond to
locations where the sky view is covered by skyscrapers or by other buildings, whereas,
in indoor environments, the sky view is obscured by the ceiling. All these scenarios are
characterized by the fact that the available satellites signals are hindered by objects
in the environment. The need to find new alternatives, that do not rely on GNSS, is
made necessary by the previous issues, but also by other GNSS issues, such as the
vulnerability to jamming and spoofing.

One alternative is represented by wireless terrestrial signals, which provide good
coverage and which benefit from the fact that usually there is no need for further
infrastructure deployment. In this context, localization by means of the cellular system
looks a promising approach, also considering that the new incoming 5G technology
will require the deployment of a large number of micro/pico-cells. Consequently,
positioning using Third Generation Partnership Project (3GPP) Long Term Evolution
(LTE) downlink signals has become a subject of research and industrial interest, also
for possible evolution in the future standards. In general, LTE uplink signals have
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generated little hype in the positioning research, and the support for uplink positioning
was introduced only in the latest versions of of LTE standard. Positioning systems based
on uplink signals rely on a particular reference signal, called the sounding reference
signal (SRS). Unfortunately, in real scenarios, these signals are rarely transmitted, or
never transmitted in some cases, making it impossible to exploit uplink transmission
for positioning purposes.

In this thesis, we address the problem of estimating, for positioning purposes, the
time of arrival (TOA) and the angle of arrival (AOA) of 3GPP LTE signals, using
uplink and downlink signals, with more focus on uplink signals.

The main original contribution of this thesis consists in a new TOA estimation
method based on uplink transmission, in particular exploiting the uplink Demodulation
Reference Signal (DM-RS). We perform simulations in order to evaluate the performance
of the well known SAGE and IAA-APES algorithms for the estimation of the signal
parameters needed for localization. In particular, we found that the SAGE algorithm,
in its original formulation, does not provide good estimates when using DM-RS signals,
due to their particular characteristics. We propose a new method for the estimation of
the initial conditions that alleviates the problem. The simulation results reveal that the
proposed method outperforms the non coherent initial conditions estimation proposed
in [7], when uplink transmission are used. Then, the feasibility of the proposed TOA
estimation procedure is also evaluated by means of experiments exploiting real-world
DM-RS transmissions generated by an LTE module.

A second original contribution of this work is given by AOA estimation. In particular,
we demonstrate by means of simulations that using uplink or downlink signals, with
their different characteristics, does not influence the estimation quality too much.
According to this result, the performance of IAA-APES and SAGE in a real-world
AOA and TOA estimation experiment is evaluated for downlink signals.

Based on our results, we can conclude that the proposed radio localization method,
exploiting the uplink Demodulation Reference Signal (DM-RS), can be also extended
to joint TOA and AOA estimation, using hybrid localization techniques. A similar
procedure can be used to estimate TOA and AOA using downlink transmissions
exploiting the cell specific reference signal (CRS).

This thesis is divided into two main parts. The first part includes the second, the
third and the fourth chapters, where the background topics studied at the beginning of
the Ph.D. program are introduced. The second part describes the original contributions
and the conclusion.
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In Chapter 2, the basic principles of a positioning system are presented, with partic-
ular attention to the positioning systems based on time based distance measurements.
First, a classification of the positioning systems is briefly described. Then, the focus
falls on the description of the physical quantities which are measured to obtain distance
estimates or angle estimates.

In Chapter 3, the LTE downlink and uplink physical layer is briefly described. In
the first part the focus is on the OFDM and SC-FDMA modulation techniques. The
second part describes the time and frequency structure of the physical layer. The last
part describes the uplink and downlink reference signals.

In Chapter 4, some common TOA and AOA estimation techniques are discussed.
In the first part, some TOA estimation techniques, such as the correlation based
approach, the deconvolution method, the Maximum Likelihood (ML) approach, and
the subspace-based methods ere described. In the second part, some AOA techniques
are introduced, such as Barlet estimation, the standard Capon beamformer and the
IAA-APES algorithm. In the last part, the SAGE algorithm is presented, then the
chapter ends with an introduction of the Cramer Rao lower bound (CRLB) in our
application.

In Chapter 5 we present the first original contribution of our work. In particular,
the Chapter focuses on how to perform TOA measurements using the uplink signal
DM-RS. In the first part of this Chapter, we present the difficulties that we had to
face when uplink transmission is used. We describe the proposed solution confirming
its reliability by means of simulations. In the last part, the results obtained using
real-world uplink transmission are showed, and we confirm that the DM-RS can be
effectively used for positioning purposes using TDOA techniques.

In Chapter 6 we present the second original contribution of our work. In the
first part of this Chapter, we present simulations comparing the AOA performance
with SAGE and IAA-APES in the three different scenarios defined in the previous
chapters. We verify that AOA estimation is not really influenced by the particular
type of transmission used, downlink or uplink. Then, in the second part of the chapter,
we perform real world experiments using downlink signals in an anechoic chamber.

Finally, Chapter 7 ends the thesis, summarizing the obtained original contribution.
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Chapter 2

Fundamentals of Positioning

2.1 Introduction

In recent years there has been a rapid increase in the demand for services and systems
based on accurate positioning of people and objects. Location-based services and emer-
gency call positioning affects the development and enhancement of wireless positioning
techniques. This chapter introduces the basic principles of localization. Firstly, radio
positioning systems are introduced and some common classifications are presented, then
some common measurements adopted for positioning are explained, with a particular
focus on time and angle measurements. In the last part, some common algorithms
used for localization are reviewed. This chapter focuses more on terrestrial wireless
systems based on time and angle measurements, since these type of measurements are
exploited throughout this thesis.

2.2 Radio Positioning System

Nowadays several positioning systems are based on wireless communications. A very
famous and well-known positioning system is the Global Navigation Satellite System
(GNSS). This technology is capable of determining the outdoor position in the range
meters of accuracy. GNSSs include some advanced systems like GPS, the Russian
GLONASS, the European Galileo, the Chinese BeiDou, the Indian IRNSS and the
Japanese QZSS. In particular, to determine the position of the receiver, these systems
exploit distance measurements between a constellation of satellites and the receiver.
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With this technology the distance between one satellite and the receiver is estimated
indirectly. Assuming knowledge of the speed of light in the atmosphere, the distance
can be calculated using the time that a radio signal employs to travel from the satellite
to the receiver. Moreover, the position of the satellites in their orbits are calculated and
shared with the receiver, to allow the receiver to estimate its position. The precision
of such systems is mostly due to the presence of high accuracy clocks in the satellites,
which give a good time reference.

Some positioning systems do not rely on satellites. These are the so called terrestrial
positioning systems. In the past decade, for instance, some terrestrial positioning
systems were used for maritime and air navigation, like the LOng RAnge NAvigation
(LORAN) system, the Decca Navigation System and the OMEGA radio navigation
system, but nowadays these systems have been decommissioned. Recently, some
new terrestrial wireless positioning systems have been introduced, which are used in
several applications. These rising technologies have become very interesting because
they represent a valid substitute to the GNSS in such environment where the GNSS
performance falters or fails. Usually, GNSSs have bad performance in indoor and urban
canyons, even though wireless communication systems like 4G LTE, UMTS and GSM,
provide good coverage in these environment. Positioning systems based on cellular
communications network are called cellular-based positioning systems. In particular,
the 3GPP LTE protocol (3rd Generation Partnership Project Long Term Evolution)
[8] introduced the support for positioning since its early releases, and improved it
in the following stages. Currently, some positioning methods available in the LTE
standards are: enhanced cell identity (E-CID), Assisted GNSS (A-GNSS), observed
time difference of arrival (OTDOA) and uplink time difference of arrival (UTDOA).

Usually, a wireless terrestrial positioning system is composed of some devices called
anchor nodes, which have a known position, and some devices called blind nodes whose
position is unknown and has to be determined. Both types of nodes can be in a fixed
position or in movement. In a cellular-based positioning system anchors are usually
the base stations (BSs) of the communication system, which are in a fixed and known
position, and the blind nodes are the mobile terminals, which are referred to as the
mobile stations (MSs). The process of positioning consists of two main steps. The
first step is the measurement phase, where some physical property of the signal is
measured. The second step is the location phase, where the position of the blind node
is determined using both the information coming from the measurements and the
knowledge of the position of the anchors.
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2.3 Classification of Positioning System

Positioning systems can be classified according to different criteria. According to the
classification in [2, 9], if we consider the topology of the system, we can divide the
positioning systems into global positioning systems and local positioning systems (LPS).
For example, a global positioning system is the GNSS and a LPS is a cellular-based
positioning system. Considering a LPS, we can divide the system according to where the
measurements are made and where measurements are processed. A system is classified
as a self-positioning system when the measurements are obtained and processed in
the MS, and in order to operate correctly the BSs have to inform the MS of their
positions. When measurements are obtained and processed at the network side (at one
or more BSs) the system is called a remote positioning system. When measurements
are obtained in a type of node and processed in the other, the systems are said to be
indirect, which means that one type of indirect self-positioning system occurs when the
BSs measure the signals and the MSs calculate the position, while in the opposite case
the system is called an indirect remote positioning system. Remote positioning systems
can be further classified as active remote positioning systems when the MS cooperates
in the process of positioning, and as passive remote positioning systems when there is
no cooperation by the MS. A wireless local positioning systems (WLPSs) is an example
of active positioning system, while a tracking radar is an example of passive positioning
system. Figure 2.1 summarizes the positioning systems classification based on topology.

Positioning System

Global Positioning
System

Local Positioning
System

Self-Positioning
System

Remote Positioning
System

Indirect Self-
Positioning System

Indirect Remote
Positioning System

Active Remote
Positioning System

Passive Remote
Positioning System

Fig. 2.1 Classification of positioning systems based on topology

Other classifications are suggested in [9]. A positioning system can be also classified
taking into account the physical coverage range of the communication technology. This
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classification generally distinguishes satellite, cellular and short-range systems. Satellite
positioning systems provide position information, in principle, in every part of the
world, so in this case position can be determined “almost” everywhere, the word
“almost” being used because there are some limitations of the system (e.g., in indoor
and in some urban environment where GNSS fails). In a cellular positioning system,
the MS is positioned depending on the communication technologies (LTE, UMTS or
GSM), which means that the range is restricted to the coverage areas of the cellular BSs.
Typically, cellular systems are used in urban scenarios. Short-range positioning rely on
WLAN/WPAN technologies and typically is used for indoor positioning, because the
range of these technologies is limited to some tens of meters.

Another classification can be done according to how the positioning system is
integrated into a communication technology. In this case, a system can be classified as
integrated, opportunistic and hybrid. In integrated systems, the positioning system is
integrated with the wireless communication technology, one example being the GPS
receiver integrated in a smart phone. Opportunistic solutions exploit an existing
communications protocol, usually not designed for positioning, in order to estimate a
position. The results of this thesis are based on an opportunistic positioning systems,
and indeed the basic idea is to exploit LTE reference signals designed for communication
purposes and not for positioning. Generally, the price to pay with these solutions is
the lower accuracy with respect to integrated solutions. Finally, hybrid systems use
both solutions in cooperative or alternate ways.

2.4 Measurements

The first step for positioning estimation in a terrestrial positioning system is the
measurement phase. During this phase, some physical parameters of the signals are
measured. After the measurement phase, some positioning algorithms can be applied
in order to estimate the position. In terrestrial positioning systems the signals used for
measurement purposes are often reference signals. Some common position-dependent
parameters measured from a reference signal are the time of arrival (TOA), the received
signals strength (RSS), the angle of arrival (AOA) (also called direction of arrival
(DOA)), some identifier of the particular transmitting node such as the cell identifier
(cell ID or CID), the time difference of arrival (TDOA), the differential received signal
strength (DRSS), the carrier phase of the signal and the power delay profile (PDP).
Table 2.1 summarizes these physical parameters with a brief description. In the
following subsections, these parameters are described in more detail.
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Parameters Physical quantity Brief description

TOA Time Time instant in which the signal is
received

TDOA Time Difference between two TOA measurements
RSS Power Received signals power
DRSS Power Difference between two RSS measurements
AOA Angle Incident angle with respect to a fixed

orientation
CID - Identifier of the node that transmits

the reference signals
Carrier Phase Signal phase Received phase of the signals
PDP Power w.r.t delay Shape of the multipath power delay profile

Table 2.1 Physical signal properties used for measurement in positioning

2.4.1 Time of Arrival

In a terrestrial positioning system, TOA represents the time when the signal arrives at
the receiver. Once TOA is estimated, assuming knowledge of the time when the signal
was transmitted, the distance between transmitter and receiver can be easily calculated,
considering that the propagation velocity of the signal in air can be considered constant,
and as a first approximation equal to the speed of light c = 299792458m/s. There
are different configurations for TOA measurements based on different approaches. In
general, this kind of measurement suffers some drawbacks, like the necessity to have
a good synchronization between anchor nodes and blind nodes in order to achieve a
good TOA estimation.

A simplest case of TOA system assumes synchronization between transmitter and
receiver, usually obtained by sharing the same reference clock. During transmission, a
timestamp representing the transmission time ttx, is sent to the receiver. In this case,
the receiver estimates the TOA t̂rx and the distance can be calculated according to:

d̂ =
(
t̂rx − ttx

)
c. (2.1)

Equation (2.1) assumes that the transmitter and the receiver are synchronized, but
in general this is very difficult to achieve. Without a perfect synchronization, there
remains a bias in the system which must be considered in Equation (2.1), otherwise the
distance estimation error increase. Supposing that the receiver has a time clock offset
tof with respect to the transmitter’s clock, when the receiver estimates the TOA, the
t̂rx value is based on its clock. In this case, the system is not estimating the distance
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correctly, but is estimating a quantity ρ̂ =
(
t̂rx − ttx

)
c, which is called pseudorange

and contains a bias due to the clock offset. For evaluating correctly the distance,
the clock offset has to be estimated with some techniques. Then the distance can be
calculated as

d̂ =
(
t̂rx − ttx − t̂of

)
c. (2.2)

There are several techniques that allow to estimate the clock offset, e.g., in GPS, the
clock offset is treated as an additional unknown in the positioning equations and is
estimated together with the coordinates of the receiver [1].

A TOA solution that does not require a high cost in terms of synchronization
between nodes, is the two-way TOA ranging. In this approach, the transmitter node
sends a signal to the receiver node, which in turn sends back the signal to the transmitter
after a defined time delay ∆trx. When the transmitter receives the signal, it estimates
the TOA t̂2d relative to the two-way trip plus the receiver time delay. Assuming that
the time ∆trx is known, the distance in this case is calculated as

d̂ =
(
t̂2d − ttx − ∆trx

) c

2 . (2.3)

The main benefit of this approach is that the receiver does not need to be synchronized
with the transmitter. A potential problem occurs if the receiver’s clock is not precise,
since this can introduce an error about the knowledge of ∆trx, which is unknown at
the transmitter. Another drawback is that, with this approach, all the nodes of the
network have an active role, and in particular all the nodes must be transceivers (i.e.,
devices that can both transmit and receive signals), which means that the cost of the
system can increase.

Assuming a good propagation environment, one of the factors that most influences
the error in TOA estimations is the granularity of the internal clock. Indeed, for
every received signal that is within a clock period, the estimated TOA will be the
same. Another potential problem is the propagation environment. In fact, if the signal
propagates in a line of sight (LOS) condition, which means that there is a virtual
line that connects the transmitter and the receiver, with no obstacle in between, the
TOA measurement is related to the distance between the nodes. On the other hand,
if the environment is characterized by a no line of sight (NOLOS) condition or by
multipath were the strongest component is not represented by the direct path, the
resulting distance estimation will be biased. To overcome these issues, appropriate
signal processing techniques must be applied to the received signal in order to improve
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the resolution and to separate the TOA component due to the direct path from the
other components. This thesis tackles this problem and some algorithms will be
presented in Chapter 4. The result of this thesis will show the behaviour of these
algorithms through simulations and also in a real scenario experiments.

2.4.2 Time Difference of Arrival

The TDOA technique is based on the difference between two TOA measurements. This
technique was proposed to avoid the need for synchronization between transmitters and
receivers. With this approach, only the anchor nodes must be synchronized. Suppose
that two synchronized anchor nodes transmit a reference signal at the same time and
that the mobile receiver estimates the TOA coming from the two anchors according to
its internal clock. Considering that there is a bias tof between the receiver clock and
the transmitters clock, and that the distances between the anchors and the receiver
are d1 and d2 for the first and second anchors respectively, the time difference between
the two TOAs ∆T is

∆T = trx,1 − trx,2 = ttx + d1

c
+ tof −

(
ttx + d2

c
+ tof

)
= d1 − d2

c
. (2.4)

It is clear that the contribution of the transmission time and of the offset is cancelled
with this approach. Moreover, note that this is not a distance measurement, but
that it provides a differential value that can be employed in hyperbolic localization
techniques, explained in detail in Section 2.5.2. Similarly to TOA techniques, also
TDOA suffers multipath and NOLOS propagation. Note that the synchronization
between the anchors node is not such a strict requirement, as it is possible to see in
[10] that the localization can be done with asynchronous anchors, taking one of the
anchors as a reference for the others.

TDOA measurements constitute the basis for the observed time difference of arrival
(OTDOA), which is a technique based on LTE downlink communication for positioning
purposes using the positioning reference signal (PRS). The LTE standard also defines
a technique for uplink communication called uplink time difference of arrival (UTDOA)
based on the transmission of the sounding reference signal (SRS). Further details on
positioning tools in the LTE standard can be found in [11–15].
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2.4.3 Angle of Arrival (AOA)

In AOA techniques, the angle of the incident signal that arrives at the receiver is
measured, with respect to a fixed orientation. In general, AOA is referred to some
reference orientation and the angle is defined as the angle formed by this reference and
the virtual line that connects the transmitter to the receiver. To measure the AOA,
two elements are needed. First, an antenna array with two or more elements, and,
second, a signal processing algorithm that permits to estimate the angle starting from
the signals received at each element of the antenna array.

Assuming that the receiver is placed at position (xrx, yrx) and that the transmitter
is at position (xtx, ytx), the relative AOA θ is:

θ = arctan
(

ytx − yrx

xtx − xrx

)
. (2.5)

One of the biggest problems related to AOA measurement is the shadowing effect
present in the propagation channel. Since shadowing can decrease the signal magnitude
of the direct path, the magnitude of the received signal can be mostly due to a path
that has a different angle with respect to the angle that connects the transmitter and
the receiver, and this can cause a bias in the measurements. The benefit of this type
of measurements is that no synchronization between the transmitter and the receiver,
or between transmitters, is necessary.

2.4.4 Received Signal Strength (RSS)

In RSS techniques, the relationship between the received power and the distance is
exploited. Indeed, assuming that the transmission power is known and that it is
possible to calculate the power at the receiver, the loss in terms of power, due to the
propagation distance, can be calculated. A propagation model establishes the relation
between distance and power loss, but also depends on other parameters. Taking into
account a simple model like the one in [16], the instantaneous received power Prx,dB (t)
in dB can be calculated as

Prx,dB (t) = Ptx,dB − 10 α log10 (d) − K − Xf (t) − Xs, (2.6)

where Ptx,dB is the transmission power, K is a gain factor depending on the antenna
gain and the carrier frequency, Xf (t) is a random variable (RV) that models the
instantaneous small scale fading, Xs is the shadowing term corresponding to a large
attenuation due to an obstacle in the propagation environment (usually modeled as
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Environment Range of α

Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5
Office buildings (same floor) 1.6-3.5
Office buildings (multiple floors) 2-6
Store 1.8-2.2
Factory 1.6-3.3
Home 3

Table 2.2 Typical values of the path loss exponent

a log-normal RV), and 10 α log10 (d) is the attenuation due to distance d according
to the path loss exponent α, which represents the attenuation due to the particular
propagation environment. Typical values for the path loss exponent are reported on
Table 2.2 [16]. The fading term rapidly changes in time, so it can be easily removed by
averaging a certain number of measurements, obtaining the average power P rx,dB (t).
Assuming we know the gain parameter K and the path loss exponent α, it is possible
to estimate the distance from the mean power as

d̂ = 10
P rx,dB(t)−Ptx,dB+K

10·α . (2.7)

The distance estimated with this method is strongly dependent on the path loss
exponent. Usually, this value is obtained after some calibration measurement campaign,
or determined dynamically according to some strategies.

Similar to TDOA-based localization, also with RSS it is possible to apply differential
measurements. In this case the technique is called DRSS. This technique preserves
all the advantages of RSS-based localization. One benefit is that the control overhead
message between anchors and the blind node is minimized or even no longer required,
which saves energy, bandwidth and throughput [17]. In this case the estimation is not
related to the difference of the distances, but it is related to the ratio of the distances
when the subtraction is calculated from values in dB.

Another benefit of this technique is that it does not need synchronization of the
nodes and it is simple to implement. Indeed, the receiver needs only to be able to
estimate the power of the received signals, which is typically a common function for the
most used communications devices. The main drawback is that the error on distance
estimation is highly dependent on how much the chosen models fit the real propagation
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environment. Indeed, an incorrect path loss exponent can cause high errors in the final
distance estimation.

2.4.5 Cell ID

Cell ID is a non ambiguous identifier signal that the BSs usually broadcast to all the
MSs. In wireless CID positioning systems, the MS usually uses the CIDs transmitted
by the BSs to estimate its position. Typically, the MS checks the CID of the BS to
which it is connected, and also searches if other CIDs coming from other BSs can be
detected. Once the MS has the information of the visible CIDs, it queries a database
where information that relate visible CIDs with positions are stored. If just one BS
is visible, the position of the MS is approximated to the position of the BS, with an
error equal to the coverage range of the BS. To achieve a better position estimation, in
LTE the CID method is enhanced by using other information. This technique is called
enhanced cell ID (E-CID) and usually exploits four different sources: the CID and the
corresponding geographical description of the serving cell, the time advance (TA) of
the serving cell, which is a time offset calculated by the BS in order to maintain a time
alignment in uplink transmission, the CIDs signals coming from the other cells, as well
as the AOA of the CIDs. Typically, the TA measurement is a two-way measurement
(section 2.4.2) so it gives a distance information, then combining this distance with the
AOA and CIDs information, it is possible to improve the position estimate.

2.4.6 Carrier Phase Measurement

The phase of a received continuous-wave can be used to estimate distance. In this
technique, an anchor transmits a tone and the receiver measures the phase of the
received signal. Assuming that the phase of the transmitter is equal to zero, the total
distance between transmitter and receiver can be written as

d = λ

(
ϕ

2π
+ n

)
, (2.8)

where λ is the wavelength of the tone, ϕ is the phase, and n is an integer that
represents the number of wavelengths intercurring between the transmitter and receiver
for distances greater than λ. The n value represents an ambiguity that has to be
solved.
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The literature reports many techniques to solve these ambiguities and estimate
d [18]. In one simple strategy, one can send two tones and measure the difference
between the phase of the two received signals.

The benefit of this technique is that it is possible to reach very high precision in
position estimation, also with cellular-based positioning systems in LOS conditions,
as reported in [19]. On the other hand, one of the main drawback of carrier phase
measurement is multipath propagation, because in such scenario the phase measurement
is corrupted by the superposition of different replica of the signal, which cause an error
in the position estimation.

2.4.7 Power Delay Profile (PDP)

Similar to CID techniques, PDP is used in positioning systems which adopt fingerprint-
ing. This technique has a calibration phase in which the power received from BSs is
measured at some particular positions, then the power/positions pairs are stored in a
database. During the positioning phase, the receiver measures the received power and,
after that, it queries the database in order to compare the measure with those present
in the database. Then, the database answers with the position corresponding to the
power most similar to the one measured.

2.5 Positioning Techniques

After the measurement phase, some positioning techniques must be applied to the
collected measures in order to estimate the position. In this section, some common
positioning techniques are presented. Usually, these techniques are strongly related
to the type of measurement used. In the following, the concepts of lateration, hy-
perbolic positioning, angulation and hybrid approaches are presented. In particular,
hybrid approaches estimate the position exploiting a combination of different types of
measurements. More detail about positioning techniques can be found in [2, 9, 20–22].

2.5.1 Lateration

The lateration techniques exploit the distance estimates between the blind node and
the anchors, in order to localize the blind node. Those distances can be calculated with
TOA or RSS measurements. In a general case where there are M anchors, the geometric
interpretation consists in finding the point of intersection of a set of M circumferences
(spheres in the 3D case) centered at the anchor positions pm ∈ RD, m = 1, . . . , M ,
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Fig. 2.2 Geometrical example of lateration with three anchors.

with radius equal to the measured distances d̂m, m = 1, . . . , M , D ∈ {2, 3}. Indeed,
if we consider the 2D case where the position of the m-th anchor is pm = [xm, ym]T ,
the position of the blind node is p = [x, y]T and dm = τmc = (trx,m − ttx)c, where τm is
time that the signal takes to go from the m-th anchor to the blind node, it is possible
to write

dm = ||pm − p|| =
√

(xm − x)2 + (ym − x)2. (2.9)

Squaring and manipulating Equation (2.9), it is possible to obtain

(xm − x)2 + (ym − x)2 = (τmc)2 , (2.10)

which is clearly an equation that defines a circle with radius dm whose center lies in
the position of the m-th anchor. Then, considering all the M anchors, the intersection
of the circles give the position of the blind node, as depicted in Figure 2.2.

In the general case of M anchors, the position of the blind node is mathematically
obtained by solving the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

||p1 − p|| = d̂1

||p2 − p|| = d̂2

. . .

||pM − p|| = d̂M

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(x1 − x)2 + (y1 − y)2 = d̂1√
(x2 − x)2 + (y2 − y)2 = d̂2

. . .√
(xM − x)2 + (yM − y)2 = d̂M

, (2.11)
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which is a non linear system that has to be solved with respect to the unknown position
p ∈ RD. Since the system of Equation (2.11) is a system with D unknowns, the
minimum number of equations that are required in order to find a finite number of
solutions is D. This determines the constraint that at least D anchors are needed to
find a finite number of solutions, usually with some remaining ambiguity in the position
estimation (e.g., the intersection of two circles defines in general two points). The
goal is to find a unique solution, so at least D + 1 anchors are needed to remove the
ambiguity. This implies that we must have at least M = 3 anchors and M = 4 anchors
for 2D and 3D position estimation, respectively. In a real scenario the measurements
are affected by noise, thus the distance estimate do not represent the correct distance
values. In this case, it can happen that the system of equations (2.11) cannot be solved.
To address this problem, several approaches are available, the most popular are the
least squares (LS) algorithm [9], and Bayesian methods such as the extended Kalman
filter (EKF) or particle filters.

Using a mathematical trick it is possible to linearize the system of equations (2.11)
and use a linear least squares (LLS) algorithm to solve the problem. In the following,
the 2D estimation case will be considered for simplicity, but it is easy to extend the
procedure also to the 3D case. Without loss of generality, if we take the first anchor as
a reference, it is possible to square Equation (2.9) and subtract the expression for the
m-th anchors to the one of the first anchor. The result is

d2
m − d2

1 = x2
m + y2

m − x2
1 − y2

1 − 2x (xm − x1) − 2y (ym − y1) . (2.12)

Doing the same for all the anchors and using a matrix notation the system of equations
can be written as

Hp = B, (2.13)

where p is the vector with the unknown coordinates, H is

H =

⎡⎢⎢⎢⎢⎢⎢⎣
x2 − x1 y2 − y1

x3 − x1 y3 − y1
... ...

xM − x1 yM − y1

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.14)
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and B is

B = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
(d2

1 − d2
2) + (x2

2 + y2
2) − (x2

1 + y2
1)

(d2
1 − d2

3) + (x2
3 + y2

3) − (x2
1 + y2

1)
...

(d2
1 − d2

M) + (x2
M + y2

M) − (x2
1 + y2

1)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

Then, the linear least square solution of Equation (2.13) can be obtained, as it is well
known, by using the pseudo-inverse of H

p =
(
HTH

)−1
HTB. (2.16)

2.5.2 Hyperbolic Positioning

An alternative to the lateration technique is hyperbolic positioning. In this case, the
position estimate is calculated using differential measurements, such as TDOA. Every
TDOA measurement permits to evaluate the distance difference from the i-th and j-th
anchor nodes

∆D̂i,j =
(
t̂rx,i − t̂rx,j

)
c = d̂rx,i − d̂rx,j, i ̸= j. (2.17)

In the 2D case, it is well known that for any point on a hyperbola, the absolute
difference of the distance to the two hyperbola foci has a constant value, and that
the sign of the distance difference can identify one of the two hyperbola branches.
Therefore, as depicted in Figure 2.3, the differential measurement obtained between
two anchors describes an hyperbola, with the foci located at the positions of the two
anchors. For a single TDOA measurement, the position of the blind node is ambiguous,
and it can be located at any point along the hyperbolic curve, or hyperboloid surface
in 3D space. With more than one TDOA measurements, the intersection of all the
hyperbolas, or hyperboloids, allows to identufy the location of the blind node.

The generic mathematical description with M anchors, requires the solution of the
following non linear system of M − 1 equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

||p1 − p|| − ||p2 − p|| = ∆D̂1,2

||p1 − p|| − ||p3 − p|| = ∆D̂1,3

. . .

||p1 − p|| − ||pM − p|| = ∆D̂1,M

. (2.18)
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Fig. 2.3 Geometrical example of hyperbolic positioning with three anchors.

It should be noted that with M anchors there are 1
2M (M − 1) possible distance

difference equations, however only M − 1 equations are useful for position estimation.
This is because the additional equations are linear combinations of the set of M − 1
equations. For example, with M = 3, it is possible to calculate three different distances
differences, ∆D1,2, ∆D1,3 and ∆D2,3, but ∆D2,3 is a linear combination of the first two
equations, indeed

∆D2,3 = d2 − d3 = ∆D1,3 − ∆D1,2 = (d1 − d3) − (d1 − d2) . (2.19)

The set of nonlinear equations (2.18) may not easy to solve, but it is possible to adopt
a linearization similar to the one adopted for TOA measurements. Thus, considering
the 2D case for simplicity, it is possible to take the first anchor as a reference and
define the TDOA measurements ∆Ti,1 = (trx,i − trx,1) and the distance difference ∆Di,1

between the i-th anchor and the first anchor. With this assumption, the system of
equations can be solved as follows. Consider

∆Di,1 = di − d1, (2.20)
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then

(∆Di,1 + d1)2 = ∆D2
i,1 + 2∆Di,1d1 + d2

1 = d2
i . (2.21)

Manipulating Equation (2.21), one obtains

∆D2
i,1 + 2∆Di,1d1 = x2

i + y2
i − x2

1 − y2
1 − 2x (xi − x1) − 2y (yi − y1) . (2.22)

Now, writing Equation (2.22) for all the M anchors and using a matrix notation the
system becomes

Hx = B, (2.23)

where

x = [x, y, d1]T , (2.24)

H =

⎡⎢⎢⎢⎢⎢⎢⎣
x2 − x1 y2 − y1 ∆D2,1

x3 − x1 y3 − y1 ∆D3,1
... ... ...

xM − x1 yM − y1 ∆DM,1

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.25)

B = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
(x2

2 − y2
2) − (x2

1 − y2
1) − ∆D2

2,1

(x2
3 − y2

3) − (x2
1 − y2

1) − ∆D2
3,1

...
(x2

M − y2
M) − (x2

1 − y2
1) − ∆D2

M,1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.26)

Similarly to the lateration case, the solution is

x =
(
HT H

)−1
HT B. (2.27)

In this case, it is important to notice that to solve the problem a further unknown is
added to the system, which is the distance d1 from the reference anchor. The estimation
of this parameter is made together with the estimation of the coordinates of the blind
node.
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2.5.3 Angulation

Angulation is a technique that uses AOA measurements in order to locate the blind
node. The algorithm can rely only on two anchors in a 2D scenario and on three
anchors in a 3D scenario. The geometrical interpretation of angulation in 2D space
is based on rays that start from the position of the anchors, and follow the direction
of the angle. Thus, the intersection point of these rays identifies the position of the
blind node. Figure 2.4 shows an example of angulation in 2D space with three anchors.
It is easy to extend this concept to 3D space. Indeed, if there are at least 3 anchors,
with at least one anchor measuring the zenith distance and one anchor measuring the
azimuth, it is possible to locate a blind node in the 3D space. Also for the angulation

Fig. 2.4 Geometrical example of angulation positioning with three anchors.

technique, one can write a system of equations to calculate the position of the blind
node. Assuming a 2D space and that there are M anchors, Equation (2.5) for the i-th
anchor can be written as

(xi − x) sin θi = (yi − y) cos θi. (2.28)

Then, in matrix notation, the system of equations can be written as

Hp = B, (2.29)
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where

p = [x, y]T , (2.30)

H =

⎡⎢⎢⎢⎢⎢⎢⎣
− sin θ1 cos θ1

− sin θ2 cos θ2
... ...

− sin θM cos θM

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.31)

B = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
y1 cos θ1 − x1 sin θ1

y2 cos θ1 − x2 sin θ1
...

yM cos θ1 − xM sin θ1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.32)

The solution is given by

p =
(
HT H

)−1
HT B. (2.33)

2.5.4 Hybrid Approaches

In hybrid approaches, usually two or more different techniques are merged in order to
improve the position estimates. Fingerprinting and other techniques can be used for
hybrid localization. The biggest challenge of this approach is to combine properly the
data coming from different techniques. In the following, using the same notation used
before, two hybrid solutions will be considered. The first solution merges AOA and
TOA measurements and is called hybrid angulation and lateration. The second solution,
instead, merges AOA and TDOA measurements and is called hybrid angulation and
hyperbolic positioning.

We assume M anchors and that the i-th anchor can measure the AOA θi and
the distance related to the TOA from the anchor to the blind node di. The solution
for hybrid angulation and lateration is the same described in Equation (2.16), where
p = [x, y]T =

(
HT H

)−1
HT B, with the only difference that the matrices H and B are

defined as
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 − x1 y2 − y1

x3 − x1 y3 − y1
... ...

xM − x1 yM − y1

− sin θ1 cos θ1

− sin θ2 cos θ2
... ...

− sin θM cos θM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.34)

B = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d2
1 − d2

2) + (x2
2 + y2

2) − (x2
1 + y2

1)
(d2

1 − d2
3) + (x2

3 + y2
3) − (x2

1 + y2
1)

...
(d2

1 − d2
M) + (x2

M + y2
M) − (x2

1 + y2
1)

y1 cos θ1 − x1 sin θ1

y2 cos θ1 − x2 sin θ1
...

yM cos θ1 − xM sin θ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.35)

In hybrid angulation and hyperbolic positioning the solution is the same described in
Equation (2.27). Thus, x = [x, y, d1]T =

(
HT H

)−1
HT B, with the only difference that

the matrices H and B are defined as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 − x1 y2 − y1 ∆D2,1

x3 − x1 y3 − y1 ∆D3,1
... ... ...

xM − x1 yM − y1 ∆DM,1

− sin θ1 cos θ1 0
− sin θ2 cos θ2 0

... ... ...
− sin θM cos θM 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.36)
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B = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x2
2 − y2

2) − (x2
1 − y2

1) − ∆D2
2,1

(x2
3 − y2

3) − (x2
1 − y2

1) − ∆D2
3,1

...
(x2

M − y2
M) − (x2

1 − y2
1) − ∆D2

M,1

y1 cos θ1 − x1 sin θ1

y2 cos θ1 − x2 sin θ1
...

yM cos θ1 − xM sin θ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.37)
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Chapter 3

LTE Signals For Positioning

3.1 Introduction

The 3GPP Long Term Evolution (LTE) provides the standard for the fourth generation
of cellular mobile communications. The BS is usually defined as an Evolved Node B
(eNodeB), which has a non-ambiguous cell ID in order to identify different BSs in the
same environment. The mobile receiver meanwhile, is usually called user equipment
(UE). The physical layer is the lowest protocol layer in telecommunications: it is at the
interface between upper telecommunications layers and the physical media, such as the
wireless channel. The LTE physical layer receives instructions from upper communica-
tions layers and processes them through functions such as channel coding, interleaving,
baseband modulation, layer mapping for multi-antenna operation, precoding, antenna
mapping functions and access scheme. The downlink communication, which occurs
from the eNodeB to the UE, takes place through an orthogonal frequency division
multiplexing (OFDM) modulation. The OFDM modulation is a special case of multi-
carrier transmission, where the sub-carriers frequencies maintain spectral orthogonality.
On the contrary, the uplink communication, that occurs from the UE to the eNodeB,
takes place through a single carrier frequency division multiple access (SC-FDMA)
modulation. The SC-FDMA is similar to OFDM with the main difference that it has a
precoding stage obtained by applying a discrete Fourier transform (DFT). In the first
part of this chapter a brief description of the LTE downlink and uplink physical layers
is provided, with focus on OFDM modulation, SC-FDMA modulation and the radio
frame structure. Then, common downlink and uplink reference signals (RSs) used for
positioning purposes, are described.
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3.2 Orthogonal Frequency Division Multiplexing
(OFDM)

3.2.1 OFDM Modulation

OFDM modulation was designed in the LTE standard for being the modulation adopted
in the downlink physical layer. The basic idea of this modulation scheme is to transmit
different complex symbols using different sub-carriers. So, the overall transmitted
signal is wideband, but the symbols carrying information are transmitted with parallel
narrowband transmissions. In this way, OFDM is able to treat a frequency selective
channel as a set of adjacent narrowband frequency non-selective channels.

OFDM modulation starts with a high-rate stream of data bits, which is first
converted from serial to parallel. This procedure creates some blocks of data bits,
which are subsequently converted into complex symbols using a quadrature amplitude
modulation (QAM) or a phase-shift keying (PSK) modulation. The OFDM signal
can be specified by defining the complex symbol transmitted on each subcarrier.
Considering an OFDM system with a number NIDF T of available sub-carriers, a signal
in the frequency domain can be specified by the sequence

S =
[
S− NIDF T

2
, . . . , S−1, S0, S1, . . . , SNIDF T

2 −1

]T

∈ CNIDF T (3.1)

Each complex symbol obtained after QAM/PSK modulation is associated one by one
to a subcarrier Sk according to some strategies. Usually, not all the NIDF T available
subcarriers are filled with some complex symbols; indeed the subcarriers at the edges
of the band (i.e., those close to S− NIDF T

2
and SNIDF T

2
) and the symbol corresponding

to the center frequency, are set to zero, that is

Sk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
some complex symbol, if k ∈

[
−Nsc

2 , −1
]

some complex symbol, if k ∈
[
1, Nsc

2

]
0 otherwise,

, (3.2)

where Nsc < NIDF T is the number of occupied subcarriers. The subcarriers at the
edges of the available band are set to zero to avoid the interference with adjacent
channels. The center frequency, instead, is set to zero to avoid the transmission of a
symbol at the zero frequency, which corresponds to a DC voltage value in time domain.
Once the complex symbols are mapped to the subcarriers in the frequency domain, it
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is possible to apply an inverse Fourier transform in order to obtain the time domain
signal, given by

s (t) =
Nsc/2∑

k=−Nsc/2
Sk · ej2πk∆ft, t ∈ [0, Tsym[ , (3.3)

where Tsym is defined as the OFDM symbol duration, ∆f is the subcarrier separation in
frequency domain and an ideal interpolation is considered. If the subcarriers separation
is ∆f = 1/Tsym, orthogonality between the subcarriers is achieved. Sampling the
continuous signal with a sampling period Ts = Tsym/NIDF T results in the discrete time
signal,

sOF DM [n] = s (t)|
t=n

Tsym
NIDF T

=
Nsc/2∑

k=−Nsc/2
Sk · e

j2πk 1
Tsym

nTsym
NIDF T

=
Nsc/2∑

k=−Nsc/2
Sk · e

j2π kn
NIDF T =

NIDF T /2−1∑
k=−NIDF T /2

Sk · e
j2π kn

NIDF T

=
NIDF T −1∑

k=0
S̃k · e

j2π kn
NIDF T

= NIDF T · IDFT
{
S̃k

}
, n = 0, . . . , NIDF T − 1,

(3.4)

where S̃k is the sequence obtained applying the FFT-shift operation, corresponding to

S̃ =
[
S0, S1, . . . , SNsc

2
, 0T

NIDF T −Nsc−1, SNsc
2

, . . . , S−1
]T

∈ CNIDF T (3.5)

Here, 0T
NIDF T −Nsc−1 is a column vector of zeros with length NIDF T − Nsc − 1, corre-

sponding to the zeros at the edge of the band, and S0 = 0. Equation (3.4) shows that
the discrete time signal sOF DM [n] is obtained applying an inverse-DFT (IDFT) with
NIDF T points, at the FFT-shifted version of sequence S. Due to the definition of the
IDFT, to obtain the correct amplitude, the signal has also to be multiplied by NIDF T .

The OFDM scheme requires the addition of a cyclic prefix (CP) at the discrete time
signal before DA conversion. The resulting signal, with CP, consists of a longer signal
sOF DM

cp [n] that has at the beginning the last Ncp complex symbols of sOF DM [n], while
the other NIDF T complex symbols are equal to sOF DM [n]. Thus, the total number of
complex symbols that compose the discrete OFDM sequence is Ntot = NIDF T + Ncp
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and the sequence becomes

sOF DM

cp [n] =

⎧⎪⎨⎪⎩sOF DM [NIDF T − Ncp + n] n = 0, . . . , Ncp − 1,

sOF DM [n − Ncp] n = Ncp, . . . , Ntot.
(3.6)

The time duration of the CP must be chosen greater than the maximum duration of
the sampled baseband channel impulse response (CIR). Under this assumption the CP
allows a simple frequency domain equalization thanks to the fact that, with the CP, the
linear convolution with the channel becomes a circular convolution. The time interval
occupied by the CP acts as a guard interval between subsequent OFDM symbols, and
this permits to avoid inter-symbol interference, which is caused by the dispersivity of
the channel [23].

The final continuous baseband OFDM signal is obtained after a DA conversion of
sOF DM

cp [n]. The resulting continuous signal sOF DM
cp (t), is

sOF DM

cp (t)=
−1∑

k=−NIDF T /2
Sk · ej2πk∆f(t−NcpTs)+

+
NIDF T /2−1∑

k=1
Sk · ej2πk∆f(t−NcpTs),

(3.7)

where t ∈ [0, NtotTs[ and where we highlight the fact that there is no information in the
subcarrier representing the central frequency, i.e., that S0 = 0. After the DA conversion,
the continuous baseband OFDM signal is up-converted to the carrier frequency fC ,
resulting in the real transmitted continuous band-pass signal:

sOF DM

tx (t) = Re
{
sOF DM

cp (t) · ej2πfCt
}

(3.8)

3.2.2 OFDM Demodulation

The received signal is obtained by the convolution of the transmitted signal sOF DM
tx (t)

with the continuous time CIR, plus noise. We assume that the signal is transmitted
through a wireless multipath channel with L paths, with baseband impulse response

h (t) =
L∑

l=1
hlδ (t − τl) . (3.9)

We also assume that the down-conversion from the band-pass signal to the baseband
signal recovers it with no impairments due to frequency offset or carrier phase error.
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The received baseband continuous time signal can be written as

r (t) = h (t) ∗ sOF DM

cp (t) + w (t) =
L∑

l=1
hls

OF DM

cp (t − τl) + w (t) . (3.10)

Equation (3.10) assumes that the channel is constant during the duration of the
OFDM symbol. In LTE, for example, with a standard cyclic prefix configuration (see
Section 3.4), the duration of an OFDM symbol with CP is Tsym + Tcp,0 ≈ 71.81 µs.
According to [24], the coefficients hl of the wireless CIR can be considered correlated
inside the interval ∆T if its product with the maximum Doppler frequency fD is smaller
than 0.1, where the maximum Doppler frequency is fD = fCv/c, v is the relative velocity
between transmitter and receiver and c is the speed of light. Considering that, in LTE,
fC is around 2 GHz, the maximum acceptable velocity is

fd · ∆T ≤ 0.1 ⇐⇒ v ≤ 0.1c

fC∆T
≈ 208 m

s ≈ 748 km
h , (3.11)

which is very high compared with the usual speed in urban, indoor or pedestrian
scenarios. Thus, the approximation of a constant channel is reasonable. Moreover,
this approximation is crucial in OFDM system in order to work properly without
performance loss.

Sampling the received signal r (t) with and analog to digital (AD) converter and
using the same sample period Ts used at the transmitter, the received discrete time
signal is

r [n] = h [n] ∗ sOF DM

cp [n] + w [n] =
L̃−1∑
l=0

h̃ls
OF DM

cp [n − l] + w [n] , n = 0, . . . , Ntot,

(3.12)

where h [n] is the discrete time channel equivalent to h (t)

h [n] =
L̃−1∑
l=0

h̃lδ [n − l] . (3.13)

The values L̃ and h̃l represent the length of the CIR and the complex amplitude of the
l-th sample of the CIR, respectively.

If L is smaller then the CP length, the discrete linear convolution between h [n]
and sOF DM

cp [n] is equal to the circular convolution between h [n] and sOF DM [n]. As
demonstrated in [23], after discarding the first Ncp samples of the received signal r [n],
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the signal becomes

r [n] = h [n] ⊛NIDF T
sOF DM [n] + w [n] , n = 0, . . . , NIDF T , (3.14)

where ⊛NIDF T
indicates the circular convolution calculated on NIDF T samples. As

a result of the circular convolution, the received signal r [n] in the frequency domain
corresponds to an element-wise multiplication between the channel frequency response
(CFR) of the discrete channel, and the DFT values of the transmitted signal. Then

R = DFT {r [n]} = DFT {h [n] ⊛NIDF T
sOF DM [n]} + DFT {w [n]} = H ⊙ S + W

= [H0 · S0 + W0, . . . , HNIDF T −1 · SNIDF T −1 + WNIDF T −1]T ∈ CNIDF T ,

(3.15)

where H is the sequence of CFR samples obtained by applying a DFT of length NIDF T

to the discrete sampled channel h [n], and W is the sequence that represents the DFT

of the noise. Equation (3.15) shows that the transmission of the signal over a frequency
selective channel can be treated as the transmission over parallel flat-fading channels.
As mentioned before, this result allows a simple single carrier equalization made by a
complex multiplication for each subcarriers. The equalization process is used to recover
the correct amplitude and phase of the transmitted subcarriers at the receiver. Indeed,
the circular convolution property can be exploited to recover the Hk samples of H. If
S is known a priori at the receiver, dividing element-wise the R received samples by
the S known samples, one can easily obtain the H samples.

In the LTE protocol, during a data transmission, some OFDM symbols are used to
transmit Reference Signals. These signals are known in advance at the receiver and
generally are used for coherent demodulation, channel estimation, determination of
some indicator of the status of the network, and determination of resource allocation
in case of multiple users connected to the same eNodeB. RSs sequences are constructed
starting from particular complex sequences, such as Zadoff-Chu sequences or PSK
sequences. Thus, the estimation of the k-th frequency sample of the channel can be
obtained as

Ĥk = Rk

Sk

= Hk + Wk

Sk

, (3.16)

where Sk is known. As it will be shown in Chapter 4, the CFR samples are the input
of the SAGE and IAA-APES algorithms. These algorithms exploit the CFR bins in
order to estimate parameters like the TOA and the AOA of the received signal.
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To summarize the whole procedure, an OFDM demodulator has to implement some
steps in order to convert the received discrete baseband signal r [n] into a data stream
of bits. The first step consists in a serial to parallel conversion of the received samples
and in the removal of the CP. Then, the resulting sequence is converted to the frequency
domain through a DFT algorithm. After this, a subcarrier de-mapping is applied
and the equalization is carried out exploiting the estimation of the taps Hk, obtained
using RSs. Finally, a QAM\PSK demodulator takes as input the complex symbols
and convert them to bits. Figure 3.1 summarizes the overall OFDM modulation and
demodulation procedure in discrete time domain.

3.3 Single Carrier Frequency Division Multiple
Access (SC-FDMA)

3.3.1 Modulation

The LTE uplink physical layer is similar to the downlink, but it poses some different
challenges with respect to downlink. Some attributes that LTE uplink needs include
orthogonal uplink transmission by different UEs to minimize intra-cell interference,
and low peak to average power ratio (PAPR) to avoid excessive cost in terms of the
UE power consumption[23]. The modulation used to satisfy these requirements is
SC-FDMA, which combines the desirable OFDM characteristics with a small PAPR.
Similar to OFDM, SC-FDMA divides the transmission bandwidth into multiple parallel
sub-carriers, and prevents the inter-symbol interference by using the CP. As in OFDM,
the CP converts the linear convolution into a cyclic convolution in order to make
an easy equalization possible. The main difference between OFDM and SC-FDMA
consists in a preliminary “spreading” operation of the complex symbols, performed
after the QAM\PSK conversion of the data bits stream. This operation is carried
out by calculating the DFT of blocks of NDF T input symbols, where NDF T < NIDF T .
Thus, one starts from the QAM\PSK sequence

x = [x1, x2, . . . , xNDF T
]T ∈ CNDF T , (3.17)
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where xm represents the m-th QAM\PSK complex value and NDF T is the number of
DFT points. Applying the DFT to x, one obtains

Xk =
NDF T∑
m=1

xme
−j2π km

NDF T , k = 1, . . . , NDF T , (3.18)

and constructs the sequence X

X = [X1, X2, . . . , XNDF T
]T ∈ CNDF T . (3.19)

After the DFT spreading operation, SC-FDMA modulation is similar to OFDM.
Indeed, there are NIDF T subcarriers available, but the subcarriers at the edges of the
transmission band are used as guard bands. Only Nsc subcarriers can be used to
transmit complex symbols. The NDF T samples are mapped to some of the available
Nsc subcarriers. When NDF T < Nsc, the remaining Nsc − NDF T subcarrier values are
set to 0. Considering the frequency domain sequence

S =
[
S− NIDF T

2
, . . . , S−1, S0, S1, . . . , SNIDF T

2

]T

∈ CNIDF T (3.20)

the NDF T complex symbols can be assigned to the sequence as:

Sk =

⎧⎪⎨⎪⎩some DFT complex symbol, if k ∈
[

−Nsc

2 , Nsc

2

]
0 otherwise

, (3.21)

where in this case the S0 subcarrier can be assigned to some complex value. The
discrete time SC-FDMA signal is obtained from Sk as:

sSCF DMA [n] =
Nsc/2−1∑

k=−Nsc/2
Sk · e

j2π(k+ 1
2)∆f

nTsym
NIDF T =

Nsc/2−1∑
k=−Nsc/2

Sk · e
j2π

(k+ 1
2)n

NIDF T

=
NIDF T /2−1∑

k=−NIDF T /2
Sk · e

j2π kn
NIDF T · e

j2π 1
2

n
NIDF T

=
NIDF T −1∑

k=0
S̃k · e

j2π kn
NIDF T · e

j2π 1
2

n
NIDF T

= NIDF T · IDFT
{
S̃k

}
· e

j2π 1
2

n
NIDF T , n = 0, . . . , NIDF T − 1,

(3.22)

where S̃k is the sequence obtained applying the FFT-shift operation, so the left and
right halves of the sequence S are swapped. Note that another difference with respect
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to OFDM is the multiplication by e

(
j2π 1

2
n

Ndft

)
. The multiplication by the exponential

term in the time domain is equivalent to a shift of all the sub-carriers by one half of the
sub-carrier spacing ∆f/2 in the frequency domain. This approach is used to avoid the
transmission of a DC component in time domain. As mentioned before, the SC-FDMA
system scheme uses a CP that occupies Ncp samples, too. Similarly to OFDM, the
CP consists of the final Ncp samples of sSCF DMA [n] inserted before the first sample of
sSCF DMA [n], but in this case with a change of sign. The discrete time sequence becomes

sSCF DMA

cp [n] =

⎧⎪⎨⎪⎩sSCF DMA [NIDF T − Ncp + n] n = 0, . . . , Ncp − 1,

−sSCF DMA [n − Ncp] n = Ncp, . . . , Ntot.
(3.23)

Similarly to OFDM, also in SC-FDMA we need that the CP is longer than the CIR
to avoid intersymbol interference and exploit the circular convolution property for
equalization. The final continuous baseband SC-FDMA signal is obtained after a DA
conversion applied to sSCF DMA

cp [n]. The resulting continuous signal sSCF DMA
cp (t), is

sSCF DMA

cp (t)=
NIDF T /2−1∑

k=−NIDF T /2
Sk · ej2π(k+ 1

2)∆f(t−NcpTs) (3.24)

where t ∈ [0; NtotTs[. As mentioned, in this case we can assign a complex symbol to
the central frequency, because the DC component in the time domain is eliminated by
the frequency shift. After DA conversion, the continuous baseband SC-FDMA signal is
up-converted to the carrier frequency fC , resulting in the real transmitted continuous
band-pass signal

sSCF DMA

tx (t) = Re
{
sSCF DMA

cp (t) · ej2πfCt
}

(3.25)

It is important to notice that, in standard OFDM, the complex QAM\PSK symbols are
carried by individual subcarriers, but in SC-FDMA the QAM\PSK symbols, because
of the preliminary spreading DFT, are actually carried by a group of subcarriers.

3.3.2 Demodulation

Under the same assumptions made for OFDM (Section 3.2) the received discrete time
baseband signal can be written as

r [n] = h [n] ⊛NIDF T
sSCF DMA [n] + w [n] , n = 0, . . . , NIDF T . (3.26)
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Similarly to the OFDM receiver, the SC-FDMA receiver calculates the DFT and the
subcarrier demapping. After demapping, equalization is performed. Then, the IDFT
despreading operation recovers the QAM\PSK symbols. Finally, after the IDFT, the
bit stream can be reconstructed applying a QAM\PSK demodulation and a parallel
to serial conversion. Figure 3.2 shows the equivalent discrete time modulation and
demodulation scheme.
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3.4 LTE Time and Frequency Structure

3.4 LTE Time and Frequency Structure

The standard describes for downlink and uplink physical layers two possible duplex
modes. The first is designed for frequency domain duplexing (FDD), and the second is
designed for time division duplexing (TDD). In this thesis, only FDD is considered,
because it is the most common duplexing mode used in real scenarios (at least in
Europe). For more details about the TDD configuration refer to [15]. As depicted in
Figure 3.3, the LTE FDD configuration is organized in radio frames with duration 10
ms. A radio frame is divided into ten subframes, each subframe has a duration of 1 ms
and is in turn divided into two slots of 0.5 ms. Each OFDM (SC-FDMA) symbol inside

Fig. 3.3 LTE Radio frame structure.

a slot has a duration Tsym = 1/∆f , where ∆f is the sub-carrier spacing usually equal
to 15 kHz, which means that, without considering the CP, a symbol has a duration of
Tsym ≈ 66.7 µs. Depending on the configuration, a slot can contain seven or six OFDM
symbols (SC-FDMA symbols in uplink). The different configurations correspond to
different cyclic prefix (CP) durations. In particular, as depicted in Figure 3.4, with the
normal CP we have Nsymb = 7 OFDM (SC-FDMA) symbols per slot, while with the
extended CP the number of symbols is set to Nsymb = 6. Downlink has also two other
different configurations, where Nsymb and the subcarrier spacing ∆f take different
values (for more detail refer to [15].) Usually, in urban scenarios with cells that have a
small coverage range, a normal CP is used, but in case of large sub-urban and rural
cells where a long coverage range is needed, the extended cyclic prefix is used. The
CP duration is given by NcpTs, where Ts = Tsym/2048 ≈ 32.55 ns is the basic time
unit defined in the standard, which usually represents a sample period, and Ncp is the
duration of the cyclic prefix in number of samples. In normal CP configuration, the
first OFDM (SC-FDMA) symbol of the slot has Ncp = 160 while the other symbols

37



LTE Signals For Positioning

Fig. 3.4 LTE slot structure for normal and extended cyclic prefix. With normal CP
mode, the first CP of the slot has a longer duration.

have Ncp = 144, in extended CP configuration all the OFDM (SC-FDMA) symbols
have Ncp = 512.

An important concept defined in [15] is the so called resource grid, which is a grid
used to define the transmission resources in both time and frequency. As depicted in
Figure 3.5, the basic unit of the grid is the resource element (RE) that corresponds to
the k-th subcarrier inside the l-th OFDM (SC-FDMA) symbol in the slot. REs are
grouped in resource blocks (RBs), which correspond to 12 adjacent REs in the subcarrier
domain, with a duration of one slot. Moreover, in the standard, the spatial domain
is addressed with the concept of antenna ports. Each antenna port corresponds to a
single physical antenna or to a set of antennas that are treated, from a communication
point of view, as a single physical antenna (this is the case of beamforming). Also,
the concept of resource grid is extended to the spatial domain, and in particular each
antenna port refers to its own resource grid.

During a transmission, one OFDM (SC-FDMA) symbol can occupy Nsc = NRB
sc NRB

subcarriers, where NRB
sc is the number of subcarriers in a resource block (i.e., 12) and

NRB is the number of resource blocks allocated for the transmission.
There are six different configurations for the maximum bandwidth available for an

OFDM (SC-FDMA) transmission, which are summarized in Table 3.1. In particular,
B is the total bandwidth occupation in MHz, NRB is the total number of RBs available
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Fig. 3.5 Representation of the resource grid. One resource block (RB) is composed by
12 REs for the duration of one slot [15]. Each resource element is indicated by k-th
index in frequency and l-th index in time

B [MHz] NRB Nsc

1.4 6 72
3 15 180
5 25 300
10 50 600
15 75 900
20 100 1200

Table 3.1 List of possible bandwidth configuration
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and Nsc is the total number of sub-carriers available (i.e., 12 NRB). For example, one
can notice that with Nsc = 72 and a frequency spacing of 15 kHz the total bandwidth
occupation is 1.08 MHz and not 1.4 MHz. As described in Section 3.2, there is some
extra band that does not contribute to symbol transmissions, and which is used as a
guard band to avoid the interference with adjacent channels.

3.5 Reference Signals for Positioning

3.5.1 Downlink Reference Signals

In the LTE downlink, there are two RSs which are appropriate for range measurement.
These are the positioning reference signal (PRS) and the cell specific reference signal
(CRS). The PRS is specially designed for the acquisition of multiple simultaneous range
measurements and is transmitted in dedicated time intervals [15]. The CRS, instead,
is primarily designed for channel estimation and coherent data demodulation, but it
may be opportunistically exploited for range measurements, in particular because it is
always transmitted [25][26]. Both the CRS and PRS are cell specific: this means that
the definition of the signal sequence and the mapping of this sequence on the resource
grid changes with the cell ID. CRS and PRS are also defined as QPSK modulated
lenght-31 Gold sequences, i.e., the complex reference QPSK symbols are obtained from
a pseudorandom generator whose initialization depends on the CID.

The PRS pilot tones occupy one sub-carrier every six through all the available
bandwidth (with a spacing of ∆fP RS = 6∆f = 90 kHz). The total number of
transmitted pilot tones is NP RS = Nsc/6 per OFDM symbol. The PRS is configured to
be transmitted on specific positioning sub-frames, which are designed as low interference
sub-frames, without transmission of data [11]. The mapping to the REs of the PRSs
transmitted from different cells differs by a frequency shift of ∆f depending on the
cell ID. Considering that ∆fP RS = 6∆f , the frequency shift allows to have up to six
orthogonal PRSs that can be detected from six different BSs, in order to estimate the
position.

The CRSs are transmitted multiple times from a BS with a mapping to REs that
depends on the antenna port configuration. For example, in a configuration with
2 antenna ports, the CRS transmission occurs twice per slot, and in particular it
occupies the first and the fifth OFDM symbol in a slot (in case of normal CP), for all
the antenna ports, see Figure 3.6. CRSs of different antenna ports are transmitted
in non-overlapping subcarriers, as depicted in Figure 3.6. The different mapping
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Fig. 3.6 Mapping of the CRS with two antenna ports configuration. The empty REs
can be filled by some data. The number in the colored REs identifies the antenna port.
The × in the REs means that there is no transmission in that resource element for
that antenna port.
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configurations for different antenna ports can be found in [15]. Similarly to PRS,
since the CRS pilot tones occupy one sub-carrier every six through all the available
bandwidth (with a spacing of fCRS = 6∆f = 90 kHz), the total number of transmitted
pilot tones is NCRS = Nsc/6 per antenna port per OFDM symbol. Because the CRS
was designed for data demodulation and channel estimation, it is always transmitted.
The user data allocated in a RB is then transmitted using the REs not allocated for
CRS transmission. In particular the free REs of the first and fifth OFDM symbols may
be used for data transmission. Similarly to PRS, the CRS transmitted from different
BSs is mapped to REs using a frequency shift which depends on the cell ID. Using
the previous example of two antenna ports, in this case there are up to three possible
orthogonal CRS configurations. More detail about these two downlink RSs and their
allocation in the resource grid can be found in [15].

3.5.2 Uplink Reference Signals

In the LTE uplink there are only two types of RSs, namely, the Demodulation Reference
Signal (DM-RS) and the Sounding Reference Signal (SRS). The DM-RS is designed
for coherent demodulation of the data and for channel estimation. In this thesis we
demonstrate that even if the DM-RS is not designed for positioning, it is possible to
exploit it opportunistically for this purpose. The SRS is designed to determine the
channel quality in order to use a frequency selective scheduling in uplink transmissions
[23].

The DM-RS is the reference signal associated to data or control transmissions. In
the frequency domain, DM-RS occupies the same subcarriers occupied by the data or
by the control data transmission, and in time it is located in some defined SC-FDMA
symbols, using some defined REs. The SRS occupies the last SC-FDMA symbol in
the subframe, but usually the SRS occupies different subcarriers with respect to the
ones assigned to data transmission and in general the number of occupied subcarriers
is larger. The main drawback of using SRS for uplink positioning is that the eNodeB
can never instruct the UE to send it and makes it impossible to do TOA and AOA
measurements exploiting SRS. This was actually observed in our experiments. This
is the reason why in this thesis the use of DM-RS is proposed instead of the SRS for
uplink positioning measurements. Moreover, one benefit is that each time there is
some data (or control) transmission, there is an opportunity to make a measurement,
since DM-RS is transmitted, too. The possible drawback of using the DM-RS is that
it occupies only a portion of the bandwidth reserved for data (or control) transmission
and not the whole bandwidth (like, for example, in downlink with the CRS and PRS
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Fig. 3.7 Normalized DM-RS auto-correlation and cross-correlation of DM-RSs. The
duration is Tsymb ≈ 66.67µs and the band occupied is ten RBs. The auto-correlation
shows a sharp peak, while the cross-correlation is with DM-RSs with a different cell
ID, with no evident peak.

signals, or with some configuration of SRS). This leads to a higher TOA variance in the
measurements. To overcome this problem, this thesis proposes a method to combine
multiple DM-RSs belonging to the same data transmission, in order to have a better
estimation exploiting the SAGE algorithm.

The uplink RSs have several characteristics: a constant amplitude in the frequency
domain in all the allocated subcarriers, good auto-correlation properties, and good
cross-correlation properties between RSs transmitted by different UEs, in order to
reduce the interference from RSs transmitted in the same RBs in other cells. Thus, as
depicted in Figure 3.7, the auto-correlation gives a high and sharp peak with respect
to the floor, and the cross-correlation between two different RSs does not return any
apparent peak.

Both the DM-RS and the SRS are based on some particular reference sequences.
These sequences have to satisfy the characteristics mentioned above. The length of a
reference sequence, Nrs, is equal to the number of assigned subcarriers MRB

sc , which is
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always a multiple of the number of sub-carriers per RB, i.e., 12,

Nrs = MRB
sc = m · 12, 1 ≤ m ≤ NRB. (3.27)

If the allocated RBs used for RS transmission are less or equal to two, the RS is
based on special QPSK sequences. These special sequences are described in more detail
in [15]. For RBs allocation greater than two the RS sequence is based on a Zadoff-Chu
(ZC) sequence. The reference sequence is described as

r̄u,v [k] = xq

(
k mod NRS

ZC

)
, k = 0, . . . , Nrs, (3.28)

where NRS
ZC is the largest prime number smaller than Nrs, xq is the Zadoff-Chu (ZC)

sequence described as

xq = e
−jπq

n(n+1)
NRS

ZC , n = 0, . . . , NRS
ZC , (3.29)

q is the root index of the ZC sequence that depends on the group index u and sequence
index v according to:

q =
⌊
NRS

ZC

u + 1
31 + 1

2

⌋
+ v · (−1)⌊2NRS

ZC
u+1
31 + 1

2⌋ . (3.30)

Then, r̄u,v [n] is the cyclical extension of the ZC sequence xq with length NRS
ZC . The

indices u and v are two indices that depend on some parameters configured by the
upper layers. More details on this two indices can be found in [15, 23, 27]. In order to
achieve orthogonality between different UEs transmitting in the same RBs, a cyclic
time shift is added to the reference sequence [23]. This is equivalent to multiply the
sequence by an exponential in frequency domain, thus the sequence becomes

r̄(α)
u,v [k] = r̄u,v [k] · e−iαk. (3.31)

Once the sequence is generated, it is assigned to some subcarriers and after that
an IFFT is applied to the sequence. This means that, for the uplink RSs, there is no
DFT step, as showed in Figure 3.8. To reduce the inter-cell interference generated by
uncoordinated uplink scheduling assignments across multiple neighboring cells, several
randomization techniques of the reference signals are adopted. These randomization
techniques include: group hopping, i.e., changing the group number u at each slot based
on a pseudorandom 31 Gold sequence generator; sequence hopping, i.e., changing the
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3.5 Reference Signals for Positioning

Fig. 3.8 Modulation applied to uplink reference signals. The only difference with
respect to OFDM is the minus sign in the CP, such as in the SC-FDMA modulation.

sequence number v at each slot based on pseudorandom 31 Gold sequence generator;
the usage of different cyclic shifts and frequency hopping. For more detail refer to
[23, 27].
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Chapter 4

TOA and AOA Estimation
Techniques

4.1 Introduction

Estimating the arrival time of a signal is a crucial step for positioning systems based
on TOA and TDOA measurements. The more accurate the arrival estimation is, the
more precise is the final position estimation. TOA-based positioning systems measure
the distance between a transmitter and a receiver using the estimated propagation
delay of the signal. TDOA positioning systems are based on the differences between
TOA estimates obtained by different receivers, and this overcomes the problem of
synchronization between the transmitter and the receivers. The multipath is the major
source of error in TOA estimation. Usually, a wireless environment presents many
scatterers, and these scatterers reflect the transmitted signal, which arrives at the
receiver through multiple paths. The overlap of different signals, due to the different
paths, is a source of error when the interest is to estimate the TOA of the first arriving
path, which is called the line of sight (LOS) signal. In particular, the TOA estimation
error is a function of the signal bandwidth, as shown in Section 4.5. Indeed, if the
signal bandwidth is small and multipath signals arrive close to the LOS signal, it
becomes difficult to separate the LOS signal from the multipath signals. In some cases,
the LOS component is not present in the received signal, and the estimation with
only NOLOS component will necessarily give a bias in the measurement. All TOA
estimation techniques presented in this chapter and used in this thesis assume that the
LOS component is visible. However, even if the LOS component is present, there is
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no certainty that it represents the dominant component, meaning that some NOLOS
component can have a larger amplitude. Based on what has been reported already
(Section 2.4), some signal processing techniques are necessary in order to estimate the
LOS component and recognise it against the NOLOS components. Another source of
error in TOA estimation is the additive noise. Even if multipath is not present, the
accuracy of the time of arrival estimation can be limited by the noise. Indeed, for a
given signal-to-noise-ratio (SNR) the variance of TOA estimation is lower bounded.
Accordingly to this, the accuracy of a position time-based techniques is related to the
ability of the receiver to accurately estimate the TOA of the LOS signal [2].

Direction of Arrival (DOA), also referred to as Angle of Arrival (AOA), estima-
tion techniques have application in beamforming, detection, and localization. These
techniques need to use antenna arrays, which are composed by a certain number of
antennas that can be placed using different geometries. Each antenna element in
the array has to be connected to a radio frequency demodulator. Compared to TOA
techniques, these techniques have the benefit that just two receivers equipped with
antenna arrays are sufficient to estimate a position. This makes DOA estimations more
flexible than TOA estimations. In addition, TOA estimation methods suppose that the
velocity of the wave is homogeneous in the physical medium. This is true for air and
space, but not in sea water, for example. This makes AOA techniques more reliable in
such environment were the propagation in the physical medium is not homogeneous.

Usually, in DOA estimation, a far field scenario is assumed, which means that the
wave impinging the array can be considered a plane wave. In general, the antennas in
the array are located at a constant distance d from each other, and d is usually selected
to be half of the wavelength, in order to avoid ambiguity in the AOA estimation. Indeed,
with d > λ/2, grating lobes appear in the beam pattern, which are lobes with the same
amplitude of the main lobe and this creates an ambiguity in AOA estimation. This
problem is similar to the problem of aliasing in time series analysis, which occurs when
the time domain waveform is undersampled [28]. In DOA systems, the synchronization
between the received signals at each antenna of the array is very critical, because DOA
estimation is computed by exploiting the relative phase difference between signals
received at different antennas. Calibration is also important in a DOA system, because
usually the RF front end is not exactly the same in each antenna element, and this
can add different phase offsets in the received signals.

In this chapter, some common TOA and AOA estimation techniques are discussed.
These techniques include the correlation based approach, the deconvolution method,
the Maximum Likelihood (ML) approach and the subspace based method for TOA
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estimation. Then, some DOA techniques are introduced, such as Barlet estimation,
the standard Capon beamformer and the IAA-APES algorithm. After that, the SAGE
algorithm is presented, which is a technique to joint estimate the DOA, TOA and also
Doppler spreading. At the end of the chapter, the Cramer Rao lower bound (CRLB)
is introduced, which represents a universal lower bound on the variance of an estimate.
Generally, all these methods can be applied either in the time domain, by exploiting
the channel impulse response (CIR), or in the frequency domain by exploiting the
channel frequency response (CFR).

4.2 TOA Estimation Techniques

In TOA estimation the baseband multipath wireless channel can be modeled via a CIR
of the form

h (t) =
L∑

l=1
αlδ (t − τl) (4.1)

where L represents the number of multipath components, αl is the complex attenuation
of the l-th path and τl is the propagation delay of the l-th path. In general, due to the
motion of the transmitter, the receiver, or the scatters, the parameter αl and τl are
modeled as time varying random variables. However, as explained in Section 3.2, if
the measurement is made in a sufficiently small time interval, these parameters can be
considered constant. This approximation is fundamental in order to estimate properly
the parameters of the channel. According with this channel model the CFR is equal to

H (f) =
L∑

l=1
αle

−j2πfτl , (4.2)

and the received signal y (t) in the presence of multipath and noise is

y (t) =
L∑

l=1
αls (t − τl) + n(t), (4.3)

where s (t) represents the known transmitted signal (for example the reference signal
in the LTE case), with bandwidth B, center frequency fc, duration T0, 0 ≤ t < T0, and
n(t) is a zero-mean white Gaussian noise.
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Fig. 4.1 Correlation of the DM-RS in a multipath scenario, where the number of paths
is L = 5. The figure shows that the correlation magnitude of the first path is not
the largest one. In order to estimate the first path, the first peak that exceeds the
threshold is selected as the first arriving path.

4.2.1 Correlation Based Techniques

The TOA is the earliest arrival time that maximizes the cross correlation between the
received signal and the known transmitted signal [29], where the cross correlation for a
discrete time signal is defined as:

Rsy [n] =
+∞∑

m=−∞
s∗[m]y[n + m], (4.4)

where s∗ [n] represent the complex conjugate of s [n]. In general, an estimation of the
TOA can be obtained using a correlator at the receiver that correlates the received
signal with the known transmitted waveform, then the time shift that corresponds to
the maximum correlation peak is chosen as the TOA. However, due to multipath, the
maximum peak of the correlation could be located corresponding to a path that is
not the first path. This situation is depicted in Figure 4.1, where the first path has a
lower magnitude than the other paths. This is because there is no guarantee that the
first path arriving at the receiver is the path with the maximum amplitude. So, the
receiver must find the first arriving peak, that is estimated by comparing the absolute
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Fig. 4.2 Correlation of the DM-RS in a multipath scenario where the number of paths
is L = 3. The figure shows that the correlation method is not able to distinguish the
different paths because they are too close, and this causes a large error in the TOA
estimation of the first path.

value of the cross correlation with a certain threshold, which is usually set based on
the measured noise power as it is possible to see in Figure 4.1.

Generally, TOA-based range errors due to multipath are many times larger than
those caused by the additive noise alone. The main benefit of this estimation technique
is its low complexity. The main problem of this method is that the estimation is
inaccurate in the presence of multipath. Indeed, close multipath signals can be resolved
with this method only if the transmission bandwidth is increased. In Figure 4.2, a
situation where the correlation method is not able to distinguish three close paths is
depicted, and the first peak that exceeds the threshold is biased with respect to the first
path. Another source of error of this method is given by the sample period. Indeed,
also in an ideal case without noise and multipath, if the true TOA is in between two
samples, the maximum of the correlation is in correspondence with the sample closest
to the real TOA. This error can be reduced by averaging multiple measurements.
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Fig. 4.3 Block scheme of the deconvolution method

4.2.2 Deconvolution Method

Based on Equation (4.3), the received signal y (t) is the convolution of the transmitted
signal with the CIR. Therefore, the relation results in

y (t) = s (t) ∗ h (t) + n (t) (4.5)

and, in the frequency domain,

Y (f) = S (f) H (f) + N (f) (4.6)

where Y (f), S (f) and N (f) are the Fourier transform of y(t), s(t) and n(t), re-
spectively, and H (f) is the channel frequency response of Equation (4.2). Therefore,
dividing Y (f) by S (f), the CFR can be estimated, and making an inverse Fourier
transform we obtain the CIR. Based on the CIR, it is possible to estimate the TOA
of the first path. The deconvolution method is essentially an inverse filter, and Fig-
ure 4.3 shows the scheme of this method. If the transmitted signal has a bandwidth
B and a central frequency fc, it is possible to sample in frequency the continuous
frequency signals, i.e., Y [k] = Y (f)|f=fk

, S [k] = S (f)|f=fk
, H [k] = H (f)|f=fk

,
and N [k] = N (f)|f=fk

, where fk = f0 + k∆f with k = {0, 1, . . . , K}. Moreover,
f0 = fc − B/2 represents the lowest frequency component of the signal. ∆f is the
frequency sample spacing, which corresponds to the frequency resolution in the fre-
quency domain, and K = B/∆f is the number of samples. Considering LTE, ∆f = 15
kHz and K depends on the bandwidth, as shown in Table 3.1. Based on the discrete
notation, it is possible to write Equation (4.6) in vector notation as

Y = SH + N, (4.7)

where Y = [Y [f0] , Y [f1] , . . . , Y [fK ]]T ∈ C1×K represents the vector of the transformed
received signal, S = diag ([S [f0] , S [f1] , . . . , S [fK ]]) ∈ CK×K is a diagonal matrix
with the diagonal elements equal to the transmitted signal frequency samples, H =
[H [f0] , H [f1] , . . . , H [fK ]]T ∈ C1×K are the frequency samples of the channel and
N = [N [f0] , N [f1] , . . . , N [fK ]]T ∈ C1×K is the vector of the noise frequency samples.
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So, calculating X = S−1Y for the frequencies within bandwidth B, the transmitted
signal S can be removed from Y, obtaining

X = H + W. (4.8)

In the previous equation, W = S−1N is the additive noise affecting vector X. Applying
an inverse Fourier transform to the vector X, it is possible to obtain the CIR (affected
by noise), whose magnitude typically presents a maximum in correspondence of the
true time delay. The location of the maximum can be detected and used to estimate
TOA by comparing the magnitude of the CIR with a threshold, usually calculated
based on an estimate of the noise level. Using a threshold is similar to what is done in
correlation techniques.

One of the drawbacks of the inverse filtering technique is possible noise enhancement,
which occurs when the elements of matrix S−1 are small. This effect can be reduced
by using the so-called constrained inverse filtering method [2].

In general, the deconvolution approach needs a coarse TOA estimation in order to
set a proper window of data that will be later processed by the fast Fourier algorithm.
This method can better resolve closely spaced multipath components compared to the
correlation-based method, but the provided resolution is not enough for high-precision
range measurement.

4.2.3 ML-Based Methods

ML-based algorithms estimate the multipath delays and the channel coefficients us-
ing a Maximum Likelihood estimator. The unknown channel coefficients, based on
Equation (4.1), can be grouped into a real valued channel parameter vector as

Ω = [Re {α1} , Im {α1} . . . , Re {αL} , Im {αL} , τ1, . . . , τL] ∈ R3L×1. (4.9)

Under the assumption of Gaussian noise, the log-likelihood function with respect to
the channel parameter vector Ω is

ln [Λ (Ω)] = −
T0∫
0

⏐⏐⏐⏐⏐y (t) −
L∑

l=1
αls (t − τl)

⏐⏐⏐⏐⏐
2

dt, (4.10)
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where y (t) is the received signal and s (t) is the transmitted signal. Therefore, the ML
solution ΩML is obtained by solving

Ω̂ML = arg max
Ω

{ln [Λ (Ω)]} (4.11)

It is important to notice that it is possible to find the ML solution in the frequency
domain, i.e., by maximizing

ln [Λ (Ω)] = −
B/2∫

−B/2

⏐⏐⏐⏐⏐Y (f) −
L∑

l=1
αlS (f) e−j2πfτl

⏐⏐⏐⏐⏐
2

df. (4.12)

As one can see in Equation (4.9), the length of the channel parameter vector is a
function of the number of multipath components, and, in case of a large number of
such components, the complexity of this approach becomes very high. This is because
the maximization problem becomes a multidimensional (in this case 3L dimensional)
maximization problem, whose solution requires a high computational burden. In order
to solve the ML criterion, less complex algorithms have been proposed. For example,
the SAGE algorithm described in Section 4.4, is a ML algorithm that jointly estimates
TOA, Doppler frequency and the AOA of each path. The overall idea of this algorithm
is to cancel the multipath interference by subtracting the previous estimated path
to the CFR, separating the paths serially one by one. However, if the multipath
component TOAs are very close, the algorithm start to become inefficient.

Usually, the variance of an ML estimator error is less than that obtained with
other approaches, when only a single path is available in the received signal [2]. In
addition, no prior information is needed for the implementation of ML-based methods,
but, due to the search of a multidimensional solution of the optimization problem, the
complexity of these methods is higher than that, for example, of the correlation and
deconvolution approaches.

4.2.4 Subspace-Based Techniques

Subspace-based algorithms involve the decomposition of the space spanned by the
observation vector into several sub-spaces, usually the noise subspace and the signal
subspace. These algorithms use the orthogonality property between noise and signal
subspaces to estimate the channel parameters. This approach uses the eigenvector
decomposition of higher order matrices, so the level of complexity is high. The main
advantage of this class of algorithms is the high resolution of the estimated parameter
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estimation, i.e. the ability to discriminate close paths. Some super-resolution algorithms,
such as estimation of signal parameters via rotational invariance techniques (ESPRIT)
or multiple signal classification (MUSIC), are indeed based on the subspace approach.
More detail about super-resolution algorithms used for TOA in wireless channels
can be found in the literature, e.g., in [26, 30–34] and references therein. In general,
super-resolution algorithms are also used also for other parameters estimation, such as
AOA. The interested reader may refer to [2, 28, 35] for further details.

In the following, the sub-space approach on which super-resolution techniques rely
is presented. Suppose that at the receiver a rough estimation of the CFR is available.
This estimation may likely be a sampled and noisy version of the continuous CFR
showed in Equation (4.2), where the frequency domain sampling interval is ∆f :

H [k] =
L∑

l=1
αle

−j2πk∆fτl + w [k] . (4.13)

Consider a set of M > L adjacent samples of H [k] collected in vector Hk, which is
referred to as a snapshot,

Hk = [H [k] , H [k + 1] , . . . , H [k + M − 1]]T . (4.14)

Each snapshot Hk can be written as

Hk =
L∑

l=1
αle

−j2πk∆fτl

[
1, e−j2π∆fτl , e−j2π2∆fτl , . . . , e−j2π(M−1)∆fτl

]T
+ w [k]

=
L∑

l=1
αle

−j2πk∆fτlv [∆fτl] + w [k] = Vh [k] + w [k] = S [k] + w [k]
(4.15)

where

S [k] =
L∑

l=1
αle

−j2πk∆fτlv [∆fτl] = Vh [k] ∈ CM , (4.16)

V = [v [∆fτ1] , v [∆fτ2] , . . . , v [∆fτL]] ∈ CM×L, (4.17)

v [∆fτl] =
[
1, e−j2π∆fτl , e−j2π2∆fτl , . . . , e−j2π(M−1)∆fτl

]T
∈ CM , (4.18)

w [k] = [w [k] , w [k + 1] , . . . , w [k + M − 1]]T ∈ CM , (4.19)

h [k] =
[
α1e

−j2πk∆fτ1 , α2e
−j2πk∆fτ2 , . . . , αLe−j2πk∆fτL

]T
∈ CL, (4.20)
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are respectively the signal vector, the time-window frequency matrix, the time-window
frequency vector, the noise vector and the channel coefficients vector. Each element of
w [k] is assumed to be a complex Gaussian random variable with zero mean, independent
components with variance σ2

w/2, and independent from all the other noise samples.
Hence, the auto-correlation matrix of w [k] is Rww = E[w [k] wH [k]] = σ2

wIM , where
IM is the identity matrix of M ×M dimension. Moreover, the complex channel gains αl

are assumed to be random variables having independent identically distributed phases
with a uniform distribution in the interval [0; 2π[, while the modulus is assumed to
be independent with respect to the phase. Under these assumptions, it is possible to
demonstrate [28, 35] that the auto-correlation matrix RHkHk

of Hk, is a normal matrix
(i.e., RHkHk

RH
HkHk

= RH
HkHk

RHkHk
), so there exists an eigendecomposition of RHkHk

with an orthonormal basis of eigenvectors. The eigendecomposition can be written
as the sum of two terms, corresponding to the signal eigenvectors and to the noise
eigenvectors. This leads to

RHkHk
=

L∑
m=1

λmqmqH
m +

M∑
m=L+1

σ2
wqmqH

m = QsΛsQH
s + σ2

wQwQH
w (4.21)

where

Qs = [q1, . . . , qL] ∈ CM×L (4.22)
Qw = [qL+1, . . . , qM ] ∈ CM×(M−L) (4.23)
Λs = diag {[λ1, . . . , λL]} ∈ CL×L (4.24)

and ql ∈ CM is the eigenvector of RHkHk
, with λl the corresponding eigenvalue. In

particular, the L eigenvalues relative to the signal sub-space are λl = ME
[
|αl|2

]
+

σ2
w, l = 1, . . . , L and the M − L eigenvalues of the noise are λl = σ2

w, l = L + 1, . . . , M .
Thus, an orthonormal basis of the signal subspace is given by Qs and an orthonormal
basis of the noise subspace is given by Qw. The main point of the of subspace method
is that the signal and noise sub-spaces are orthogonal to each other. Since the time-
window frequency vector v [∆fτl] lies in the signal sub-space, then, for different τl

values, the vector is orthogonal to the noise sub-space, that is

vH [∆fτl] ql′ = 0 ∀l, ∀l′ ≥ L + 1 (4.25)

Equation (4.25) is exploited by super-resolution algorithms for understanding if a
particular discrete time delay τ̂ is present in the signal Hk. The MUSIC and the
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ESPRIT algorithms are quite similar, and indeed they are based on the same signal
model showed before. They differ in the method used to estimate the different delay
values. In particular, MUSIC exploits a pseudospectrum where the peaks represent the
different TOAs of the impinging wave due to multipath. The accuracy of MUSIC is
related to the discretization interval adopted in the calculation of the pseudospectrum.
ESPRIT instead, is based on the observation that the signal sub-space has a rotational
invariance property. This property can be exploited to estimate a rotational matrix
that is related to the multipath time delays. In this case, the resolution of the estimated
delays does not depend on any discretization interval. Further details about ESPRIT
and MUSIC can be found in [35] and [28].

4.3 AOA Estimation Techniques

Estimating the angle of arrival AOA (also referred as DOA), needs to use antenna
arrays, and this led to the development of array processing techniques in order to
estimate the parameters of the impinging electromagnetic wave. Array processing is
based on signal processing, since the signals captured by an array of spatially separated
sensors can be seen as a spatial sampling of the incoming waves. Other types of array
sensors include microphones, ultrasound, and infrared sensors instead of antennas.
An emerging technology over the past decade is sensor networks, where sensors are
distributed over a wide area, and the purpose is generally to monitor the environment
and/or to localize a certain signal source [3].

Usually, an array of antennas is used to focus the energy of a signal in the spatial
domain. At the transmitter side, a simple technique consists of adding some time
delays to the signals transmitted by the various elements of the array. This allows
the waveform to add coherently in a desired direction, while it is attenuated in other
directions. The same technique can be used at the receiver side, by first applying
the same time delays at the sensor outputs, and then summing the result. The result
can be interpreted as a matched filter applied to the assumed arriving direction of
the signal. This kind of signal processing is referred to as beamforming, and it is the
spatial equivalent of temporal Finite Impulse Response (FIR) filtering. Usually, the
performance of this approach depends critically on the number of elements and on the
physical size of the array, also called aperture. Some more elaborate filter functions will
be presented in this section. The interested reader can refer to [36, 37] for some review
article, or to the books [28, 38, 39] to have a deeper comprehension of the beamforming
techniques.
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4.3.1 Wave Propagation Model

In order to understand the basic aspects of AOA detection, it is important to introduce
some fundamental concepts related to the antenna array and to its physical model.
Generally, in array processing, a common problem is to determine some parameter
of the impinging wave that comes from different sources. Considering a single source
and an electromagnetic wave that propagates in a homogeneous and non-dispersive
medium, the electromagnetic field E (t, r) representing the signal is described by the
equation

∂E (t, r)
∂x2 + ∂E (t, r)

∂y2 + ∂E (t, r)
∂z2 = 1

c2
∂E (t, r)

∂t2 (4.26)

where t represents time, r = [x, y, z]T is the space location and c represents the
propagation speed. Assuming that the source is a point source and that the antenna
array is small compared to the distance between the source and the array, then the
distance between each antenna and the source can be considered constant. This leads
to a solution for E [38], corresponding to a mono-chromatic wave that assumes the
complex exponential form

E (t, r) = Aej2πf(t−r·u/c) = Aej(2πft−r·k) (4.27)

where f is the temporal frequency, u is the unit vector pointing to the direction of
propagation, r is the coordinate vector of the observation point, k = ku is the wave
vector, where k = 2πf/c is the wavenumber. The temporal and spatial frequencies are
related by the following equation

|k|2 = k2
x + k2

y + k2
z = (2πf)2

c2 . (4.28)

Considering that the propagation velocity is c = fλ where λ is the wavelength, the
magnitude of the wavevector is |k| = 2π/λ. Moreover, the wavevector can be expressed
as

k =

⎡⎢⎢⎣
kx

ky

kz

⎤⎥⎥⎦ = −k

⎡⎢⎢⎣
cos (φ) cos (ϕ)
cos (φ) sin (ϕ)

sin (φ)

⎤⎥⎥⎦ (4.29)

where ϕ and φ are the azimuth and elevation angle of the coordinate system, respectively,
as depicted in Figure 4.4. Both parameters characterize the direction of propagation
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Fig. 4.4 Coordinates system considered for DOA estimation. The angle ϕ represents
the azimuth angle and φ represents the elevation angle.

and are referred to as the direction of arrival (DOA or AOA). Note that for far-field
sources, the distance between the source and the array of sensors is much larger than
the aperture of the array, so the DOA value are approximately the same at each
antenna. According to Equation (4.27), the wave is a plane wave, because the surface
traced by a constant phase at time instant t is a plane perpendicular to the propagating
direction given by k · r = constant.

4.3.2 Frequency Description

Let us consider an array of sensors located at pm, m = 1, . . . , M ∈ R3, that receive
signals generated by L sources. Without loss of generality, we can consider the first
sensor as the origin of the coordinate system. So, the l-th signal coming from the l-th
source, received by the first sensor can be denoted as sl (t) , l = 1, . . . , L. Based on
this notation, the signal received at the m-th sensor will be the original signal with a
time delay plus noise

ym (t) =
L∑

l=1
sl (t − τml) + nm (t) , (4.30)

where τml is the propagation time difference between the first sensor at the origin and
the m − th sensor. The time difference is given by rm · ul/c = rm · ξl, where ξl is called
the slowness vector and is related to the wave vector according to ξl = kl/ (2πf). In
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other words, the delay τml is related to the DOA. If a Fourier transform is applied
to the array output vector y (t) = [y1 (t) , . . . , yM (t)]T , the time delays become phase
shifts, so the output vector in the frequency domain is given by

Y (f) =

⎡⎢⎢⎢⎣
Y1 (f)

...
YM (f)

⎤⎥⎥⎥⎦ =
L∑

l=1
a (ϕl, φl, f) Sl (f) + N (f) , (4.31)

where a (ϕl, φl, f) is called the steering vector and represents the spatial samples of
the l-th incoming wave. In particular

a (ϕl, φl, f) =

⎡⎢⎢⎢⎣
e−jr1·kl

...
e−jrM ·kl

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e−j2πfr1·ξl

...
e−j2πfrM ·ξl

⎤⎥⎥⎥⎦ . (4.32)

From the steering vector it is possible to define the steering matrix for all the L sources
as

A (ϕ, φ, f) = [a (ϕ1, φ1, f) . . . a (ϕL, φL, f)] , (4.33)

Thus, in matrix notation, Equation (4.31) becomes

Y (f) = A (ϕ, φ, f) S (f) + N (f) , (4.34)

where S (f) = [S1 (f) , . . . , SL (f)].

Usually, for transmission, the signal is modulated by a carrier frequency fc. At
the receiver side, the radio frequency signals are demodulated to baseband for further
processing. Let us assume that the signal is band limited with a bandwidth B, and
that the maximum travel time between two sensors of the array is ∆T . It is possible to
make a narrow band assumption if B∆T ≪ 1, which means that the complex baseband
signal waveform is approximately equal for all sensors, so the sensors outputs are all
coherent and differ only by a phase shift. So, after baseband downconversion, the
general expression in time becomes

y (t) = A (ϕ, φ) s (t) + n (t) , (4.35)

where the steering matrix A (ϕ, φ) is calculated at the carrier frequency fc, and s (t)
represents the vector of baseband signals.

60



4.3 AOA Estimation Techniques

DOA estimation is typically based on sampled values of y (t) at time instants
tn, n = 1, . . . , N , thus the snapshot discrete model is given by

y [n] = A (ϕ, φ) s [n] + n [n] , n = 1, . . . , N. (4.36)

In array processing methods, the second order statistics of the data is usually exploited.
Let us assume that the signal and noise are independent, stationary random processes
with zero mean, and with auto-correlation matrices Rss = E

[
s [n] sH [n]

]
and Rnn =

E
[
n [n] nH [n]

]
. The noise process is typically assumed to be spatially white, i.e.,

Rnn = σ2I with I the identity matrix. Then, the auto-correlation matrix of the
received signal is

Ryy = E
[
y [n] yH [n]

]
= A (ϕ, φ) RssAH (ϕ, φ) + σ2I. (4.37)

The correlation matrix is not known at the receiver, but it can be estimated from the
N observations as

R̂yy = 1
N

N∑
n=1

y [n] yH [n] . (4.38)

Note that, under weak assumptions R̂yy converges to the true Ryy for large N [40]. One
of the most common antenna arrays is the uniform linear array (ULA). Considering
the coordinates of Figure 4.4, the m−th array element of a ULA is placed along the
y-axis at position pm = [0, (m − 1) d, 0], where d is the distance between sensors. In
this case, the elevation angle φ is set to 90° and the steering vector is characterized by
only the azimuthal angle ϕ. Then the ULA steering vector of an angle ϕ is

aULA (ϕ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ejkd sin ϕ

ejk2d sin ϕ

...
ejk(M−1)d sin ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ej2π d

λ
sin ϕ

ej2π 2d
λ

sin ϕ

...
ej2π

(M−1)d
λ

sin ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.39)

Typically, the distance d is taken half of the wavelength, i.e., d = λ/2.
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4.3.3 Spatial Filtering

A linear spatial filter is simply obtained by weighting and summing the antennas
outputs. Defining the weights as w = [w1, . . . , wM ]T ∈ CM . Considering only one
source with DOA ϕ and a ULA, the output of the so called beamformer is given by

x [n] =
M∑

m=1
w∗

mym [n] = wHy [n] = wH (a (ϕ) s [n] + n [n]) (4.40)

where w is called the beamforming vector or weight vector. Thus, wHa can be seen as
the spatial transfer function from s [n] to x [n], at the direction ϕ and at the carrier
frequency fc . The magnitude of this transfer function G (ϕ) =

⏐⏐⏐wHa
⏐⏐⏐ is the gain of a

spatial filter applied to a signal coming from the direction ϕ, and in case of ULA it is
given by

G (ϕ) =
⏐⏐⏐wH

ma
⏐⏐⏐ =

⏐⏐⏐⏐⏐
M∑

m=1
w∗ej2π(m−1) d

λ
sin ϕ

⏐⏐⏐⏐⏐ (4.41)

This magnitude is important to introduce the concept of beam pattern, which is the
plot of the beamforming magnitude G (ϕ) when the weights are selected as w = a (ϕ0),
where ϕ0 is called the look direction, which represents the DOA of the signal. The
magnitude of the filter results to be

G (ϕ, ϕ0) =
⏐⏐⏐aH (ϕ0) a (ϕ)

⏐⏐⏐ =
⏐⏐⏐⏐⏐

M∑
m=1

ej2π(m−1) d
λ

(sin ϕ−sin ϕ0)
⏐⏐⏐⏐⏐ (4.42)

Considering the Cauchy-Schwartz’s inequality
⏐⏐⏐aH (ϕ0) a (ϕ)

⏐⏐⏐ ≤ ||aH (ϕ0) || ||a (ϕ)|| so
the gain G (ϕ, ϕ0) has a maximum for ϕ = ϕ0. This type of filter is a matched filter;
using this type of filtering in order to estimate the DOA, searching the angle that
gives the maximum of the function G, is referred to as the conventional or Bartlett
beamforming. Figure 4.5 shows the beam pattern for a 10 element ULA with respect
to different look directions. Due to symmetry, the beam pattern is plotted only for
−90° ≤ ϕ < 90°. It is shown that the function G (ϕ, ϕ0) has some zeros and that the
location of the first null defines the beamwidth of the array. If the main lobe is narrow,
there is better capability to discriminate between multiple sources at different positions,
i.e., resolution [38]. Besides the main lobe, the beam pattern also displays sidelobes. It
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Fig. 4.5 Beam pattern obtained for different look directions ϕ0, with M = 10 elements
in the array and d = λ/2. When the angle approach +90° or −90°, the width of the
main beam is wider.

can be shown [38] that the width of the main lobe in angles can be calculated as

ϕBW ≈ λ

Md cos ϕ0
(4.43)

This demonstrates clearly that the beamwidth is widened when cos ϕ0 is close to zero.
Indeed, looking at Figure 4.5, the beam pattern is wider when ϕ0 approach 90° or
-90°. Equation (4.43) shows also that the beamwidth is widened when the number of
elements is increased, as depicted in Figure 4.6. The beamwidth becomes thinner also
when the distance between the elements is increased. However, if the distance d is
higher that half of the wavelength, the beam pattern exhibits the so called grating
lobes, which means that the beam pattern has more than one maximum: this can
create ambiguity in the DOA estimation. This effect is shown in Figure 4.7, and is the
dual of the aliasing effect in time sampling.

4.3.4 Conventional Beamforming

The DOA estimation is made by looking in a spatial power spectrum the location where
most power is concentrated. As showed in Section 4.3.3 beamforming methods are
based on spatial filters that weight the sensors outputs. In particular, the weight vector
is a function of the DOA, i.e., w = w (ϕ), and an estimation of the power spectrum at
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Fig. 4.6 Beam pattern obtained for different numbers of array elements M with d = λ/2
and look direction ϕ0 = 0°. Increasing the number of antenna elements makes the
beamwidth narrower.

Fig. 4.7 Beam pattern obtained for different distances d between array elements, with
M = 10 and the look direction ϕ0 = 30°. Increasing the distance between the elements
of the array makes the beamwidth narrower, but if the distance becomes higher than
λ/2 grating lobes appear due to spatial aliasing.
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the direction ϕ is provided from the beamformer output as

P (ϕ) = 1
N

N∑
n=1

|x [n]|2 = wHR̂yyw = wHyyHw (4.44)

where y = a (ϕ) s [n] + n [n] . Here, P (ϕ) is called the spatial power spectrum and,
considering only one source, the value of ϕ that gives the maximum of P (ϕ) is usually
close to the true DOA. It is apparent that a good beam pattern, as a function of
ϕ, has to be as much as possible close to a delta function. In practice, due to the
finite array aperture, the beampattern has a main lobe and several sidelobes. The
Conventional beamformer, coincides with the ML solution in case of a single source
and white Gaussian noise. In case of multiple sources, the peaks tend to move due
to leakage, and if two sources are too close, they merge in a single peak. It can also
happen that a powerful source can cover with its sidelobes other sources with less
power. To avoid this, windowing can be used at the price of less resolution.

4.3.5 Minimum variance distortionless response beamformer

The Minimum variance distortionless response (MVDR) beamformer, commonly also
referred to as Capon beamformer [41], considers the following optimization problem

min
w

wHR̂yyw subject to wHa (ϕ) = 1. (4.45)

The idea of the algorithm is to impose the constraint that the signal from the desired
direction ϕ is not distorted (see Equation (4.40)), while minimizing the overall power
due to noise and interference. The solution of this problem is well known [42], and is
given by

wMV DR =
R̂−1

yy a (ϕ)
aH (ϕ) R̂−1

yy a (ϕ)
. (4.46)

Substituting Equation (4.46) in Equation (4.45) the power function becomes

PMV DR (ϕ) = 1
aH (ϕ) R̂−1

yy a (ϕ)
. (4.47)

Because of the inversion of the matrix R̂yy, this beamformer puts a constraint to
the rank of the matrix, which needs to be full. In other words, this means that the
number of snapshots N has to be greater or equal to the number of sensors M , i.e.,
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N ≥ M . The performance of the MVDR beamformer depends on the number of
snapshots, array aperture, and SNR. In the presence of coherent or strongly correlated
interference, the performance of the MVDR beamformer degrades dramatically. Due
to the distortionless response constraint, the MVDR beamformer is sensitive to errors
in array imperfection.

4.3.6 Subspace Methods

Similarly to that presented in Section 4.2.4 for TOA estimation, also for DOA estimation
it is possible to exploit the orthogonality between the signal subspace and the noise
subspace. In particular, considering the correlation matrix of Equation (4.37) for a
ULA

Ryy = A (ϕ0) RssAH (ϕ0) + σ2I, (4.48)

it is apparent that Ryy depends on the true DOA parameter vector. Under the
assumption that L < M , i.e., that the number of sources is less than the number of
elements in the array, and assuming also that Rss is full rank, matrix A (ϕ0) RssAH (ϕ0)
has rank L [38]. Then, there exists a basis of M − L vectors that are orthogonal
to A (ϕ0) [38]. Similarly to TOA estimation, the correlation matrix Ryy can be
decomposed in eigenvectors and their corresponding eigenvalues. Algorithms like
ESPRIT or MUSIC can be exploited to estimate which eigenvectors lie in the signal
subspace and which eigenvectors lie in the noise subspace. In general, if computational
burden is not a concern and if the sensors are expensive, i.e., only few sensors are
available, MUSIC is preferred. On the contrary, if the computational power is limited
and if there are many sensors available compared to the number of sources to detect,
ESPRIT is preferred.

4.3.7 IAA-APES

As seen, the beamforming methods localize the signal sources by estimating the power
associated with various DOAs. Since the number of different AOAs is usually small,
the AOA estimation can be viewed as a sparse data reconstruction where AOAs are
associated to those directions that have non-zero amplitudes. In this approach, the
first step is to find a sparse representation of the array output data. The beamforming
output of the array observation of Equation (4.36) can be used to construct a sparse
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data representation. Then the optimization problem will become to find nonzero AOA
components that represent the direction of the sources.

We assume that there are L sources that arrive at the array with angles ϕ =
[ϕ1, . . . , ϕL]. In the presence of additive noise the output of an antenna array with M

elements is

y [n] = A (ϕ) s [n] + n [n] n = 1, . . . , N (4.49)

where N is the number of snapshots, A (ϕ) is the M × L steering matrix defined as
A (ϕ) = [a (ϕ1) , . . . , a (ϕL)] and s [n] = [s1 [n] , . . . , sL [n]] is the source vector signal
at time n. Considering a ULA, the steering vector of the l-th source is given in
Equation (4.39), with ϕp substituting the generic ϕ. It is important to note that if
the geometry of the array changes, only the expression of the steering vector has to
be modified. Usually, the number L of sources is unknown, and in order to estimate
the DOAs of the different sources, a K point grid with K ≫ L is considered. In
other words, the considered region of the angles of interest is subdivided into a grid
ϕ̃ =

[
ϕ̃1, . . . , ϕ̃K

]
of K points and for each point the power is estimated. Indeed,

assuming that the set ϕ̃ contains all the values ϕp, vector s [n] in Equation (4.49) has
only a few significant components, and is therefore “sparse.”

The iterative adaptive approach for amplitude and phase estimation (IAA-APES) is
a data-dependent, non parametric approach based on the weighted least square (WLS)
algorithm [43]. Assume that P ∈ RK×K is the diagonal matrix whose elements are the
power at each angle of the scanning grid. Then the element on the diagonal can be
expressed as

Pk = 1
N

N∑
n=1

|sk [n]|2 , k = 1, . . . , K, (4.50)

where sk [n] has to be estimated. Considering that ϕk is the current angle of interest,
it is possible to define the interference plus noise covariance matrix as

Q (ϕk) = R − Pka (ϕk) aH (ϕk) (4.51)

where the correlation matrix is R = A (ϕ) PAH (ϕ). Then it is possible to define the
WLS cost function as [39, 43]:

N∑
n=1

∥y [n] − sk [n] a (ϕk)∥2
Q−1(ϕk) (4.52)
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where

∥x∥2
Q−1(ϕk) = xHQ−1 (ϕk) x. (4.53)

Minimizing the cost function with respect to sk [n], which is considered deterministic
and unknown, it is possible to obtain the estimate

ŝk [n] = aH (ϕk) Q−1 (ϕk) y [n]
aH (ϕk) Q−1 (ϕk) aH (ϕk) , n = 1, . . . , N (4.54)

using the matrix inversion lemma and the definition of Q (ϕk) (Equation (4.51)).
Equation (4.54) can be written as [43]

ŝk [n] = aH (ϕk) R−1y [n]
aH (ϕk) R−1a (ϕk) , n = 1, . . . , N (4.55)

This avoids the calculation of Q−1 for each of the k-th scan points. Furthermore, the
calculation of ŝk [n] may be done in parallel. Since IAA-APES requires the correlation
matrix R, which depends on the unknown signal powers, it has to be implemented
iteratively, and usually the initialization is made with a conventional beamformer. In
IAA-APES, the estimation of P and R, are calculated using the signal estimation
obtained in the previous iteration, differently from the Capon beamformer, where
the snapshots are considered. This makes the IAA-APES algorithm more robust to
coherent or high correlated sources. It also can have good performance using only
few snapshots [44]. In page 68 the pseudocode of the algorithm is presented. It is

IAA-APES pseudocode algorithm

Pk = 1
N

∑N
n=1

|aH(ϕk)y[n]|2

aH(ϕk)a(ϕk) k = 1, . . . , K

repeat
R = A (ϕ) P̂AH (ϕ)
for k = 1, . . . , K do

ŝk [n] = aH(ϕk)R−1y[n]
aH(ϕk)R−1a(ϕk) , n = 1, . . . , N

Pk = 1
N

∑N
n=1 |sk [n]|2

end for
until convergence

important to notice that the algorithm is described in the time domain. However, it
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can be also be implemented in the frequency domain, since the formulation remains
the same.

4.4 Joint ML Parameters Estimation

For joint estimation, a propagation scenario with a transmitter equipped with a single
antenna and a receiver equipped with an antenna array composed of M antenna
elements is considered. As showed in Section 4.3, the antenna array steering vector
is a (ϕ) ∈ CM , where ϕ is the azimuth angle. This type of channel is referred to
as a single-input multiple-output (SIMO) channel. In the special case of a single
omni-directional antenna receiver, the channel will be referred to as a single-input
single-output (SISO) channel. In this case M = 1 and a (ϕ) = 1, ∀ϕ.

Let us assume that the receiver is equipped with an antenna array of M elements
and that the elements are located at positions p1, . . . , pm, pi ∈ R2, with respect to an
arbitrary origin. Assuming that the channel presents a finite number of paths L, it is
possible to describe the received baseband signal, in vector notation, as

y (t, θ) = [y1 (t, θ) , . . . , yM (t, θ)]T =
L∑

l=1
αls (t − τl) ej2πνlta (ϕl) . (4.56)

where θ = [θ1, . . . , θL]T represents the channel parameter vector of the l−path, namely
θl = [Re {αl} , Im {αl} , τl, νl, ϕl]. Considering the l-th impinging wave, the signal is
indeed characterized by the complex amplitude αl, the delay τl, the incident angle ϕl,
while νl represents the frequency shift, which takes into account the Doppler frequency
and the frequency offset between the transmitter and receiver. The steering vector is
a (ϕ) = [a1 (ϕ) , . . . , aM (ϕ)]T and its m-th component are described by the adopted
geometry according to Equation (4.32). Assuming a ULA, the steering vector is
described by Equation (4.39). Then, the corresponding CIR and CFR are respectively
given by

h (t; τ ; θ) =
L∑

l=1
αlδ (τ − τl) ej2πνlt · a (ϕl) (4.57)

H (t; f ; θ) =
L∑

l=1
αle

j2π(νlt−fτl) · a (ϕl) (4.58)

Let us assume that the CFR is observed through Nsc samples in frequency domain, at
frequencies fk separated by ∆f (e.g., each sample can represent the channel estimate
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obtained at different subcarriers from an LTE reference signal). Different Nt CFR
snapshots are then estimated at each tn, and separated by ∆t (e.g., each CFR can be
estimated in each LTE slot exploiting different RSs). Thus, the m-th antenna element
of the array detects the channel sample

Ĥm (tn; fk) =
L∑

l=1
αle

j2π(νltn−fkτl) · am (ϕl) + n(tn; fk). (4.59)

Then, at the receiver, NtNscM complex valued observations are available, i.e.,

Ĥ (tn; fk) =

⎡⎢⎢⎢⎣
Ĥ1 (tn; fk)

...
ĤM (tn; fk)

⎤⎥⎥⎥⎦ ∈ CM , n = 1, . . . , Nt; k = 1, . . . , Nsc. (4.60)

We will refer to the complete set of channel observation as Ĥ (t; f), which are the
sum of the true channel samples plus complex Gaussian noise n(t; f) ∈ CM , with
σ2 = N0/2 variance per dimension, it is possible to write

Ĥ (t; f) = H (t; f ; θ) + n (t; f) , (4.61)

where the noise samples are assumed independent and identically distributed (IDD)
for each tn ∈ t and fk ∈ f . Now the problem to solve is the estimation of the
unknown channel parameter vector γ = [σ2; θ] ∈ C5L+1 starting from the channel
observations Ĥ (t; f). Under the Gaussian additive noise assumption, the likelihood
function becomes

Λ (γ) = 1
(2πσ2)NtNscM exp

{
− 1

2σ2

Nt∑
n=1

Nsc∑
k=1

∥Ĥ (tn; fk) − H (tn; fk; θ)∥2
}

(4.62)

so the log-likelihood function is:

ln [Λ (γ)] = −NtNscM ln
(
2πσ2

)
− 1

2σ2

Nt∑
n=1

Nsc∑
k=1

∥Ĥ (tn; fk) − H (tn; fk; θ)∥2. (4.63)
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Then the ML solution is obtained by finding the vector parameters γ̂ML that maximize
the log-likelihood function, i.e.,

γ̂ML = arg max
γ

{ln [Λ (γ)]}

= arg min
γ

{
2NtNscM ln

(
2πσ2

)
+ 1

σ2

Nt∑
n=1

Nsc∑
k=1

∥Ĥ (tn, fk) − H (tn; fk; θ)∥2
}
(4.64)

From Equation (4.64), the estimation of noise variance σ2 can be separated from the
other parameters estimation, leading to the final ML estimates

θ̂ML = arg min
θ

{
Nt∑

n=1

Nsc∑
k=1

∥Ĥ (tn, fk) − H (tn; fk; θ)∥2
}

, (4.65)

σ̂2
ML = 1

2NtNscM

{
Nt∑

n=1

Nsc∑
k=1

∥Ĥ (tn, fk) − H (tn; fk; θML)∥2
}

. (4.66)

It is important to point out that the estimation of θ̂ML is a very high complex problem
because it needs the estimation of 5L parameters, which means that the problem
is a 5L−dimensional minimization problem. In order to decrease the complexity of
the problem the Space-Alternating Generalized Expectation-Maximization (SAGE)
algorithm [7, 45–47] can be used to evaluate the ML estimation of θ̂ML. The SAGE
algorithm breaks the 5L maximization problems into a sequence of 5L iterative mono
dimensional problems[7, 45–47]. The algorithm is presented and explained in the next
subsection.

4.4.1 SAGE Algorithm

Assuming that the number of multipath components L is known, starting from the
channel observations Ĥ (t; f), one can isolate the l-th term relating to the l-th path.
This term can be calculated by canceling the interference caused by the other paths.
Thus, having one previous estimate of the channel parameter vector θ̂′, the term
relating to the l-th path can be isolated as

Ĥl (tn; fk) = Ĥ (tn, fk) −
L∑

l′=1,l′ ̸=l

H
(
tn; fk; θ̂′

l

)
, (4.67)
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This interference cancellation step is called the expectation step. After isolating the
CFR relative to the single path l, its channel parameter vector θl can be estimated by
solving Equation (4.65), for a single path, namely

θ̂l,ML = arg min
θl

{
Nt∑

n=1

Nsc∑
k=1

∥Ĥl (tn; fk) − H (tn; fk; θl)∥2
}

. (4.68)

Now the 5L dimensional maximization problem of Equation (4.65) has been turned
into L five-dimensional minimization problems. The value of αl can be determined in
closed form assuming that the values τl, νl and ϕl, have been specified. The problem
becomes

αl,ML(τl, ϕl, νl) = arg min
αl

{
Nt∑

n=1

Nsc∑
k=1

∥Ĥl (tn; fk) − αle
i2π(νltn−fkτl)a (ϕl)∥2

}
. (4.69)

It is possible to arrange the values Ĥl (tn; fk) and ei2π(νltn−fkτl)a (ϕl) in the complex
vectors H l and W l, respectively, so that the minimization problem can be written as

αl,ML(τl, ϕl, νl) = min
αl

{
∥H l − αlW l∥2

}
(4.70)

It is well known that the vector αlW l minimizing (4.70), is the orthogonal projection
U l of H l onto W l/ ∥W l∥, namely

U l = H l · W l

∥W l∥2 W l αl,ML(τl, ϕl, νl) = H l · W l

∥W l∥2 . (4.71)

The inner product can be written as

H l · W l = z
(
τ, ϕ, ν, Ĥl

)
=

Nt∑
n=1

Nsc∑
k=1

e−i2π(νltn−fkτl)aH (ϕl) Ĥl (tn; fk) , (4.72)

and, furthermore, ∥W l∥2 = NtNscM , and the z
(
τ, ϕ, ν, Ĥl

)
function can be interpreted

as a three-dimensional correlation function. It can be shown [7] that the values τl, ϕl

and νl can be obtained by solving the problem
(
τ̂l, ϕ̂l, ν̂l

)
ML

= arg max
[τ,ϕ,ν]

{⏐⏐⏐z (τ, ϕ, ν, Ĥl

)⏐⏐⏐} (4.73)

so that the overall problem now becomes finding the maximum of a three-dimensional
correlation function. The procedure explained so far is an expectation-maximization
(EM) algorithm. The EM algorithm proceeds iteratively by considering one multipath
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component at a time, cancelling all the other components from the observations based
on the previous parameter estimates θ̂

′ (E step), and updating the current parameters
by maximizing the three-dimensional correlation function (M step). This results in
the new parameters θ̂

′′, which will be used in the next iteration. The iterations can
be stopped when convergence is reached. The vector parameters obtained at the µ

iteration is called θ̂ (µ). The sequence of likelihood values at each iteration is called
Λ (θ (µ)) and has the property that it is always monotonically non decreasing through
the successive iterations [7].

The SAGE algorithm further simplifies the EM algorithm, decomposing the 3D
correlation maximization problem for each path into a sequence of 3 successive one
dimensional maximization problems. In other words, the SAGE algorithm uses alternate
optimization over the four parameters τl, ϕl νl and αl, starting from an initial guess of
their values. It optimizes only one variable at a time, keeping the others fixed. The
process is then repeated until the variables have converged. Indeed, it is possible to
obtain the new parameters θ̂

′′
l =

[
τ̂ ′′

l , ϕ̂′′
l , ν̂ ′′

l , α′′
l

]
from the previous estimated parameters

θ̂
′
l =

[
τ̂ ′

l , ϕ̂′
l, ν̂ ′

l , α′
l

]
as

τ̂ ′′
l = arg max

τ

{⏐⏐⏐z (τ, ϕ̂′
l, ν̂ ′

l , Ĥl

)⏐⏐⏐} (4.74)

ϕ̂′′
l = arg max

ϕ

{⏐⏐⏐z (τ̂ ′′
l , ϕ, ν̂ ′

l , Ĥl

)⏐⏐⏐} (4.75)

ν̂ ′′
l = arg max

ν

{⏐⏐⏐z (τ̂ ′′
l , ϕ̂′′

l , ν, Ĥl

)⏐⏐⏐} (4.76)

α̂′′
l =

z
(
τ̂ ′′

l , ϕ̂′′
l , ν̂ ′′

l , Ĥl

)
NtNscM

(4.77)

Also in the SAGE algorithm, the channel vector parameter obtained at the µ iteration
θ̂ (µ) determines likelihood values which are always monotonically non decreasing
thought successive iterations. The signal flow graph of the algorithm is depicted in
Figure 4.8. The initialization of SAGE is addressed in Chapter 5, i.e., the calculation
of the vector θ̂ (0), because it is a problematic aspect of the algorithm, especially in
the case of real uplink LTE signals.

4.4.2 Detection of the number of paths

The SAGE algorithm does not provide itself a method for the estimation of the number
L of multipath components. In the previous subsection, the number of paths L is
indeed assumed to be known a priori. Conventional information criteria [48] can be
used to estimate L. The general idea under these criteria is to minimize a penalized
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Fig. 4.8 Flow chart of SAGE algorithm

log-likelihood function, as

L̂ = arg min
l

{−2 ln [Λ (γML)] + lkP (Ntot, lk)} (4.78)

where P (Ntot, lk) is the penalty function that depends on the particular criterion
adopted, k is the number of real valued parameters to be estimated for each of the l

paths, and Ntot is the total number of real valued observations available (i.e. NtNscM).
It can be shown that the above is equivalent to

L̂ = arg min
l

{
Ntot ln

[
σ2

ML

]
+ lkP (Ntot, lk)

}
. (4.79)

As suggested in [49], to contrast the natural tendency of these estimators to overestimate
the model order in case of high SNR and large observation sets (i.e., large Ntot), it
is convenient to not equally weight the k parameters, depending on the specific
underlying model. According to [49], in our problem, the τl, ϕl and νl parameters
should be weighted three times with respect to the amplitude. This results in having a
global weight k = 2 + 3 × 3 = 11, hence

L̂ = arg min
l

{
Ntot ln

[
σ2

ML

]
+ 11lP (Ntot, 11l)

}
. (4.80)

In this thesis, the Minimum Description Length (MDL) criterion, also referred to as
Bayesian Information Criterion (BIC), is adopted to estimate L. According to this
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criterion, the penalty term is given by P (Ntot, lk) = ln [Ntot]. Hence, the model order
selection metric that is adopted in this work is

L̂ = arg min
l

{
Ntot ln

[
σ2

ML

]
+ 11l ln [Ntot]

}
. (4.81)

4.5 Cramér Rao lower bound

In this section a theoretical performance bound used for assessing the effectiveness of
the estimators used in this thesis will be presented. The bound used is the Cramér
Rao bound.

Estimators that are usually considered have the property to yield on average the
correct value. These estimators are referred to as unbiased estimators. In the case we
are interested in, the goal is to estimate the 5L-dimensional real vector

Ω = [Re {α1} , . . . , Re {αL} , Im {α1} , . . . , Im {αL} ,

τ1, . . . , τL, ϕ1, . . . , ϕL, µ1, . . . , µL]
(4.82)

and we suppose that our estimate Ω̂ is unbiased, i.e., that

E
[
Ω̂
]

= Ω (4.83)

Another optimality criterion which is frequently adopted for searching for good
unbiased estimators, is the minimum variance criterion. According to this criterion, an
unbiased estimator performance is quantified by its variance VAR

(
Ω̂
)
. This criterion

is derived from a more general one, which can be applied also to biased estimators,
and aims to minimising the overall mean square estimation error (MSEE).

Considering an unbiased estimator Ω̂, it can be shown that its covariance matrix
satisfies the inequality [50]

E
[(

Ω̂ − Ω
)T (

Ω̂ − Ω
)]

≥ F −1 (Ω) (4.84)

where the 5L × 5L real matrix F (Ω) is the so called Fisher information matrix (FIM),
which is positive definite. The inequality sign in (4.84) means that the difference of the
matrices in the left and right terms is positive definite. Considering the k-th element
of Ω̂, i.e., Ω̂k, we have

MSSE (Ωk) = E
[(

Ω̂k − Ωk

)2
]

≥
[
F −1 (Ω)

]
kk

≜ CRLB (Ωk) (4.85)
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where [F −1 (Ω)]kk represents the diagonal element in row and column k of the inverse of
the FIM. CRLB (Ωk) is called the Cramér Rao lower bound of the estimated parameter
Ω̂k. It is also possible to define the root MSEE as the square root of the MSEE, in other
words RMSSE (Ωk) ≜

√
MSSE (Ωk). In general an expression of the MSEE bound

exists also if the estimator is biased.

In order to calculate [F −1 (Ω)]kk we can proceed as follows. Let us denote with
s (t, Ω) a general a complex signal vector, which can have a strong non-linear dependence
on the parameter vector Ω. In our problem of interest, we suppose that the noise w (t)
is modeled as a white zero-mean complex Gaussian random process with independent
real and imaginary parts, each with variance σ2

w/2. We can write

y (t) = s (t, Ω) + w (t) =
L∑

l=1
αls (t − τl) ej2πνlt · a (ϕl) + w (t) ∈ CM (4.86)

where M is the number of antenna elements in the array. Let us suppose that y (t)
has duration [0; T0[. It can be shown [51] that the log-likelihood function of Ω is

Λ (Ω; y) = 2
σ2

w

∫ T0

0
Re

{
sH (t, Ω) y (t)

}
dt + 1

σ2
w

∫ T0

0
||s (t, Ω)||2 dt (4.87)

Then the element (k, j) of the FIM, can be calculated as [50]

[F (Ω)]kj = −E
[

∂

∂Ωk

∂

∂Ωj

Λ (Ω; y)
]

. (4.88)

From the expression above, one can calculate the CRLBs, which are the elements in
the diagonal of the inverse of the FIM, and, as demonstrated in [7] in case of a single
path, i.e., L = 1, the CRLBs for the different parameters are

CRLB (τ) = 1
γ0

1
8π2β2

g

CRLB (ϕ) = 1
γ0

6
π2 cos2 ϕ (M2 − 1)

CRLB (ν) = 1
γ0

3
2π2t2

n (N2
t − 1)

CRLB
(

α

|α|

)
= CRLB

(
Re

{
α

|α|

})
+ CRLB

(
Im

{
α

|α|

})
= 1

γ0

(4.89)
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In the expression above, β2
g is the Gabor bandwidth of the signal s (t), which is the

root mean square value of the spectral content of the signal s (t) and is calculated as

β2
g = 1

εs

∫ T0

0

⏐⏐⏐⏐⏐ds (t)
dt

⏐⏐⏐⏐⏐
2

dt (4.90)

with εs the energy of the signal

εs =
∫ T0

0
|s (t)|2 dt. (4.91)

In Equation (4.89), we have γ0 = NtNscMγm, where γm can be seen as the signal to
noise ratio of the wave at the input of each antenna branch. In other words, γ0 is the
number of total observations times the SNR at the input of each antenna. The CRLBs
calculated for L > 1 are lower bounded by the corresponding CRLB calculated for
L = 1 [50]. Furthermore, the CRLBs for small L are close to those for L = 1 if the
paths are well separable. This means that the CRLBs calculated in the case L = 1 can
be used as a benchmark in order to assess the performance of a given estimator.
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Chapter 5

LTE Uplink TOA Estimation
Results

5.1 Introduction

The 3GPP LTE protocol (3rd Generation Partnership Project Long Term Evolution)
introduced the support for positioning and, indeed, 4G LTE can provide good coverage
in those scenarios where the GNSS fails. The network usually measures the Time of
Arrival (TOA), the Time Difference of Arrival (TDOA), the Received Signal-Strength
(RSS), or the Angle of Arrival (AOA) [2]. These measurements are used to perform
positioning, using techniques like Enhanced Cell Identity (E-CID), Assisted GNSS
(A-GNSS), Observed Time Difference of Arrival (OTDOA) and Uplink Time Difference
of Arrival (UTDOA) [2]. 3GPP introduces two stand-alone network-based TDOA
measures, i.e., OTDOA and UTDOA, which exploit downlink and uplink transmissions,
respectively. In OTDOA, the UE measures the TDOA of neighbour eNodeBs with
respect to a reference eNodeB, exploiting the Positioning Reference Signal (PRS). The
UTDOA positioning method in LTE is similar to OTDOA, except that it uses the
uplink Sounding Reference Signal (SRS). In this case, UE signals are measured at some
eNodeBs or at some Location Measurement Units (LMUs), which are standalone units
integrated in the eNodeBs or, alternatively, located in some known strategic locations.

In many cases, however, the eNodeB does not set up the UE to transmit the SRS,
thus making it impossible to provide positioning information. The main contribution
of this chapter is to define a new opportunistic method to estimate the TOA using the
uplink demodulation reference signal (DM-RS) instead of the SRS. As a matter of fact,
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the DM-RS signal is transmitted in every slot during UE data transmission, e.g., in
the transmission of a simple “ping" signal. In the assumed scenario multiple eNodeBs,
or alternatively multiple LMUs instructed by the reference eNodeB, can measure the
DM-RS and estimate a time of arrival, then using a TDOA positioning techniques like
hyperbolic positioning the position of the UE can be detected. A possible drawback
of the use of DM-RS with this strategy, however, is that data transmission could
occupy a smaller bandwidth than SRS, thus making TOA estimation less precise. In
particular this Chapter focuses on the time of arrival measurement and how to perform
this measurement also in a real scenario. In the first part of this Chapter we show
some problems that we had to face when uplink transmission is used. We present our
solution confirming its reliability by means of simulations. Then, in the second part of
the Chapter, we show the performance results of the proposed algorithms. In particular
we did extensive simulations using three different channel realizations and we test the
algorithms in the extended pedestrian A channel model (EPA), extended vehicular A
model (EVA) and extended typical urban model (ETU), which are channel models
defined in the standard [52, 53]. In these simulations we compare the performance
between SAGE algorithm, IAA-APES algorithm and correlation peak detector in
three different scenarios. The first scenario represent a lower bound, while the other
two scenarios simulate an uplink transmission. In the last part, we show the results
obtained using uplink transmission, and we confirm that the DM-RS can be effectively
used for positioning purposes using TDOA techniques. Then the Chapter ends with
the conclusions.

5.2 IAA-APES for delay estimation

In Section 4.3.7, the IAA-APES algorithm for angle of arrival (AOA or DOA) estimation
was presented. The algorithm can be also extended to TOA estimation. If we consider,
without loss of generality, one receiving antenna and L paths, the k-th bin of the CFR
at time tn, can be written as

Ĥ (tn, fk) =
L∑

l=0
αle

−j2π(νltn−fkτl) + n (tn, fk) (5.1)
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So the CFR can be written in matrix notation as

Ĥ (tn) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ĥ (tn, f1)
Ĥ (tn, f2)

...
Ĥ (tn, fK)

⎤⎥⎥⎥⎥⎥⎥⎦ = A (τ ) α (tn) + n. (5.2)

Using a notation similar to the one of Section 4.3.7, tn represents the n−th snapshot,
α (tn) = [α (tn) , . . . , αL (tn)]T has the same role of s [n] in Equation (4.49), with the
l-th element αl (tn) = αle

−j2πνltn , and finally the matrix A is similar to the steering
matrix but is defined as A (τ ) = [a (τ1) , . . . , a (τL)] where the l-th column is a (τl) =[
ej2πf1τl , . . . , ej2πfKτl

]T
. The difference between Equation (5.2) and Equation (4.49)

consists of different parameters in the matrix A, because we want to estimate the
TOAs τl instead of the AOAs ϕl. So, similarly to the AOA case, if we can construct a
grid with I ≫ L elements, the problem can be represented as a sparse problem and
the IAA-APES algorithm can be used to estimate the delays τl. In other words, it is
possible to construct a grid with the τi values, where the τi that gives peaks in the
power estimations represent the TOAs of the different paths. The TOA of the first
path will be represented by the minimum τl. For completeness, we note that the same
sparse representation can be obtained also if the number of antenna is M , simply using
the M values coming from each antenna as additional snapshots.

Similarly, it is possible to use the IAA-APES algorithm for Doppler estimation,
just replacing matrix A (τ ) with matrix A (ν) = [a (ν1) , . . . , a (νL)] where the l-th
column is a (νl) = [e−j2πt1νl , . . . , e−j2πtN νl ]T . We can also perform joint estimations. For
example a joint AOA, TOA estimation can be obtained by considering the following
matrix

A (τ , ϕ) = [a (τ1, ϕ1) , a (τ2, ϕ1) , . . . , a (τI , ϕ1) , a (τ1, ϕ2) , . . . , a (τI , ϕP )] (5.3)
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where, in case of uniform linear array (ULA), the vector a can be written as

a (τi, ϕp) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ej2πf1τi

...
ej2πfKτi

ej2π(f1τi+ d
λ

sin ϕp)
...

ej2π(f1τi+ 2d
λ

sin ϕ)
...

ej2π(fKτi+(M−1) d
λ

sin ϕp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.4)

Also in this case, the parameters estimations are obtained from the pairs
(
τ̂i, ϕ̂p

)
that

maximize the power.

Let us denote with I the number of grid points for the delay, P the number of
grid points for the angle, M the number of antennas and K the number of channel
frequency bins. We can notice that one issue of the IAA-APES implementation is
related to the inversion of the correlation matrix R, which has a dimension MK ×MK.
Indeed, for an n × n matrix, the calculation of the inverse has a complexity higher than
O (n2) when optimized algorithms are used. This leads to a high computational burden
and high time consumption in case of joint estimation. On the other hand, another
problem is that, to achieve a proper resolution, I and P have to be selected large, so
the matrix A (τ , ϕ) has a dimension equal to MK × PI. Furthermore, the power has
to be calculated for all the PI pairs. For example, considering a scenario with M = 4
antennas, a transmission bandwidth of Nsc = 1200 subcarriers (the highest transmission
bandwidth in Table 3.1), a grid with a resolution Ts ≈ 32, 55 ns in delay domain (i.e.,
around 10 m in pseudorange) and a resolution ∆ϕ = 2° in the angle domain, matrix
A (τ , ϕ) occupies approximately 14 Gbytes and it becomes impossible to use this
approach in a practical scenario. We can conclude that memory consumption is also a
limitation of the IAA-APES algorithm in a practical implementation. The previously
mentioned issues are the main reasons why we decided not to use the IAA-APES
algorithm for joint estimation of TOA or AOA, while we can use it, in our application
to LTE signals, to estimate them separately.
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Fig. 5.1 Time-frequency pattern.

5.3 Uplink DM-RS transmission issues

Since the DM-RS is transmitted inside an uplink data transmission, the band oc-
cupied by the data is scheduled by the eNodeB. Therefore, in correspondence with
a bandlimited DM-RS input, the CFRs can be estimated only in those portions of
the band where the data transmission is scheduled. The typical resulting available
time-frequency pattern Ĥ(t; f) is depicted in Fig. 5.1. Due to this particular pattern,
one can expect a performance degradation caused by the relatively small bandwidth
available for TOA estimation in each subframe. It is possible to show that the correct
approach to calculate Equations (4.73) - (4.77) in this case, is to set to zero the values
Ĥ(t; f) when no information is available.

Suppose therefore that the channel is observed at different subcarriers fk = k∆f ,
and at different time snapshots tn = n∆t, (corresponding to different measurements of
the CFR) and through M different antennas. This defines a uniform grid of coordinates
I = {(n, k, m)}. If we consider an uplink transmission where the observation in
correspondence of some pairs (n, k) is not known, and the whole M antennas receive
the same time and frequency pattern, it is possible to consider a nonuniform grid in time
and frequency domain for each antenna. Considering the m-th antenna, we denote as
Ntot,m = |Im| the cardinality of the set Im of available channel observations in time and
frequency. Moreover, since all antennas receive the same time and frequency pattern,
i.e. Im = Im′ ∀ m, m′, Ntot,m complex valued observations will be available at each
antenna. The channel vector parameter θ, can be considered equal for each antenna
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under far field and narrowband assumptions. Considering the m-th antenna, these
channel measurements can be described as Ĥm(t; f) = {Ĥm(tn; fk) ∈ C, (n, k) ∈ Im}.
Under the assumption that the noise is independent among antennas, and considering
independent complex Gaussian noise samples nm(tn; fk) ∈ C at each antenna, with
variance σ2

m = σ2, ∀ m, we can write Ĥm (tn; fk) = Hm(tn; fk; θ) + nm(tn; fk). This is
a 5L + 1 minimization problem with the vector of parameter Ω = [σ2, θ] ∈ R5L+1, very
similar to the one faced in Section 4.4. Then, the ML estimation consists of minimizing
the log-likelihood function of Ĥ(t; f), which under the Gaussian assumption is equal
to

ΩML = min
Ω

{
2Ntot,mM log

(
2πσ2

)
+

+ 1
σ2

M∑
m=1

∑
(n,k)∈Im

⏐⏐⏐Ĥm(tn; fk) − Hm(tn; fk; θ)
⏐⏐⏐2
⎫⎬⎭ .

(5.5)

One can notice that Equation (5.5) is similar to Equation (4.64), with the only difference
that NtNsc is replaced by the total number of observations Ntot,m available at each
antenna. Furthermore, the summation is over the set of available observations, which
are not located on a uniform grid, due to the holes in the time-frequency domain. It
is important to notice that if zeros are added at the (n, k) locations where channel
observations are not available, the log-likelihood minimization problem does not change.
Therefore, we can consider a uniform grid with zeros substituting the non-available
observations. Instead of using the product NtNsc we have to use the cardinality of the
set Im, i.e., Ntot,m. In a uniform grid, Equations (4.74) - (4.77) can be easily computed
via FFT algorithms. Therefore, also with uplink signals, where the grid is not uniform,
we can formulate the problem in a uniform grid and compute the estimates efficiently
via FFT, by setting to zero all the missing values.

5.4 SAGE initial conditions for Uplink transmis-
sion.

During the µ−th iteration, SAGE estimates the parameters vector θ̂ (µ) using the
parameters estimated in the previous iteration θ̂ (µ − 1), as shown in Equations (4.74)-
(4.77) and in Figure 4.8 in Section 4.4. So, during the first iteration (i.e., µ = 1) SAGE
needs a previous estimation of the parameters vector, i.e., it needs the vector θ̂ (0).
This vector can be estimated in different ways and represents the initial conditions
that SAGE uses.
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Fig. 5.2 Time-frequency pattern of an uplink transmission. The transmission does
not cover the overall available bandwidth but only a small portion of it. The figure
shows the bandwidth occupied by a real uplink transmission corresponding to a “ping”
message.

In [7], the initial conditions are calculated using a non-coherent accumulation
during the M-step, while a successive cancellation is used during the E-step. This
means that, assuming that we want to estimate the initial conditions of the parameters(
τ̂l, ϕ̂l, ν̂l, α̂l

)
, these are calculated as

τ̂l = arg max
τ

⎧⎨⎩
M∑

m=1

N∑
n=1

⏐⏐⏐⏐⏐
Nsc∑
k=1

ej2πfkτ Ĥm,l (tn; fk)
⏐⏐⏐⏐⏐
2⎫⎬⎭ (5.6)

ϕ̂l = arg max
ϕ

⎧⎨⎩
N∑

n=1

⏐⏐⏐⏐⏐
Nsc∑
k=1

ej2πfk τ̂laH (ϕ) Ĥl (tn; fk)
⏐⏐⏐⏐⏐
2⎫⎬⎭ . (5.7)

where ν̂l and α̂l are calculated as in Equation (4.76) and Equation (4.77), respectively.
This procedure is called non coherent accumulation because, in contrast to what we
saw in Equation (4.74) and Equation (4.75), in this case the summations are calculated
outside the modulus, then the phase of the complex samples is not considered. The
successive interference cancellation during the M-step is performed as

Ĥl (t, f) = Ĥ (t; f) −
l−1∑
l′=1

Hl′

(
t; f ; θ̂l′

)
. (5.8)
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The procedure starts by estimating the initial condition of the first path. From
Equation (5.8) one can notice that when the initial condition of the first path has to be
estimated, no cancellation is performed and the non-coherent accumulation procedure
is applied directly to the full observation matrix Ĥ (t; f). Then, in the next step,
the parameters concerning the second path have to be estimated. So, the first path
estimation is cancelled and another non-coherent accumulation procedure is performed.
This process continues until the last path initial conditions are estimated. In the
following, we refer to this procedure as the non-coherent initialization of SAGE.

In general the correlation function z (τl, ϕl, νl) of Equation (4.72), can be calculated
through DFFT and IDFT algorithms. One can notice that the correlation function
corresponds to a periodogram in the delay-angle-Doppler domain. For convenience, we
consider a joint delay Doppler estimation, so the relative delay-Doppler periodogram
will have some maximum at the pairs (τl; νl) that correspond to the parameters of the
path. Based on this, we propose a new method to estimate the initial conditions of
SAGE. In particular, the initial conditions of the first path is made by searching the
pairs (τ ; ν) corresponding to a maximum of the periodogram calculated using the full
observation matrix Ĥ (t; f). Then we perform a cancellation as in Equation 5.8 and
we calculate the second path parameters using again the periodogram. This procedure
is repeated until the last path initial conditions are estimated.

The importance of the initial conditions is not to be underestimated. The SAGE
algorithm, in particular, can give erroneous estimations when the values θ̂l (0), relative
to the l-th path, are close to some local maximum of |z (τl, νl)|. In this situation, it can
happen that the SAGE algorithm converges to a local maximum which is not related
to an existing path. Furthermore, during the E-step, SAGE will cancel a path that
is not related to a real path and this adds further errors in the estimation. Indeed,
this erroneous cancellation can add other local maximum to the correlation function
and this has an impact also in the estimation of the others paths. This problem is
particularly critical with uplink transmissions. Indeed, when no information about
the CFR is available, we complete with zeros the unknown CFR bins (Section 5.3).
An uplink transmission pattern similar to the one in Figure 5.2 can be seen as a time-
frequency window that multiplies the overall observation matrix. In particular, without
applying any window, if the bandwidth and the number of snapshots are sufficiently
large, the correlation function will present a narrow main lobe in correspondence of
the path values and some sidelobes nearby. Then, the multiplication of 2D window
by the full band CFR corresponds to a convolution in the delay-Doppler domain,
i.e., to a convolution between the peaks of the correlation function (which are ideally
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Dirac’s delta) and the shape of the 2D window in the delay-Doppler domain. The
window’s shape determines therefore the characteristics of the main and side lobes
in the delay-Doppler domain. When there is multipath, and in particular with close
paths, the 2D window can create some local maximum in the correlation function that
are not related to a real multipath component.

Using the non-coherent initialization method proposed in [7], in uplink transmission,
we noticed that the initial conditions tend to identify local maximum which are not
related to a real path, and that the SAGE algorithm provides estimations with higher
error.

The method that we propose directly computes the maximum of the correlation
function. This technique can be extended also to the more general case where the angle
ϕ has to be estimated. Indeed, it is necessary to perform a maximum search in the
3D correlation function to have a first estimate of the triad (τ, ϕ, ν). In general, this
method requires more computational effort with respect to the simplest non-coherent
accumulation, because it performs the search of the maximum in a 2D or 3D function,
but the search for the maximum has to be done only once to estimate the initial
conditions. However, as we will see, this method outperforms the non-coherent method
when the CFR is estimated in an uplink transmission with a limited number of CFR
sample estimates. Furthermore, we will also see that the two initialization methods
have similar performance when all the available bandwidth is used. In the following part
of the thesis, we refer to the proposed method as 2D initialization (or 3D initialization),
and to non-coherent initialization when the method proposed in [7] is used.

5.5 Simulation Results With Different Initialization
Procedures

This section presents some simulation results that show the performance of the 2D
SAGE initialization and the non-coherent initialization, in different scenarios. For
completeness, we compare the results obtained with these two initialization procedures
with other techniques in order to give an idea of the overall performance. We test the
ability of the algorithms to discriminate close paths in delay domain.

The SAGE algorithm uses as input the CFRs calculated at different time snapshots.
Note that in each subframe two DM-RSs are transmitted, which occupy the same
transmission bandwidth. A realistic transmission scenario consists of a number of
consecutive transmitted subframes. In this way, one can calculate 2Nsub consecutive
CFR estimates, where Nsub is the number of transmitted consecutive subframes.
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Fig. 5.3 Block diagram of the simulation setup.

In our simulations, we generate a random sequence of bits that are converted to
complex symbols for each subframe according to the SC-FDMA modulation scheme
showed in Section 3.3. We also include the DM-RSs, according to the specifications
in [15]. Then, the channel is simulated using the model in Equation 4.57, and the
convolution with the generated input is calculated. The channel is updated at every
slot by taking Doppler into account.

Complex white Gaussian noise is added to the signal based on the SNR value,
which is a simulation parameter. The variance of the noise is calculated based on the
SNR, determined by the actual signal power (i.e., the DM-RS power). In this way,
the other transmitted random data do not contribute to the calculation of the noise
variance, since only the DM-RS is used to perform estimations. The resulting complex
signal plus noise represents the received signal. The peak position obtained correlating
the received signal with the known DM-RS sequence provides a first TOA estimation,
which is usually not precise. Using the TOA correlation information and discarding
the Cyclic Prefix, we are able to find the DM-RS location in the received signal and
perform deconvolution in frequency. Since the time distance between a DM-RS and the
following one is fixed and equal to ∆t = 0.5 ms, once we have the position of the first
DM-RS, we can easily find the position of the other DM-RS in the received signal. This
provides an estimate of the CFR for each slot. This collected information constitutes
the input of the SAGE and IAA-APES algorithm. These steps are summarized in the
block diagram of Figure 5.3.

In the simulation we now describe, only one antenna is considered, so we are not
considering the effect of different angles of arrival. In particular we consider three
different scenarios:
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1. We simulate a transmission that occupies the whole available LTE uplink band-
width, and in particular we select the bandwidth with Nsc = 1200 subcarriers
showed in Table 3.1. This case provides a lower bound for TOA estimation in
LTE uplink. Indeed, considering the CRLB described in Section 4.5, the delay
estimation is proportional to the occupied bandwidth, so in this case we have the
maximum bandwidth occupation. This scenario can be used as a benchmark for
the others, and in the following we refer to this scenario as the full band scenario.

2. The second scenario simulates a data transmission using the same Nsc = 1200
subcarriers of the first scenario, but in this case the occupied bandwidth is limited.
In particular, we try to simulate an uplink transmission where the allocated
band changes every two slots. Moreover, in this scenario, the allocated band
occupies a minimum of 4 RBs and a maximum of 18 RBs. For each subframe two
uniform random values are generated, we call them rNRB and rstart. Value rNRB

represents the number of occupied RBs, so it is uniformly generated between 4
and 18. Value rstart represents the starting RB and is uniformly generated from 1
to 100 − rNRB. In other words, the band allocated for the uplink transmission in
one subframe occupies the RBs from rstart to rstart + rNRB. In general, this band
occupation is slightly higher than in a real ping transmission. This can represent
a situation where a large amount of data is transmitted. In the following, we
refer to this scenario as the simulated ping scenario.

3. In the third scenario, we use the real ping transmission pattern showed in
Figure 5.2, where the scheduled frequencies are obtained from a ping uplink
transmission obtained from the commercial u-blox LTE module Toby L20 [54].
In the following this scenario is referred as the real ping scenario.

For each scenario we set the SNR to 10 dB and we simulate 3 paths with fixed Doppler
frequencies ν1 = ν2 = ν3 = 10 Hz. Then, the delay is selected as

τ1 = 15 ns
τ2 = τ1 + ∆τ

τ3 = τ1 + 2∆τ

(5.9)

In the simulations, we evaluate the delay root mean square error (RMSEE), according
to different ∆τ values. We variate ∆τ from 4 to 100 ns with steps of 4 ns. In particular,
the simulated transmission has a duration in time of 25 subframes, i.e., 50 CFRs
snapshots are available in each scenario. This duration is selected because a ping
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transmission has approximately this duration. Then, we iterate the simulation for 100
times using different seeds for the random number generator. Thus, in the simulated
ping scenario, the bandwidth allocation changes at every iteration, while in the real
ping scenario and in the full band scenario the allocation is fixed and only the noise
changes during each iteration. Furthermore, we assume that the number of paths is
known, in order to have a better perspective on the algorithms performance.

The two choices of using one antenna and a ping transmission pattern in the
simulations, are due to two reasons. First, we want to evaluate the performance in
TOA estimation without adding the complexity related to AOA estimation, second, in
the experimental results showed in Section 5.6, we estimate the TOA at two antennas
placed at different positions, using uplink ping signals.

In particular we compare the following TOA estimation algorithms

• the first path TOA estimated with a correlation peak detector with threshold,
where the transmitted DM-RS of each slot is correlated with the received signal

• the first path TOA estimated with a correlation peak detector with threshold,
where in this case two contiguous DM-RSs belonging to the same subframe are
correlated with the received signal, and the samples between the two DM-RS are
filled with zeros

• IAA-APES

• the SAGE algorithm with 2D initialization

• the SAGE algorithm with non-coherent initialization

For completeness, since SAGE is set to estimate also the Doppler, we compare Doppler
estimation using the two initializations procedure.

In Figure 5.4 we show the RMSEE of the delay obtained in the full band scenario.
In the figure non-coherent initialization and the 2D initialization are compared. In
particular, the figure shows that when the separation ∆τ is below 30 ns, the RMSEE is
between 10 and 20 ns for the three estimated paths (in pseudorange this is approximately
an error between 3 and 6 m). This suggests that in this scenario SAGE is able to
distinguish paths that are very close. With ∆τ between 30 ns and 60 ns, it is possible to
see that the 2D initialization algorithm has a slightly better RMSEE with respect to the
non-coherent initialization, and that in general the RMSEE decreases. After 60 ns, the
two initialization methods have almost the same performance and the error falls below
1 ns for the three estimated paths, corresponding to a pseudorange RMSEE below 1
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Fig. 5.4 RMSEE of the delays. Comparison between SAGE 2D initialization and SAGE
non-coherent initialization in the full band scenario.

m. In Figure 5.5, the RMSEE of the Doppler estimation is showed. In particular, the
Doppler RMSEE is very low and is below 1 Hz for both initialization methods. In
general, we can say that the two initialization methods have the same performance in
the full band scenario, both for delay and Doppler estimation.

In Figure 5.6 we plot the RMSEE of the delay obtained with the two initializations
of SAGE, in the simulated ping scenario. In this case we can see that when ∆τ is
below 25 ns, the two methods have similar performance, with an error that is between
10 and 30 ns for the three estimated paths, i.e., between 3 and 10 m in pseudorange,
respectively. When ∆τ approaches and exceeds 25 ns, the error with the non-coherent
initialization increases, and with ∆τ = 100 ns this approach has a delay RMSEE of
79 ns, which is around 25 m in pseudorange. Instead, the delay RMSEE with 2D
initialization decreases when ∆τ is above 25 ns, while the first path estimation is below
10 ns. A large error for the non-coherent initialization is evident also in the Doppler
estimation. Indeed, from Figure 5.7, we see that the RMSEE of the Doppler exceeds
150 Hz for the non-coherent initialization while the 2D initialization has an error always
below 5 Hz, apart from some cases where it approaches 20 Hz.

Figure 5.8 shows the RMSEE of the delays obtained with the two SAGE initializa-
tions in the real ping scenario. In this case, the SAGE 2D initialization performs better
then the SAGE non-coherent initialization, similarly to the simulated ping scenario.
Indeed, when ∆τ is above 20 ns the RMSEE of the 2D initialization decreases and
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Fig. 5.5 RMSEE of the Doppler. Comparison between SAGE 2D initialization and
SAGE non-coherent initialization in the full band scenario.

Fig. 5.6 RMSEE of the delays. Comparison between SAGE 2D initialization and SAGE
non-coherent initialization in the simulated ping scenario.
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Fig. 5.7 RMSEE of the Doppler. Comparison between SAGE 2D initialization and
SAGE non-coherent initialization in the simulated ping scenario.

is always below 20 ns, apart when ∆τ is between 90 and 100 ns where the error is
around 40 ns. In this case, the non-coherent initialization presents an error always
higher than 25 ns and the first path estimation reaches 80 ns when ∆τ is 100 ns. For
∆τ around 95 ns, the relative high error of the 2D initialization is probably due to the
particular pattern and band occupation of the ping message. We can see an increase
of the RMSEE also in the Doppler estimation as depicted in Figure 5.9. From this
figure, we note that in the real ping scenario the non-coherent initialization shows bad
performance compared with the 2D initialization. Indeed, the RMSEE of the Doppler
with non-coherent initialization exceeds 200 Hz for large ∆τ , while the 2D initialization
is always below 2 Hz. When ∆τ approaches the range 68 ns to 76ns and 86 ns to 100
ns, however, the error is around 20 Hz and 50 Hz respectively.

In Figure 5.10 the IAA-APES RMSEE of the delays is depicted for the full band
scenario. When ∆τ is between 4 and 12 ns, the three paths are too close and the
algorithm is not able to separate them, so only one path is estimated and we see an
increase of the error. When ∆τ is between 12 and 24 ns, the algorithm is able to
recognise only two paths and when ∆τ exceeds 24 ns, the algorithm separates the three
paths. When ∆τ exceeds 48 ns, the RMSEE of the first path delay does not change
anymore. Note that, as presented in Section 4.3.7, the IAA-APES algorithm explores
a grid of possible delays, and that the true 1-st path delay, equal to 15 ns, does not
belong to the used grid. So, even if the paths are well separated, there is a systematic
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Fig. 5.8 RMSEE of the delays. Comparison between SAGE 2D initialization and SAGE
non-coherent initialization in real ping scenario.

Fig. 5.9 RMSEE of the Doppler. Comparison between SAGE 2D initialization and
SAGE non-coherent initialization in real ping scenario.
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Fig. 5.10 RMSEE of the delays using IAA-APES in the full band scenario.

error for the first path. This also explains the oscillation of the error for the second
and third paths, since, as ∆τ varies, the values 15 ns +∆τ and 15 ns +2∆τ are not in
the grid, and the true path delays may be near or far from a grid point. The RMSEE
of the delays in the simulated ping and real ping scenarios are not showed because the
IAA-APES algorithm could distinguish only one path in these two scenarios. Anyway,
the RMSEE of the first path delay will be showed in the following, when we compare
the RMSEE of the first path delay for the different algorithms.

Figure 5.11, Figure 5.12 and Figure 5.13 show the RMSEE of the first path
delay using the two correlation method mentioned above, the SAGE 2D initialization
procedure, the SAGE non-coherent initialization and IAA-APES. Figure 5.11 shows
the RMSEE of the first path delay in the full band scenario. We can notice that the
two correlation methods are less precise then the other algorithms. When ∆τ is above
50 ns, the IAA-APES, SAGE 2D and SAGE non-coherent algorithms have almost the
same performance, with an error below 2 ns.

Figure 5.12 shows the RMSEE of the first path delay in the simulated ping scenario.
In this case, the SAGE 2D initialization outperforms all the other methods. As
expected, with less band available, the correlation methods perform badly with a
very large error. Note that SAGE, with non-coherent initialization, has an error that
increases even with increasing ∆τ . This is due to the erroneous initialization, which
is not correct when the bandwidth is small. Also IAA-APES exhibits an increasing
error with increasing ∆τ . This happens because IAA-APES in this case is not able to
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Fig. 5.11 RMSEE of the first path delay. Comparison between different algorithms in
the full band scenario.

separate the three paths and only one path, with erroneous delay, is estimated. Finally,
Figure 5.13 shows the RMSEE of the first path delay in the real ping scenario. Also in
this case, we can see that the SAGE 2D algorithm outperforms the other algorithms.
The behaviour is similar to that of the simulated ping scenario.

Figure 5.14 summarizes the RMSEE of the first path delay considering all the
scenarios. The performance of SAGE 2D, SAGE non-coherent and IAA-APES are
showed. From the figure we can point out that the 2D initialization of SAGE in
case of the simulated ping and real ping scenarios ha performance comparable to the
other algorithms in the full band scenario. Indeed, apart from the case of a real ping
transmission with ∆τ around 95 ns, 2D SAGE initialization in the two ping scenarios
gives results very close to the full band scenario, with estimation errors below 10 ns
when ∆τ is higher than 40 ns. This suggest that when an estimation with missing
data has to be performed (i.e., the two ping scenario represent a situation with missing
data) the 2D initialization of the SAGE algorithm is a good choice. So in the following
sections we will refer to SAGE always with this 2D initialization, in particular in the
next section we compare the SAGE with 2D initialization with other algorithms suing
different and more sophisticated channel models.
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Fig. 5.12 RMSEE of the first path delay. Comparison between different algorithms in
the simulated ping scenario.

Fig. 5.13 RMSEE of the first path delay. Comparison between different algorithms in
the real ping scenario.
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Fig. 5.14 First path delay RMSEE. Comparison between SAGE 2D initialization, SAGE
non-coherent initialization and IAA-APES, in the three different simulated scenarios.
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Paths 1 2 3 4 5 6 7 8 9

EPA

τl [ns] 0 30 70 90 110 190 410
fl,max [Hz] 5 5 5 5 5 5 5
|αl|2 [dB] 0 -1 -2 -3 -8 -17.2 -20.8

EVA

τl [ns] 0 30 150 310 370 710 1090 1730 2510
νl,max [Hz] 70 70 70 70 70 70 70 70 70
|αl|2 [dB] 0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9

ETU

τl [ns] 0 50 120 200 230 500 1600 2300 5000
νl,max [Hz] 300 300 300 300 300 300 300 300 300
|αl|2 [dB] -1 -1 -1 0 0 0 -3 -5 -7

Table 5.1 Channel models used in simulation

5.6 Simulation Results with Different Channel Mod-
els

In this section we show the simulation results for more realistic channel realizations.
We assume to know the number of paths L, which in a real implementation may
be estimated iteratively minimizing Equation (4.81). In particular, we consider the
RMSEEs in the three scenarios described in the previous section, i.e., the full band
scenario, the simulated ping scenario and the real ping scenarios. However, in this case
the channel is derived from three different models, based on the EPA, EVA and ETU
channel models described in the LTE standard [52, 53], whose parameters are reported
in Table 5.1.

In particular, the phase of the complex channel gain αl for each path is generated
randomly, i.e., αl = |αl| ejϕ with ϕ uniform in [0, 2π]. We simulate the transmission of
25 consecutive subframes, which are approximately the number of subframes occupied
by a ping. We generate 50 different channel realizations for each SNR value, that ranges
from -15 to 20 dB with 5 dB steps. Moreover, we used two different set-ups for the
generation of the Doppler frequencies. The first set-up generates the Doppler of each
path randomly with uniform values between −νl,max and νl,max. The second set-up
uses a fixed Doppler frequency equal to νl,max for each path. In the following, we refer
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to these two situation as random Doppler simulations and fixed Doppler simulations,
respectively.

5.6.1 EPA Channel Simulations

EPA Fixed Doppler Results

Figure 5.15 shows the RMSEE of the delays obtained with SAGE, considering the
EPA channel model in the full band scenario with fixed Doppler. The RMSEE of the
seventh path is not showed because the error exceeds 250 ns. This is mainly due to the
non perfect estimation of the other paths. Indeed, during the E-step, SAGE performs a
cancellation of the interference using the previously estimated paths. If the estimation
is not precise, during the E-step some peaks that are not related to a real paths can
pop up in the correlation function. So, in general, with a high number of paths, all
the non correct cancellation effects will sum up, and the RMSEE of the paths with
lower amplitude αl will be usually higher compared to paths with a larger amplitude.
Because of this, in the following we will show and comment only the estimates for paths
with a relatively small error. Note that our interest is in the first path estimation, and
we show the results for the other paths for completeness and to give an idea of the
general performance.

From Figure 5.15, we can notice that for low SNR, the RMSEE of the delays is
very high and some paths are estimated with errors that exceed 1 µs. We can conclude,
in this case, that SAGE is not reliable with SNR values below -10 dB, considering the
EPA channel model in the full band scenario.

In general, apart from the seventh path, the RMSEE of the remaining six paths
is between 40 to 60 ns, i.e., between 12 and 18 m in pseudorange, when the SNR is
between -10 and 20 dB. In particular, the first path estimate has a RMSEE below 40
ns when the SNR is high. This general level of error is due to the high proximity of
the paths in the EPA channel model, and also to the high number of paths. Indeed, in
Section 5.5 we saw that, when the paths are close to each other, the RMSEE increase.
For completeness, Figure 5.16 shows the RMSEE of the Doppler. At low SNR, the
performance drops, but at high SNR the RMSEE of all the paths is below 5 Hz.

Figure 5.17 shows the RMSEE of the delays obtained with IAA-APES , considering
the EPA channel model in the full band scenario with fixed Doppler. In particular,
with this algorithm only three paths can be resolved, and in general the error for these
three paths is lower than the one obtained with SAGE. Furthermore, we can see that
IAA-APES has good performance also for low SNR level. In particular, the first path
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Fig. 5.15 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the full band scenario
with fixed Doppler.

Fig. 5.16 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the full band scenario
with fixed Doppler.
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Fig. 5.17 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES, considering the EPA channel model in the full band scenario
with fixed Doppler.

estimation error is around 25 ns for low SNR and close to 10 ns for high SNR, which
are respectively 7.5 m and 3 m in pseudorange.

Figure 5.18 and Figure 5.19 show respectively the RMSEE of the delays and the
Doppler obtained with SAGE, considering the EPA channel in the simulated ping
scenario with fixed Doppler. One can notice that the RMSEE in this case is similar to
the full band one, indeed SAGE is not influenced too much by the characteristics of
this scenario. The errors are between 70 and 25 ns. The Doppler estimation is less
precise compared with the full band scenario, and for the first path the RMSEE of the
Doppler is around 15 Hz.

In the two ping scenarios the IAA-APES algorithm is able to distinguish only one
path. The RMSEE of the delay will be shown later, when we compare the RMSEE of
the first path delay obtained with different algorithms.

Figure 5.20 and Figure 5.21 show, respectively, the RMSEE of the delays and of
the Doppler obtained with SAGE, considering the EPA channel model in the real ping
scenario with fixed Doppler. In this case, similarly to the full band and simulated ping
scenarios, the RMSEEs are poor with low SNR level, but with SNR larger than -10
dB the RMSEE is approximately between 40 and 70 ns. In this case, the Doppler
estimation error is below 5 Hz with SNR level higher that -5 dB, for all the paths.
Comparing the different SAGE delay estimation in the EPA channel with fixed Doppler,
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Fig. 5.18 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the simulated ping
scenario with fixed Doppler.

Fig. 5.19 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the simulated ping scenario
with fixed Doppler.
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Fig. 5.20 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the real ping scenario
with fixed Doppler.

we can conclude that the estimates are not too much influenced by the considered
scenario.

In Figures 5.22 and 5.23, the RMSEEs of the first path delay is showed. In
particular, we compare the results obtained with SAGE, IAA-APES and the correlation
peak detector, considering the EPA channel model in the three different scenarios
with fixed Doppler. Figure 5.23 shows the detail of Figure 5.22. From these figures,
we can see that the delay RMSEE of the correlation peak detector is high for low
SNR levels and in the two ping scenarios. With high SNR, the RMSEE obtained with
the correlation peak detector is comparable to the other algorithms only in the full
band scenario. However, IAA-APES has the best performance in case of full band
transmission, and gives the best performance also when the SNR is below -10 dB in
all the scenarios. For low SNR, in the two ping scenario the error in pseudorange
is around 15 m. On the contrary, in the real ping and simulated ping scenario with
SNR higher than -10 dB, the SAGE algorithm has a slightly better performance, with
errors in pseudorange around 13 m and below 10 m in the real ping and simulated ping
scenarios, respectively.
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Fig. 5.21 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the real ping scenario
with fixed Doppler.

Fig. 5.22 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the EPA channel model in the three different
scenarios with fixed Doppler.
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Fig. 5.23 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the EPA channel model in
the three different scenarios with fixed Doppler.
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Fig. 5.24 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the full band scenario
with random Doppler.

EPA Random Doppler Results

Figure 5.24 and Figure 5.25 show respectively the RMSEE of the delays and the
Doppler obtained with SAGE, considering the EPA channel model in the full band
scenario with random Doppler. The RMSEE of the first six paths is approximately
between 30 and 60 ns in the SNR range from -10 to 20 dB. With lower SNR, the
algorithm is not reliable and the delay RMSEE is high. The first path RMSEE is
around 40 ns, which corresponds to an error in pseudorange of approximately 12 m.
Also in this case we can assume that the relatively high error is due to the proximity
of the paths. In this case, the Doppler estimation error is below 10 Hz for all the paths
when the SNR is higher that -10 dB, while for lower SNR the RMSEE exceeds 200 Hz
for some paths.

Figure 5.26 shows the RMSEE of the delays obtained with IAA-APES, considering
the EPA channel model in the full band scenario with random Doppler. With this
algorithm only three paths can be solved and in general the error is lower compared
with the error given by SAGE. Furthermore IAA-APES maintains good performance
when the SNR level falls below -10 dB. The first path estimation is around 23 ns for
low SNR and close to 10 ns for high SNR, which are respectively 7 m and 3 m in
pseudorange.
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Fig. 5.25 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the full band scenario
with random Doppler.

Fig. 5.26 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES considering the EPA channel model in the full band scenario
with random Doppler.
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Fig. 5.27 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the simulated ping
scenario with random Doppler.

Figure 5.27 and Figure 5.28 show, respectively, the RMSEE of the delays and the
Doppler obtained with SAGE, considering the EPA channel model in the simulated
ping scenario with random Doppler. We can notice that the RMSEE in this case is
in between 70 and 30 ns for SNR that exceeds -10 dB. The Doppler estimation is in
general slightly less precise compared to the full band scenario and for the first path
the RMSEE is around 5 Hz.

The IAA-APES algorithm is not able to distinguish more than one path in the
simulated ping and real ping scenarios.

Figure 5.29 and Figure 5.30 show respectively the RMSEE of the delays and the
Doppler obtained with SAGE, considering the EPA channel model in the real ping
scenario with random Doppler. The RMSEE in this case is close to the full band and
simulated ping scenarios. In general, the RMSEE of the paths delay is poor at low
SNR, but with SNR above -10 dB the RMSEE reaches values approximately between
30 and 70 ns, for each path. In this case, the Doppler estimation error is below 10 Hz,
at least for SNR values larger than -5 dB. The sixth path is estimated with an error of
about 28 Hz, which decreases to 5 Hz when the SNR falls below 5 dB.

In Figure 5.31 and Figure 5.32, the RMSEEs of the first path delay is showed. In
particular, we compare the results obtained with SAGE, IAA-APES and the correlation
peak detector, considering the EPA channel model in the three different scenarios with
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Fig. 5.28 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the simulated ping scenario
with random Doppler.

Fig. 5.29 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the real ping scenario
with random Doppler.

110



5.6 Simulation Results with Different Channel Models

Fig. 5.30 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EPA channel model in the real ping scenario
with random Doppler.

random Doppler. Figure 5.32 shows a detail of Figure 5.31. From these figures we can
observe that the correlation based estimation has a high error with low SNR and in the
two ping scenarios. In the full band case, the correlation RMSEE is comparable with
the other methods. In particular, IAA-APES has the best performance in the full band
scenario and gives the best performance also when the SNR is low in all the scenarios
evaluated. For low SNR, in the two ping scenarios, the error in pseudorange is around
15 m. On the contrary, in the real ping and simulated ping scenarios with SNR higher
than -10 dB, the SAGE algorithm gives a slightly better estimation, with errors in
pseudorange around 13 m. So, SAGE has a slightly better performance compared to
IAA-APES, while IAA-APES appears to be the best choice in the full band case with
EPA channel.

Summarizing the results obtained with the EPA channel, IAA-APES appears to be
the best choice when the SNR is lower than -10 dB in all scenarios with both fixed and
random Doppler. IAA-APES shows also the best performance in the full band scenario
in the evaluated SNR range, with RMSEE in pseudorange below 7.5 m. SAGE, indeed,
appears to be preferable to IAA-APES with SNR level above -10 dB in the two ping
scenarios. In particular, when simulated ping and real ping scenarios are considered,
the RMSEE is similar to the one obtained with SAGE in the full band scenario and
the RMSEE in pseudorange is around 13 m.
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Fig. 5.31 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the EPA channel model in the three different
scenarios with random Doppler.

Fig. 5.32 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the EPA channel model the
three different scenarios with random Doppler generation.
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Fig. 5.33 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the full band scenario
with fixed Doppler.

5.6.2 EVA Channel Results

EVA Fixed Doppler Results

Figure 5.33 and Figure 5.34 show respectively the RMSEE of the delays and the
Doppler obtained with SAGE, considering the EVA channel model in the full band
scenario with fixed Doppler. In this case, the RMSEE of the first three paths is below
40 ns. This is probably due to the reduced proximity of the path delays in the EVA
channel compared to the EPA channel. The RMSEE of the fifth path is below 60 ns,
which is better than the estimate for the fourth path. This is because the magnitude
of the fifth path is larger than the magnitude of the fourth path and because the two
path delays are quite close. The fourth path has an error of about 150 ns. The other
paths have a higher error that we do not show in the figures. The Doppler error is
always below 5 Hz, also at low SNR. The first path delay RMSEE is around 5 ns for
SNR higher than -10 dB, whereas for lower SNR the estimation is not reliable.

Figure 5.35 shows the RMSEE of the delays obtained with IAA-APES, considering
the EVA channel model in the full band scenario with fixed Doppler. In this case, only
three paths can be resolved, and in general the first path RMSEE is slightly higher
than the one obtained by SAGE, even if the first path estimation for SNR below -10
dB is better than the one obtained with SAGE. The second and third path delay
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Fig. 5.34 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the full band scenario
with fixed Doppler.

estimates have a RMSEE approximately between 75 to 110 ns and between 100 to 155
respectively. The first path estimation error is around 15 ns at low SNR and close to 8
ns at high SNR, which are respectively 4.5 m and 2.4 m in pseudorange.

Figure 5.36 and Figure 5.37 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the EVA channel model in the simulated
ping scenario with fixed Doppler. We can notice that the RMSEE in this case is similar
to the full band scenario for the first two paths. In particular the first path RMSEE is
around 5 ns, which is approximately 1.5 m. The error from the third to the fifth path
is around 60 ns, 130 ns and 80 ns, respectively. The error in the first path estimation
at low SNR is high, and the estimation is not reliable. The Doppler estimation is in
general similar to the full band scenario, and in particular the error is always below 5
Hz.

The RMSEE of the delays obtained with IAA-APES, considering the EVA channel
model in the simulated ping and real ping scenarios with fixed Doppler and random
Doppler, is omitted. This is because, in the simulated ping scenario, the error in the
second and third path estimation is around 1 µs. This is similar to what happens in
the real ping scenario, where only the second path is estimated and the delay RMSEE
for the second path is above 1.1 µs. Indeed, this is due to the inability of the algorithm
to distinguish close paths when the available bandwidth is reduced. This behavior is
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Fig. 5.35 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES, considering the EVA channel model in the full band scenario
with fixed Doppler.

Fig. 5.36 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the simulated ping
scenario with fixed Doppler.
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Fig. 5.37 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the simulated ping scenario
with fixed Doppler.

consistent with what shown in Figure 5.14 for the two ping scenarios. For this reason,
we do not show these results and we will limit to show the first path RMSEE obtained
with IAA-APES in the following plots.

Figure 5.38 and Figure 5.39 show, respectively, the RMSEE of the delays and of
the Doppler obtained with SAGE, considering the EVA channel model in the real
ping scenario with fixed Doppler. The delay RMSEE in this case is similar to the
one obtained in the simulated ping scenario. The error for the first three paths delay
estimation is approximately 13 ns, 20 ns and 50 ns, respectively. The RMSEE of the
Doppler is higher than in the previous two scenarios. In this case, all the paths have
an RMSEE between 30 and 60 Hz for high SNR, apart from the first path that has an
error below 4 Hz.

In Figure 5.40 and Figure 5.41, the RMSEE of the first path delay is showed. In
particular, we compare the results obtained with SAGE, IAA-APES and the correlation
peak detector, considering the EVA channel model in the three different scenarios
with fixed Doppler. Figure 5.41 shows a detail of Figure 5.40. From these figures, we
can observe that the correlation based estimation has a high error at low SNR and
for the two ping scenarios, while in the full band scenario the correlation RMSEE is
comparable with the other methods. However, IAA-APES performs better then the
correlation method in the full band scenario. Also, IAA-APES performs better than
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Fig. 5.38 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the real ping scenario
with fixed Doppler.

Fig. 5.39 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the real ping scenario
with fixed Doppler.
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Fig. 5.40 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the EVA channel model in the three different
scenarios fixed Doppler.

the other techniques when the SNR level falls below -10 dB. In the full band scenario,
IAA-APES has an error in pseudorange approximately between 4.5 m to 2.5 m for low
and high SNR, respectively. The SAGE algorithm in this case outperforms the other
algorithms, in particular when the two ping scenarios are used. Indeed, the RMSEE of
SAGE in the simulated ping scenario are close to the RMSEE obtained with SAGE in
the full band scenario. The RMSEE in pseudorange is close to 1.5 m. In the real ping
scenario, SAGE has performance close to IAA-APES in the full band scenario, i.e., the
RMSEE in pseudorange is around 3.5 m.
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Fig. 5.41 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the EVA channel model in
the three different scenarios fixed Doppler.
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Fig. 5.42 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the full band scenario
with random Doppler.

EVA Random Doppler Results

Figure 5.42 and Figure 5.43 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the EVA channel model in the full band
scenario with random Doppler. In this case, the RMSEE of the first and second path
is below 10 ns. For the third, the fourth and the fifth path, the RMSEE is around
80 ns, 140 ns and 110 ns respectively. The RMSEE of the Doppler follows a similar
behaviour, and indeed the RMSEE of the first two paths is below 5 Hz, whereas the
errors for the third, fourth and fifth path are between 40 Hz and 50 Hz. The RMSEE
of the first path delay is around 5 ns, that corresponds to an error in pseudorange of
approximately 1.5 m, while the RMSEE of the Doppler is below 3 Hz.

Figure 5.44 shows the RMSEE of the delays obtained with IAA-APES, considering
the EVA channel model in the full band scenario with random Doppler. With this
technique, only three paths can be resolved. The first path RMSEE in this case is
slightly higher than the one given by SAGE. The RMSEE of the delay relative to the
second and third paths is approximately between 120 ns to 45 ns and between 185 ns
to 60 ns, for low and high SNR, respectively. The first path delay RMSEE is around
13 ns for low SNR and close to 6 ns for high SNR, which are respectively about 4 m
and 2 m in pseudorange.
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Fig. 5.43 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the full band scenario
with random Doppler.

Fig. 5.44 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES, considering the EVA channel model in the full band scenario
with random Doppler.
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Fig. 5.45 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the simulated ping
scenario with random Doppler.

Figure 5.45 and Figure 5.46 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the EVA channel model in the simulated
ping scenario with random Doppler. We can notice that the RMSEE of the delays in
this case is similar to the full band scenario considering all the paths. The Doppler
estimation is in general similar to the full band scenario, and in particular the error of
the first two paths is below 10 Hz with SNR above -10 dB.

As mentioned above, the IAA-APES algorithm does not provide proper estimation
of the paths other than the first one. The RMSEE of the first path delay obtained
with IAA-APES in the two ping scenarios will be shown in the following.

Figure 5.47 and Figure 5.48 show, respectively, the RMSEE of the delays and of
the Doppler obtained with SAGE, considering the EVA channel model in the real ping
scenario with random Doppler. The RMSEE in this case is higher compared to the
simulated ping scenarios. The RMSEE is about 70 ns, 40 ns and 80 ns for the first, the
second and the third paths, respectively. This relatively high errors also characterize
the Doppler estimation, and indeed the Doppler RMSEE for the first path is between
100 and 40 Hz at low and high SNR, respectively. These relatively high RMSEE values
are due to the small band occupation of this scenario and to the characteristics of the
channel.
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Fig. 5.46 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the simulated ping scenario
with random Doppler.

Fig. 5.47 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the real ping scenario
with random Doppler.
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Fig. 5.48 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the EVA channel model in the real ping scenario
with random Doppler.

In Figure 5.49 and Figure 5.50 we show the RMSEE of the first path delay. In
particular, we compare the results obtained with SAGE, IAA-APES and the correlation
peak detector, considering the EVA channel model in the three different scenarios with
random Doppler. Figure 5.49 shows a detail of Figure 5.50. From this figures, we
can observe that the correlation based estimation has a high error at low SNR and in
the two ping scenarios. In the full band case, the correlation RMSEE is comparable
with the other methods. However, IAA-APES performs better then the correlation
in the full band scenario. Moreover, IAA-APES performs better than SAGE only at
SRN below -10 dB in the real ping scenario. In the full band scenario, IAA-APES
has an RMSEE in pseudorange approximately between 4 m and 2 m at low and high
SNR, respectively. The RMSEE obtained with IAA-APES in the simulated ping and
real ping scenarios is around 150 ns and 160 ns, respectively, i.e. around 45 and 48
m in pseudorange. SAGE outperforms in this case the other algorithms, in particular
when the two ping scenarios is considered, while in the full band scenario SAGE is
only slightly better than IAA-APES. The RMSEE of SAGE in the simulated ping
scenario is close to the SAGE RMSEE in the full band scenario, with an RMSEE in
pseudorange equal to about to 1.5 m. SAGE, in the real ping scenario, reaches an
RMSEE of about 20 m in pseudorange. This value is rather large, but considerably
smaller compared to the RMSEE of IAA-APES in the real ping scenario.
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Fig. 5.49 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the EVA channel model in the three different
scenarios with random Doppler.

Summarizing the results for the EVA channel, IAA-APES seems to have better
performance then SAGE only in some scenarios when the SNR is lower than -10 dB.
SAGE, instead, has the best performance in the full band scenario for SNR higher
than -10 dB giving a delay RMSEE in pseudorange of about 1.5 m. SAGE shows also
the best performance in the simulated ping and real ping scenarios for SNR above -10
dB, giving estimation errors close to the full band case in the simulated ping scenario.
In the real ping scenario, the errors in pseudorange are about 3.5 m with fixed Doppler
and about 20 m with random Doppler. These values, although not small, are in any
case much better than those obtained with the other algorithms.
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Fig. 5.50 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the EVA channel model in
the three different scenarios with random Doppler.
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Fig. 5.51 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the full band scenario
with fixed Doppler.

5.6.3 ETU Channel Results

ETU Fixed Doppler Results

Figure 5.51 and Figure 5.52 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the ETU channel model in the full band
scenario with fixed Doppler. In this case, the delay RMSEE of the first four paths is
below 20 ns. From the fifth to the seventh path, the errors are below 50 ns, 180 ns and
110 ns, respectively. With the ETU channel model, the RMSEE for the considered
paths is in general lower then the one obtained with EPA and EVA channels. This is
because, in the ETU channel model, the paths are more separated in the delay domain.
Low RMSEE values are obtained also for Doppler estimation, which is below 2 Hz for
all the paths. The first path delay RMSEE is below 5 ns, which corresponds to an
error in pseudorange below 1.5 m.

Figure 5.53 shows the RMSEE of the delays obtained with IAA-APES, considering
the ETU channel model in the full band in the fixed Doppler scenario. With this
algorithm, only three paths can be resolved, and in general the first path delay RMSEE
is slightly higher than the one given by SAGE. The RMSEE of the first path is about
22 ns at low SNR and below 10 ns at high SNR. The RMSEEs of the second and the
third paths are approximately between 70 ns and 20 ns, and between 140 ns and 30 ns,
respectively, for increasing SNR values.
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Fig. 5.52 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the full band scenario
with fixed Doppler.

Fig. 5.53 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES, considering the ETU channel model in the full band scenario
with fixed Doppler.
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Fig. 5.54 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the simulated ping
scenario with fixed Doppler.

Figure 5.54 and Figure 5.55 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the ETU channel model in the simulated
ping scenario with fixed Doppler. We can notice that the RMSEE in this case is similar
to the full band scenario, for the first five paths, and that in general the errors are
below 50 ns. The first path RMSEE is always below 10 ns, and in particular, at high
SNR, it is below 5 ns. The Doppler estimation is in general similar to the full band
scenario for high SNR but for low SNR some paths have an RMSEEs that exceeds 10
Hz. For the fifth condidered path the maximum error is always below 55 Hz.

The first path delay RMSEE of IAA-APES for the two ping scenarios will be shown
later. This for the same reasons explained in the previous EVA and EPA sections.

Figure 5.56 and Figure 5.57 show, respectively, the RMSEE of the delays and of
the Doppler obtained with SAGE, considering the ETU channel model in the real ping
scenario with fixed Doppler. The RMSEE in this case is higher then the simulated
ping scenario, and indeed the first five path delays RMSEE is between 90 and 20 ns.
The first path RMSEE is about 35 ns at high SNR, while at SNR lower than 10 dB,
the RMSEE is very high. The RMSEE of the Doppler for the first path is about 3 Hz
at high SNR and around 60 Hz at low SNR. The other paths exhibit an error between
25 Hz and 100 Hz in the whole SNR range, apart from the sixth and seventh path,
with an RMSEE around 3 Hz at high SNR.

129



LTE Uplink TOA Estimation Results

Fig. 5.55 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the simulated ping scenario
with fixed Doppler.

Fig. 5.56 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the real ping scenario
with fixed Doppler.

130



5.6 Simulation Results with Different Channel Models

Fig. 5.57 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the real ping scenario
with fixed Doppler.

Figure 5.58 and Figure 5.59 show the RMSEE of the first path. In particular,
we compare the results obtained with SAGE, IAA-APES and the correlation peak
detector, considering the ETU channel model in the three different scenarios with fixed
Doppler. Figure 5.58 shows a detail of Figure 5.59. From these figures, we can observe
that the correlation based estimation has a high error at low SNR and in the two ping
scenarios. In the full band case, the correlation RMSEE is comparable with the other
methods. However, considering the full band case, IAA-APES performs better then
the correlation. IAA-APES and SAGE have approximately the same performance at
high SNR, while IAA-APES is slightly worse then SAGE at low SNR. In the full band
scenario, IAA-APES has a RMSEE in pseudorange approximately between 7.5 m and 3
m, at low and high SNR, respectively. In the two ping scenario, IAA-APES has a high
error equal to around 150 ns for the simulated ping and 170 ns for the real ping, and
performs better than SAGE only at SNR below -10 dB in the real ping scenario. The
SAGE algorithm, in this case, outperforms the other algorithms, in particular when
the two ping scenarios are used. Indeed, the performance of SAGE in the simulated
ping scenario are close to the performance of SAGE in the full band scenario and the
RMSEE in pseudorange is close to 2.5 m. In the real ping scenario, SAGE has an
RMSEE around 10 m in pseudorange, which is considerably lower than the RMSEE
obtained with IAA-APES for the real ping scenario, which is around 45 m.
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Fig. 5.58 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the ETU channel model in the three different
scenarios with fixed Doppler.

Fig. 5.59 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the ETU channel model in
the three different scenarios with fixed Doppler.
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Fig. 5.60 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the full band scenario
with random Doppler.

ETU Random Doppler Results

Figure 5.60 and Figure 5.61 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the ETU channel model in the full band
scenario with random Doppler. In this case, the RMSEE of the delay relative to the
first three paths is below 5 ns. The fourth and the fifth path have an RMSEE around
7 ns and 25 ns, respectively, at high SNR. Also, the Doppler is estimated well, and the
error is always below 5 Hz for the first four paths. The other paths have higher RMSEE
that exceeds 250 ns for the delay and 180 Hz for the Doppler. The RMSEE of the delay
of the first path is below 2 ns, which corresponds to an error in pseudorange below 1
m. In this case, the better estimation performance is due to the high separation of the
Doppler frequencies, due to the random generation and to the high value of νl,MAX .
With the considered number of snapshots, the algorithm can distinguish properly the
different paths in the Doppler domain.

Figure 5.62 shows the RMSEE of the delays obtained with IAA-APES, considering
the ETU channel model in the full band scenario with random Doppler. This algorithm
is able to estimate only three paths, with a small RMSEE that is slightly higher than
the RMSEE of the first three path estimates obtained with SAGE. The RMSEE of the
first path is around 16 ns at low SNR and below 2 ns at high SNR. The second and
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Fig. 5.61 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the full band scenario
with random Doppler.

third path have an RMSEE approximately between 28 and 2 ns and between 40 ns
and 6 ns, respectively, in the considered SNR range.

Figure 5.63 and Figure 5.64 show, respectively, the RMSEE of the delays and of the
Doppler obtained with SAGE, considering the ETU channel model in the simulated
ping scenario with random Doppler. We can notice that the RMSEE of the delay
relative to the first and second path is similar to the full band scenario, and in particular
it is about 2 ns. For the third, fourth and fifth path, the RMSEE is below 25 ns. The
first path delay RMSEE is high only at low SNR. The RMSEE of the Doppler is in
general similar to the full band scenario for the first two paths, with a higher error
only at low SNR. The third and fourth paths have estimation errors around 15 Hz and
25 Hz, respectively, whereas the other paths have an error around 150 Hz.

As before, the first path delay RMSEEs of IAA-APES for the two ping scenarios
will be shown later.

Figure 5.65 and Figure 5.66 show, respectively, the RMSEE of the delays and of
the Doppler obtained with SAGE, considering the ETU channel model in the real
ping scenario with random Doppler. The RMSEE of the delays in this case is higher
compared to the simulated ping scenarios, and in general the first five paths RMSEE
is approximately between 28 and 80 ns in the considered SNR range. This relatively
high error is related to the small overall band and little snapshot number available for
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Fig. 5.62 RMSEE of the delays. Comparison between different paths estimation
obtained with IAA-APES, considering the ETU channel model in the full band scenario
with random Doppler.

Fig. 5.63 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the simulated ping
scenario with random Doppler.
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Fig. 5.64 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the simulated ping scenario
with random Doppler.

the estimation. The RMSEE of the Doppler has values between 80 and 200 Hz. The
RMSEE of the delay relative to the first path is around 60 ns at low SNR and reaches
28 ns at high SNR, which are respectively 18 m and 8.5 m in pseudorange.

Figure 5.67 and 5.68 show the RMSEE of the first path delay. In particular,
we compare the results obtained with SAGE, IAA-APES and the correlation peak
detector, considering the ETU channel model in the three different scenarios with
random Doppler. Figure 5.67 shows a detail of Figure 5.68. From this figures, we can
observe that the correlation based estimation has a high error at low SNR and in the
two ping scenarios. In the full band scenario, the correlation RMSEE is comparable
with the other methods. However, IAA-APES performs better then the correlation
method in the full band scenario. IAA-APES also performs better than SAGE when
the SNR is below -10 dB in the simulated ping scenario. In the full band scenario,
IAA-APES has an error in pseudorange approximately between 4.8 m and below 1 m
at low and high SNR, respectively. The SAGE algorithm in this case outperforms the
other algorithms, in particular in the two ping scenarios and the SNR is above -10
dB. Indeed, the performance of SAGE in the simulated ping scenario is close to the
performance of SAGE in the full band scenario and the RMSEE of the first path in
pseudorange is below 1 m.
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Fig. 5.65 RMSEE of the delays. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the real ping scenario
with random Doppler.

Fig. 5.66 RMSEE of the Doppler. Comparison between different paths estimation
obtained with SAGE, considering the ETU channel model in the real ping scenario
with random Doppler.
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Fig. 5.67 RMSEE of the first path delay. Comparison between SAGE, IAA-APES and
the correlator peak detector, considering the ETU channel model in the three different
scenarios with random Doppler.

In the real ping scenario SAGE has an RMSEE in pseudorange between 18 and 8.5
m. These values are considerably smaller compared to the RMSEE of the first path
obtained with IAA-APES in the real ping scenario, which is around 57 m.

Summarizing the results obtained with the ETU channel, IAA-APES shows good
performance in the full band scenario for both random and fixed Doppler simulations.
With the ETU channel, IAA-APES outperforms SAGE only in the simulated ping
scenario with SNR below -10 dB. SAGE has the best performance in the full band
scenario with RMSEE in pseudorange below 1 m. SAGE has also the best performance
in the simulated ping scenario when the SNR is higher than -10 dB. In the real ping
scenarios, the RMSEE of the first path obtained with SAGE in the worst case is
about 10 m, in the fixed Doppler simulations, and about 18 m in the random Doppler
simulations. These errors are strongly better than the errors obtained with the other
algorithms.
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Fig. 5.68 RMSEE of the first path delay. Inset of the comparison between SAGE,
IAA-APES and the correlator peak detector, considering the ETU channel model in
the three different scenarios with random Doppler.
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The results obtained from the simulations of the EPA, EVA and ETU channels
with random and fixed Doppler, are encouraging. We saw that, in a full band scenario,
the IAA-APES and the SAGE algorithm have similar performance in all the different
channel realizations. The RMSEE in this scenario is generally small and in some cases
the pseudorange error is below one meter. This scenario represents a reference lower
bound. Indeed, considering the CRLB described in Section 4.5, the delay estimation
is proportional to the occupied bandwidth. However, this scenario is not realistic,
because, in an LTE uplink transmission, UE data do not occupy the whole bandwidth.
In general, IAA-APES appears to be more reliable when the SNR is below -10 dB.
This is because IAA-APES uses the time snapshots to average the results, whereas
SAGE uses all the time snapshots in order to estimate the Doppler frequency. When
a data transmission is simulated at an SNR larger than -10 dB, SAGE outperforms
all the other methods and provides estimate with a smaller RMSEE then the other
algorithms. In the simulated ping scenario, where the occupation bandwidth is random
and between 4 to 18 RBs, SAGE has a performance almost equal to the full band case.
This means that SAGE is not affected by the decrease of the bandwidth. When we
consider a real ping transmission pattern, which has a lower overall band occupation
compared to the simulated ping scenario, SAGE performance degrades but still remains
much better than that of the other algorithms. Considering the Doppler RMSEE,
SAGE shows good performance when the full band scenario is considered. However,
we see a general low degradation in the simulated ping scenario and a high degradation
in the real ping scenario, which is probably due to limited number of snapshot used
in this case. Indeed, with a low number of snapshots and a low number of occupied
subcarriers, it can happen that some subcarriers fk, are filled with zeros in all the
snapshots (see for example Figure 5.2). These subcarriers obviously do not contribute
to the Doppler estimation, and inevitably make the estimate less precise.

5.7 Experimental Results in a Real Scenario

5.7.1 Set-up

In this section, we present some experimental results obtained by measuring the TDOA
exploiting the uplink DM-RS. In particular, we try to determine the distance between
two antennas using DM-RS signals and the SAGE algorithm with 2D initialization.
The SAGE algorithm is selected because, as seen above, it appears to be the best
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choice when there are missing bins in the CFR, which is exactly the situation that we
face during uplink transmissions.

In general, to measure a TOA using the DM-RS, knowledge of some parameters
is necessary, otherwise it is impossible to reconstruct the correct reference signals
at the receiver used to estimate the CFR. These parameters are listed in Table 5.2.
In particular, Cell ID represents the physical cell ID, SubNumber is the subframe

Name Range

Cell ID 0-503
SubNumber 0-19

NTxAnts 1,2 or 4
CycPref normal or extended
Hopping Off, Sequence or Group

SeqGroup 0-29
CycShift 0-7

NPUSCHID 0-509
NDMRSID 0-509

PRBSet maximum range is 0 to (NRB-1)
NLayers 1,2,3,4

DynCycShift 0-7
OrthCover On-Off

PMI 0-23
Table 5.2 Parameters that has to be known in order to estimate the TOA using the
DM-RS.

number, NTxAnts is the number of transmission antennas, CycPref is the length of the
cyclic prefix, Hopping is the frequency hopping mode, SeqGroup is the sequence group
assignment, CycShift is the cyclic shift equal to n

(1)
DMRS in [15], NPUSCHID is the

PUSCH virtual cell identity, NDMRSID is the DM-RS identity for cyclic shift hopping,
PRBSet is the set of physical resource blocks used for the uplink transmission, NLayers
is the number of transmission layers, DynCycShift represents the cyclic shift field
related to the DCI format, which is equal to n

(2)
DMRS,λ in [15], OrthCover indicates if the

orthogonal cover sequence is applied to the reference sequence and PMI is the precoder
matrix indication. More detail about these parameters and about their influence on
the DM-RS can be found in [15].

The experiment was carried out inside a building of the University of Udine. As
one can see in Fig. 5.69, the two antennas are connected to two different inputs of the
same USRP. The connection cables have the same length, in order to guarantee, as first
approximation, that we do not have to compensate the delay introduced by the cables.
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<latexit sha1_base64="QBlTYI3cpBHSKzuoq4RREk2YzuE=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqk9HlVrft1fgq6ToCA1UqA1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GE2TLogl5YwzChKWgqJF2K8HsjY7Ex8zhykzHDB7Pq5eJ/3sDi5CbMhEotguL5IRQSlocM18I1AHQsNCCyPDlQoShnmiGCFpRx7kTrKqm4PoLV79dJt1EPXEntq1qzUTRTJmfknFySgFyTJrkjLdIhnAB5Is/kxbPeq/fmvf+Mlrxi55T8gffxDWI7kVw=</latexit><latexit sha1_base64="QBlTYI3cpBHSKzuoq4RREk2YzuE=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqk9HlVrft1fgq6ToCA1UqA1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GE2TLogl5YwzChKWgqJF2K8HsjY7Ex8zhykzHDB7Pq5eJ/3sDi5CbMhEotguL5IRQSlocM18I1AHQsNCCyPDlQoShnmiGCFpRx7kTrKqm4PoLV79dJt1EPXEntq1qzUTRTJmfknFySgFyTJrkjLdIhnAB5Is/kxbPeq/fmvf+Mlrxi55T8gffxDWI7kVw=</latexit><latexit sha1_base64="QBlTYI3cpBHSKzuoq4RREk2YzuE=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqk9HlVrft1fgq6ToCA1UqA1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GE2TLogl5YwzChKWgqJF2K8HsjY7Ex8zhykzHDB7Pq5eJ/3sDi5CbMhEotguL5IRQSlocM18I1AHQsNCCyPDlQoShnmiGCFpRx7kTrKqm4PoLV79dJt1EPXEntq1qzUTRTJmfknFySgFyTJrkjLdIhnAB5Is/kxbPeq/fmvf+Mlrxi55T8gffxDWI7kVw=</latexit><latexit sha1_base64="QBlTYI3cpBHSKzuoq4RREk2YzuE=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqk9HlVrft1fgq6ToCA1UqA1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GE2TLogl5YwzChKWgqJF2K8HsjY7Ex8zhykzHDB7Pq5eJ/3sDi5CbMhEotguL5IRQSlocM18I1AHQsNCCyPDlQoShnmiGCFpRx7kTrKqm4PoLV79dJt1EPXEntq1qzUTRTJmfknFySgFyTJrkjLdIhnAB5Is/kxbPeq/fmvf+Mlrxi55T8gffxDWI7kVw=</latexit>

USRP

Fig. 5.69 Arrangement of the experimental setup.

Furthermore, in order to allow synchronised acquisition of the signals coming from
the LTE module, the two acquisition channels of the USRP share the same reference
clock. The two antennas are positioned at a distance d and are aligned with the LTE
module, then we can estimate d by measuring the TDOA between the two antennas
and multiplying the result by the speed of light. In this way, we do not need to know
the transmission time, thus making the setup simpler. A good estimate of d implies
that the proposed system can provide good TDOA measurements, which are the basis
of hyperbolic positioning systems as shown in Chapter 2.

The DM-RS is always associated with a data transmission. In our experiment, we
force the LTE module Toby L2 [54] to transmit a “ping”. After receiving the signal from
the two antennas at the USRP, we find the arrival time of the first DM-RS signal inside
the received signals by correlating them with the known transmitted DM-RS. This
estimate is rather coarse, since it does not take into account the effect of the multipath
channel, as it is possible to see in the results showed in Section 5.5 and Section 5.6. We
denote this coarse TOA as tm,T OA where m indicates the m-th antenna. Considering
that the LTE standard ensures a fixed time ∆t = 0.5 ms between a DM-RS and the
one transmitted in the next slot, knowledge of tm,T OA allows the estimation of the time
position of successive DM-RSs in a given number of consecutive slots. Knowing the
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5.7 Experimental Results in a Real Scenario

RECEIVED
SIGNAL

DM-RS
CORRELATION

CFR 
ESTIMATE

Antenna 1

RECEIVED
SIGNAL

DM-RS
CORRELATION

CFR 
ESTIMATE

Antenna 2

SAGE
ESTIMATION

SAGE
ESTIMATION

+

+
+

+

-

t1,TOA
<latexit sha1_base64="n+3aLkWDIm+YL5iBbQFz0Y7QzwA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIyiIaOIOWFkig6XzbhlPPZulsjRZa/ghYqOkTLx1DwL5yNCwhMNZrZ1c6OH0lh0HU/nNLS8srqWnm9srG5tb1T3d3rmDDWHNo8lKHu+cyAFAraKFBCL9LAAl9C159dZX73AbQRoWrhPIJhwKZKTARnaKU7HCXeSevmMh1Va27dzUH/Eq8gNVKgOap+DsYhjwNQyCUzpu+5EQ4TplFwCWllEBuIGJ+xKfQtVSwAM0zywCk9ig3DkEagqZA0F+HnRsICY+aBbycDhvdm0cvE/7x+jJOLYSJUFCMonh1CISE/ZLgWtgmgY6EBkWXJgQpFOdMMEbSgjHMrxraaiu3DW/z+L+mc1j1b0u1ZreEWzZTJATkkx8Qj56RBrkmTtAknAXkkT+TZSZ0X59V5+x4tOcXOPvkF5/0Lug+UUg==</latexit><latexit sha1_base64="n+3aLkWDIm+YL5iBbQFz0Y7QzwA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIyiIaOIOWFkig6XzbhlPPZulsjRZa/ghYqOkTLx1DwL5yNCwhMNZrZ1c6OH0lh0HU/nNLS8srqWnm9srG5tb1T3d3rmDDWHNo8lKHu+cyAFAraKFBCL9LAAl9C159dZX73AbQRoWrhPIJhwKZKTARnaKU7HCXeSevmMh1Va27dzUH/Eq8gNVKgOap+DsYhjwNQyCUzpu+5EQ4TplFwCWllEBuIGJ+xKfQtVSwAM0zywCk9ig3DkEagqZA0F+HnRsICY+aBbycDhvdm0cvE/7x+jJOLYSJUFCMonh1CISE/ZLgWtgmgY6EBkWXJgQpFOdMMEbSgjHMrxraaiu3DW/z+L+mc1j1b0u1ZreEWzZTJATkkx8Qj56RBrkmTtAknAXkkT+TZSZ0X59V5+x4tOcXOPvkF5/0Lug+UUg==</latexit><latexit sha1_base64="n+3aLkWDIm+YL5iBbQFz0Y7QzwA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIyiIaOIOWFkig6XzbhlPPZulsjRZa/ghYqOkTLx1DwL5yNCwhMNZrZ1c6OH0lh0HU/nNLS8srqWnm9srG5tb1T3d3rmDDWHNo8lKHu+cyAFAraKFBCL9LAAl9C159dZX73AbQRoWrhPIJhwKZKTARnaKU7HCXeSevmMh1Va27dzUH/Eq8gNVKgOap+DsYhjwNQyCUzpu+5EQ4TplFwCWllEBuIGJ+xKfQtVSwAM0zywCk9ig3DkEagqZA0F+HnRsICY+aBbycDhvdm0cvE/7x+jJOLYSJUFCMonh1CISE/ZLgWtgmgY6EBkWXJgQpFOdMMEbSgjHMrxraaiu3DW/z+L+mc1j1b0u1ZreEWzZTJATkkx8Qj56RBrkmTtAknAXkkT+TZSZ0X59V5+x4tOcXOPvkF5/0Lug+UUg==</latexit><latexit sha1_base64="n+3aLkWDIm+YL5iBbQFz0Y7QzwA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIyiIaOIOWFkig6XzbhlPPZulsjRZa/ghYqOkTLx1DwL5yNCwhMNZrZ1c6OH0lh0HU/nNLS8srqWnm9srG5tb1T3d3rmDDWHNo8lKHu+cyAFAraKFBCL9LAAl9C159dZX73AbQRoWrhPIJhwKZKTARnaKU7HCXeSevmMh1Va27dzUH/Eq8gNVKgOap+DsYhjwNQyCUzpu+5EQ4TplFwCWllEBuIGJ+xKfQtVSwAM0zywCk9ig3DkEagqZA0F+HnRsICY+aBbycDhvdm0cvE/7x+jJOLYSJUFCMonh1CISE/ZLgWtgmgY6EBkWXJgQpFOdMMEbSgjHMrxraaiu3DW/z+L+mc1j1b0u1ZreEWzZTJATkkx8Qj56RBrkmTtAknAXkkT+TZSZ0X59V5+x4tOcXOPvkF5/0Lug+UUg==</latexit>

t2,TOA
<latexit sha1_base64="61v/BENZ6efzhQazasjf4eIzoKo=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkV2hARlEA0dQcoLJVZ0vmzCKXe2dbdGiix/BS1UdIiWj6HgX7CNC0iYajSzq50dL5TCoG1/WqWV1bX1jfJmZWt7Z3evun/QNUGkOXR4IAPd95gBKXzooEAJ/VADU56Enje7zvzeI2gjAr+N8xBcxaa+mAjOMJXucRQ3ztq3V8moWrPrdg66TJyC1EiB1qj6NRwHPFLgI5fMmIFjh+jGTKPgEpLKMDIQMj5jUxik1GcKjBvngRN6EhmGAQ1BUyFpLsLvjZgpY+bKSycVwwez6GXif94gwsmlGws/jBB8nh1CISE/ZLgWaRNAx0IDIsuSAxU+5UwzRNCCMs5TMUqrqaR9OIvfL5Nuo+6kJd2d15p20UyZHJFjckocckGa5Ia0SIdwosgTeSYvVmK9Wm/W+89oySp2DskfWB/fu6OUUw==</latexit><latexit sha1_base64="61v/BENZ6efzhQazasjf4eIzoKo=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkV2hARlEA0dQcoLJVZ0vmzCKXe2dbdGiix/BS1UdIiWj6HgX7CNC0iYajSzq50dL5TCoG1/WqWV1bX1jfJmZWt7Z3evun/QNUGkOXR4IAPd95gBKXzooEAJ/VADU56Enje7zvzeI2gjAr+N8xBcxaa+mAjOMJXucRQ3ztq3V8moWrPrdg66TJyC1EiB1qj6NRwHPFLgI5fMmIFjh+jGTKPgEpLKMDIQMj5jUxik1GcKjBvngRN6EhmGAQ1BUyFpLsLvjZgpY+bKSycVwwez6GXif94gwsmlGws/jBB8nh1CISE/ZLgWaRNAx0IDIsuSAxU+5UwzRNCCMs5TMUqrqaR9OIvfL5Nuo+6kJd2d15p20UyZHJFjckocckGa5Ia0SIdwosgTeSYvVmK9Wm/W+89oySp2DskfWB/fu6OUUw==</latexit><latexit sha1_base64="61v/BENZ6efzhQazasjf4eIzoKo=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkV2hARlEA0dQcoLJVZ0vmzCKXe2dbdGiix/BS1UdIiWj6HgX7CNC0iYajSzq50dL5TCoG1/WqWV1bX1jfJmZWt7Z3evun/QNUGkOXR4IAPd95gBKXzooEAJ/VADU56Enje7zvzeI2gjAr+N8xBcxaa+mAjOMJXucRQ3ztq3V8moWrPrdg66TJyC1EiB1qj6NRwHPFLgI5fMmIFjh+jGTKPgEpLKMDIQMj5jUxik1GcKjBvngRN6EhmGAQ1BUyFpLsLvjZgpY+bKSycVwwez6GXif94gwsmlGws/jBB8nh1CISE/ZLgWaRNAx0IDIsuSAxU+5UwzRNCCMs5TMUqrqaR9OIvfL5Nuo+6kJd2d15p20UyZHJFjckocckGa5Ia0SIdwosgTeSYvVmK9Wm/W+89oySp2DskfWB/fu6OUUw==</latexit><latexit sha1_base64="61v/BENZ6efzhQazasjf4eIzoKo=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJAkV2hARlEA0dQcoLJVZ0vmzCKXe2dbdGiix/BS1UdIiWj6HgX7CNC0iYajSzq50dL5TCoG1/WqWV1bX1jfJmZWt7Z3evun/QNUGkOXR4IAPd95gBKXzooEAJ/VADU56Enje7zvzeI2gjAr+N8xBcxaa+mAjOMJXucRQ3ztq3V8moWrPrdg66TJyC1EiB1qj6NRwHPFLgI5fMmIFjh+jGTKPgEpLKMDIQMj5jUxik1GcKjBvngRN6EhmGAQ1BUyFpLsLvjZgpY+bKSycVwwez6GXif94gwsmlGws/jBB8nh1CISE/ZLgWaRNAx0IDIsuSAxU+5UwzRNCCMs5TMUqrqaR9OIvfL5Nuo+6kJd2d15p20UyZHJFjckocckGa5Ia0SIdwosgTeSYvVmK9Wm/W+89oySp2DskfWB/fu6OUUw==</latexit>

⌧1,1
<latexit sha1_base64="nrxuJQo2Ipvx/U1Cf1xN+gtpYq4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBGoqEMEnmIJIrWl0045Xy27tZIkRW+ghYqOkTLv1DwL9jGBSRMNZrZ1c6OHylpyXU/naXlldW19dJGeXNre2e3srffsmFsBDZFqELT8cGikhqbJElhJzIIga+w7U+uMr/9gMbKUN/SNMJ+AGMtR1IApdJdjyAeJN6pNxtUqm7NzcEXiVeQKivQGFS+esNQxAFqEgqs7XpuRP0EDEmhcFbuxRYjEBMYYzelGgK0/SRPPOPHsQUKeYSGS8VzEX9vJBBYOw38dDIAurfzXib+53VjGl32E6mjmFCL7BBJhfkhK4xMq0A+lAaJIEuOXGouwAARGslBiFSM027KaR/e/PeLpHVW89KSbs6rdbdopsQO2RE7YR67YHV2zRqsyQTT7Ik9sxfn0Xl13pz3n9Elp9g5YH/gfHwDqZeU2w==</latexit><latexit sha1_base64="nrxuJQo2Ipvx/U1Cf1xN+gtpYq4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBGoqEMEnmIJIrWl0045Xy27tZIkRW+ghYqOkTLv1DwL9jGBSRMNZrZ1c6OHylpyXU/naXlldW19dJGeXNre2e3srffsmFsBDZFqELT8cGikhqbJElhJzIIga+w7U+uMr/9gMbKUN/SNMJ+AGMtR1IApdJdjyAeJN6pNxtUqm7NzcEXiVeQKivQGFS+esNQxAFqEgqs7XpuRP0EDEmhcFbuxRYjEBMYYzelGgK0/SRPPOPHsQUKeYSGS8VzEX9vJBBYOw38dDIAurfzXib+53VjGl32E6mjmFCL7BBJhfkhK4xMq0A+lAaJIEuOXGouwAARGslBiFSM027KaR/e/PeLpHVW89KSbs6rdbdopsQO2RE7YR67YHV2zRqsyQTT7Ik9sxfn0Xl13pz3n9Elp9g5YH/gfHwDqZeU2w==</latexit><latexit sha1_base64="nrxuJQo2Ipvx/U1Cf1xN+gtpYq4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBGoqEMEnmIJIrWl0045Xy27tZIkRW+ghYqOkTLv1DwL9jGBSRMNZrZ1c6OHylpyXU/naXlldW19dJGeXNre2e3srffsmFsBDZFqELT8cGikhqbJElhJzIIga+w7U+uMr/9gMbKUN/SNMJ+AGMtR1IApdJdjyAeJN6pNxtUqm7NzcEXiVeQKivQGFS+esNQxAFqEgqs7XpuRP0EDEmhcFbuxRYjEBMYYzelGgK0/SRPPOPHsQUKeYSGS8VzEX9vJBBYOw38dDIAurfzXib+53VjGl32E6mjmFCL7BBJhfkhK4xMq0A+lAaJIEuOXGouwAARGslBiFSM027KaR/e/PeLpHVW89KSbs6rdbdopsQO2RE7YR67YHV2zRqsyQTT7Ik9sxfn0Xl13pz3n9Elp9g5YH/gfHwDqZeU2w==</latexit><latexit sha1_base64="nrxuJQo2Ipvx/U1Cf1xN+gtpYq4=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBGoqEMEnmIJIrWl0045Xy27tZIkRW+ghYqOkTLv1DwL9jGBSRMNZrZ1c6OHylpyXU/naXlldW19dJGeXNre2e3srffsmFsBDZFqELT8cGikhqbJElhJzIIga+w7U+uMr/9gMbKUN/SNMJ+AGMtR1IApdJdjyAeJN6pNxtUqm7NzcEXiVeQKivQGFS+esNQxAFqEgqs7XpuRP0EDEmhcFbuxRYjEBMYYzelGgK0/SRPPOPHsQUKeYSGS8VzEX9vJBBYOw38dDIAurfzXib+53VjGl32E6mjmFCL7BBJhfkhK4xMq0A+lAaJIEuOXGouwAARGslBiFSM027KaR/e/PeLpHVW89KSbs6rdbdopsQO2RE7YR67YHV2zRqsyQTT7Ik9sxfn0Xl13pz3n9Elp9g5YH/gfHwDqZeU2w==</latexit>

⌧2,1
<latexit sha1_base64="1YA+o7uT6uq2zjnhiRpNOwGUTAU=">AAAB/HicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbCwjmA9MjjC3mcQle3vH7pwQjvgrbLWyE1v/i4X/xbuYQhNf9XhvhnnzglhJS6776RRWVtfWN4qbpa3tnd298v5By0aJEdgUkYpMJwCLSmpskiSFndgghIHCdjC+yv32AxorI31Lkxj9EEZaDqUAyqS7HkHST2tn3rRfrrhVdwa+TLw5qbA5Gv3yV28QiSRETUKBtV3PjclPwZAUCqelXmIxBjGGEXYzqiFE66ezxFN+kligiMdouFR8JuLvjRRCaydhkE2GQPd20cvF/7xuQsNLP5U6Tgi1yA+RVDg7ZIWRWRXIB9IgEeTJkUvNBRggQiM5CJGJSdZNKevDW/x+mbRqVS8r6ea8UnfnzRTZETtmp8xjF6zOrlmDNZlgmj2xZ/biPDqvzpvz/jNacOY7h+wPnI9vqymU3A==</latexit><latexit sha1_base64="1YA+o7uT6uq2zjnhiRpNOwGUTAU=">AAAB/HicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbCwjmA9MjjC3mcQle3vH7pwQjvgrbLWyE1v/i4X/xbuYQhNf9XhvhnnzglhJS6776RRWVtfWN4qbpa3tnd298v5By0aJEdgUkYpMJwCLSmpskiSFndgghIHCdjC+yv32AxorI31Lkxj9EEZaDqUAyqS7HkHST2tn3rRfrrhVdwa+TLw5qbA5Gv3yV28QiSRETUKBtV3PjclPwZAUCqelXmIxBjGGEXYzqiFE66ezxFN+kligiMdouFR8JuLvjRRCaydhkE2GQPd20cvF/7xuQsNLP5U6Tgi1yA+RVDg7ZIWRWRXIB9IgEeTJkUvNBRggQiM5CJGJSdZNKevDW/x+mbRqVS8r6ea8UnfnzRTZETtmp8xjF6zOrlmDNZlgmj2xZ/biPDqvzpvz/jNacOY7h+wPnI9vqymU3A==</latexit><latexit sha1_base64="1YA+o7uT6uq2zjnhiRpNOwGUTAU=">AAAB/HicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbCwjmA9MjjC3mcQle3vH7pwQjvgrbLWyE1v/i4X/xbuYQhNf9XhvhnnzglhJS6776RRWVtfWN4qbpa3tnd298v5By0aJEdgUkYpMJwCLSmpskiSFndgghIHCdjC+yv32AxorI31Lkxj9EEZaDqUAyqS7HkHST2tn3rRfrrhVdwa+TLw5qbA5Gv3yV28QiSRETUKBtV3PjclPwZAUCqelXmIxBjGGEXYzqiFE66ezxFN+kligiMdouFR8JuLvjRRCaydhkE2GQPd20cvF/7xuQsNLP5U6Tgi1yA+RVDg7ZIWRWRXIB9IgEeTJkUvNBRggQiM5CJGJSdZNKevDW/x+mbRqVS8r6ea8UnfnzRTZETtmp8xjF6zOrlmDNZlgmj2xZ/biPDqvzpvz/jNacOY7h+wPnI9vqymU3A==</latexit><latexit sha1_base64="1YA+o7uT6uq2zjnhiRpNOwGUTAU=">AAAB/HicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbCwjmA9MjjC3mcQle3vH7pwQjvgrbLWyE1v/i4X/xbuYQhNf9XhvhnnzglhJS6776RRWVtfWN4qbpa3tnd298v5By0aJEdgUkYpMJwCLSmpskiSFndgghIHCdjC+yv32AxorI31Lkxj9EEZaDqUAyqS7HkHST2tn3rRfrrhVdwa+TLw5qbA5Gv3yV28QiSRETUKBtV3PjclPwZAUCqelXmIxBjGGEXYzqiFE66ezxFN+kligiMdouFR8JuLvjRRCaydhkE2GQPd20cvF/7xuQsNLP5U6Tgi1yA+RVDg7ZIWRWRXIB9IgEeTJkUvNBRggQiM5CJGJSdZNKevDW/x+mbRqVS8r6ea8UnfnzRTZETtmp8xjF6zOrlmDNZlgmj2xZ/biPDqvzpvz/jNacOY7h+wPnI9vqymU3A==</latexit>

tTDOA
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Fig. 5.70 Block diagram of the proposed system.

positions in time and the bandwidth occupied by the DM-RSs, we can estimate the
CFRs for each DM-RS discarding the cyclic prefix and using the deconvolution method
in frequency, to obtain the estimates Ĥ (tn; fk) as defined in Section 4.4. The values
Ĥ (tn; fk) for frequencies outside the DM-RS band occupation at each tn are set to
zero, as shown in Section 5.3. Using the SAGE algorithm, we can then process the full
observation matrix Ĥ(t; f) to estimate the delay. The most important path for TOA
estimation is the first arrival path τm,1, where m denotes the m-th antenna, which is
represented by the minimum τm,l estimated. Indeed, there is no certainty that the first
path is the path with the larger amplitude |α1|. Notice that the “ping” signal occupies a
relatively small number of subframes, around 25-35 subframes, and that we can indeed
assume that the channel parameters θ remain constant during its transmission. After
estimating the coarse TOA and the delay with SAGE for the two antennas, we can
finally calculate the TDOA as tT DOA = (t1,T OA + τ1,1) − (t2,T OA + τ2,1) and estimate
the distance between the two antennas as d = tT DOA c, where c is the speed of light,
and we have assumed that the first antenna is further from the LTE module. Fig. 5.70
shows a block diagram of the main steps involved in the procedure.

5.7.2 Results

In this section, we describe the parameters of the experiment and present the results.
The LTE module was connected to a base station that uses the LTE band 3 (further
details on LTE band definitions can be found in [52]), which used an uplink central
frequency of 1.775 GHz, and configured with the 100 RBs bandwidth described in
Table 3.1. Thus, the available bandwidth is 18 MHz (which corresponds to 1200
subcarriers). The time and frequency scheduling is managed by the BS. Typically,
a ping transmission occupies around 25-35 subframes in time and from 2 to 50 RBs

143



LTE Uplink TOA Estimation Results

in frequency. The USRP was set to have a sample rate of 35 MHz which is then
downconverted to 30.72 MHz in post processing. The measurements were made in
three different scenarios varying the distance between antennas with d = 40 m, d = 35
m and d = 30 m.

The estimation of the number of paths L may not be a trivial task and is important
for a successful use of the algorithm. In our experiments, to estimate L we use a
procedure based on the amplitude αl of the different paths and to the MDL described
in Section 4.4.2. In particular, the procedure based on the amplitude αl stops the
algorithm when a path with an amplitude |αl| 20 dB below the value |αMAX | of the
path with maximum amplitude is found. So, we run the algorithm for L = 1, 2, ...

and stop the procedure when, in correspondence to the current value L = Ls, we find
a path that has amplitude 20 dB lower than the maximum amplitude, or when the
MDL criteria is reached (i.e., when the Ls paths have an MDL metric higher than the
Ls − 1 MDL metric). Then, we keep the channel parameters calculated for L = Ls − 1.
Indeed, when a path has amplitude 20 dB lower than the maximum amplitude, then
probably the estimated Ls path is negligible. This threshold choice is justified by the
fact that the delay profiles described in [52] (i.e., the EPA, EVA and ETU delay profile
in Table 5.1) have a minimum relative power of −20.8 dB. In order to safely stop
the procedure if both the described criteria are not reached, in any case, we limit the
search to a maximum number of paths LMAX = 10.

Note that the transmission power may vary in different subframes [52], so we
normalize the received signals by taking it into account, otherwise this would affect
the estimated CFRs. The antennas were placed in a line of sight condition. In the
experiment with d = 40 m, the furthest antenna was placed behind an open door,
which could contribute to increased multipath. Distances between antennas were
measured with a laser distance-meter, so that we can compare the value obtained with
the distance-meter and the estimates obtained using the setup described above. For
each value of d, we measure the distance obtained in 15 “ping” transmissions. We show
the mean distance obtained with the correlation peak detector and the mean distance
obtained with SAGE. The results of distance estimation with SAGE are compared with
the average distance calculated as (t1,T OA − t2,T OA) c, with t1,T OA and t2,T OA obtained
with the correlation method.

Fig. 5.71 shows the distance estimates corresponding to the 15 “ping” transmissions
when the two antennas were at a distance of 40 m. As we can see, using SAGE we
have only one estimate with an error greater than 15 m, while the error is always below
10 m in the other cases. The average distance estimate error is about 2 m. With the

144



5.7 Experimental Results in a Real Scenario

0 5 10 15

# ping

30

35

40

45

50

55

d
is

ta
n
c
e

 [
m

]

SAGE results

correlation results

Distance-meter value

mean SAGE

mean correlation

Fig. 5.71 Distance estimates using SAGE and the correlator, for a 40 m distance
between the two antennas.
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Fig. 5.72 Distance estimates using SAGE and the correlator, for a 35 m distance
between the two antennas.
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Fig. 5.73 Distance estimates using SAGE and the correlator, for a 30 m distance
between the two antennas.

correlation estimate, instead, the error exceeds 10 m in three measures and the average
error is about 6 m.

Fig. 5.72 shows the estimation corresponding to the “ping” transmissions when the
two antennas were at distance of 35 m. The SAGE algorithm gives an error greater
than 10 m in one case, but the other estimates are close to the correct distance 35 m.
Also, the estimate average value is very close to 35 m and the error is below 1 m. The
correlation estimate error never exceeds 5 m, but the mean value is slightly worse than
the one obtained with SAGE. The improved precision of the correlation method in this
case is probably due to the strong line of sight component.

Fig. 5.73 shows the distance estimation corresponding to the “ping” transmissions
when the two antennas were at a distance of 30 m. In this case, the error with the
SAGE algorithm is always below 8 m, and the average error is around 1 m. The same
happens for the correlation estimation, and in particular the average error is close to
that one obtained with SAGE. Also in this case, we can assume that the strong line of
sight component probably increases the accuracy of the correlation method.
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5.8 Conclusions

Comparing these experimental results with the simulation results, we can say that
simulations and experiments give consistent results. Indeed, the experimental errors
are compatible with the errors obtained in simulations.

5.8 Conclusions

A new method for the estimation of TOA using the uplink DM-RS instead of the SRS
is proposed. In particular, the idea is to use a simple ping uplink transmission to
estimate the TOA, since this occupies a small portion of the bandwidth. This method
can easily extend to any data transmission in uplink, giving the opportunity to estimate
UE position each time some data is transmitted. To demonstrate the feasibility of
the method we have compared different algorithms for TOA estimation. Initially,
we propose a novel initialization method for the SAGE algorithm. We demonstrate
by means of extensive simulations that the proposed initialization method provides
better performance compared to the non-coherent accumulation method proposed
in [7], when uplink data transmissions is considered. Then we show, by means of
extensive simulations, that, when more sophisticated channel models like EPA, EVA
and ETU models are considered in uplink transmission, the SAGE algorithm with
our initialization method performs better then the correlation based method and the
IAA-APES algorithm. We have to mention, however, that IAA-APES seems to be more
reliable then SAGE when low SNR is considered. From these extensive simulations we
can conclude that the SAGE algorithm with our proposed initialization outperforms
the other algorithm when a real DM-RS transmission pattern is used. In particular
the results are similar to those obtained with a large bandwidth occupation. Then, we
have demonstrated by means of experimental results that, using a simple “ping” uplink
transmission, it is possible to obtain a good TOA estimations. Indeed we estimate the
distance between two antennas through TDOA estimation exploiting real LTE uplink
DM-RS signals and the SAGE algorithm. We obtain average errors between 1 m and 2
m in different experiment. The benefit of the proposed method is that position can be
estimated each time any data is transmitted, without relying on the SRS signal, which
in most cases is never transmitted or is transmitted rarely. In this chapter we point
out that a reliable positioning opportunistic system, with the support of the eNodeB,
can be implemented using the DM-RS instead of the SRS and that the results are
comparable to the one obtained in full band transmission scenario, which can be seen
as a bound for delay estimation performance.
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Chapter 6

AOA and TOA estimation using
LTE signals.

6.1 Introduction

The estimation of the angle of arrival (AOA) that we will analyze in the following
continues what has been shown in Chapter 5. Indeed, we can assume a similar scenario
where multiple eNodeBs, or alternatively multiple LMUs instructed by the reference
eNodeB, can measure the DM-RS and estimate both the angle of arrival and the time of
arrival (TOA). Then, hybrid positioning techniques that exploit AOA and TOA can be
used to detect the UE position. In this chapter, we also consider a dual scenario where
the AOA and TDOA measurements are made at the UE, using downlink reference
signals coming from multiple eNodeB. In particular, the downlink cell specific reference
signal (CRS) can be exploited for this purpose. Indeed, as we will see in the following
sections, AOA estimation has a weak dependence on the type of transmission used,
whatever it is downlink or uplink. We can therefore assume that the same performance
obtained with downlink transmissions can be also obtained with uplink transmissions,
which we have focused on so far. We note that this is not the case of TOA, since TOA
estimation performance is strictly related to the occupied bandwidth, which is typically
different for downlink and uplink transmissions.

This chapter focuses on AOA estimation. In particular, AOA estimates obtained
with the IAA-APES algorithm are compared with SAGE AOA estimates, where SAGE
is set for joint AOA, TOA and Doppler estimation. As mentioned before, IAA-APES
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can not be used for joint AOA and TOA estimation, because of the problems related
to the high memory consumption.

In the first part of this Chapter we present simulations comparing the AOA
performance with SAGE and IAA-APES in the three different scenarios defined in the
previous chapter. Moreover, we verify that the AOA estimation is not really influenced
by the particular type of transmission used, downlink or uplink. Once established
that the estimation performance does not depend on the type of transmission, in the
second part we perform real world experimental results using downlink signals. In
particular, we made experiments inside an anechoic chamber and the choice of using
downlink signal was due to the limitations of the available instrumentation. Indeed,
we did not have any possibility to transmit LTE uplink signals with an LTE module
inside the chamber. This is because, in order to force the LTE module to transmit
an uplink signal, we need a connection with the eNodeB, which is not reachable from
the anechoic chamber. On the other hand, the use of the chamber was necessary to
properly set-up an environment with correct AOA and TDOA references.

6.2 Simulation set-up

This section presents the simulation set-up used to evaluate the AOA estimation
performance of SAGE with 3D initialization (see Section 5.4) and the IAA-APES
algorithm in different scenarios. Since SAGE in this case is set to estimate the delay,
the Doppler and the angle, for completeness we show the SAGE performance also in
delay and Doppler estimation. The same SAGE settings are used in the experiment in
the anechoic chamber, described in in Section 6.4.

The simulations use the same set-up described in Section 5.5, and the block diagram
of the setup is the same showed in Figure 5.3. In the simulations, only four antennas
are considered (M = 4), to match the uniform linear array (ULA) with 4 antennas
that we had available for the anechoic chamber experiment (Section 6.4). We evaluate
the root mean square error (RMSEE) performance in the three scenarios described in
Section 5.5, namely, the full band scenario, the simulated ping scenario and the real
ping scenario.

The simulation objective is to test the ability of SAGE and IAA-APES to separate
close paths in the angle domain. So, similarly to what we did in Section 5.5, for each
scenario we set the SNR to 10 dB and we simulate three paths, where the delays are
set to τ1 = 15 ns, τ2 = 65 ns and τ3 = 115 ns, the Doppler are generated randomly

150



6.3 Simulation Results

Parameters τl [ns] νl,max [Hz] ϕl [°] |αl|2 [dB]
Paths

1 15 70 0 0
2 65 70 ∆ϕ 0
3 115 70 −∆ϕ 0

Table 6.1 Parameter used in simulations for AOA estimation

with uniform values between −70 Hz and 70 Hz, and the angles are set to

ϕ1 = 0°
ϕ2 = ϕ1 + ∆ϕ

ϕ3 = ϕ1 − ∆ϕ

(6.1)

The modulus of the complex gain αl is equal for all the three paths, while the phase
for each path is generated randomly, i.e., αl = |αl| ejφ with φ uniform in [0, 2π]. We
simulate the transmission of 25 consecutive subframes, which are approximately the
number of subframes occupied by a ping. For each scenario, we vary ∆ϕ from 1° to
35° with step 1°, and we perform 100 different channel realizations, changing the seed
of the random number generator. Table 6.1 summarizes the adopted parameters. We
also assume that the number of paths is known, in order to have a better perspective
on the algorithms performance in AOA and TOA estimations.

The first scenario, in particular, represents a transmission that occupies the entire
bandwidth: this can mimic the case of a downlink transmission. Indeed, the only
difference between a downlink CRS transmission and an uplink transmission in the full
band scenario, is represented by the subcarrier spacing ∆fk. In particular, ∆fk is 15
kHz for the uplink transmission, while in downlink, using one antenna port, it is 90
kHz. Moreover, with two antenna ports, we can aggregate the estimated CFRs and
obtain ∆fk equal to 45 kHz.

6.3 Simulation Results

Figure 6.1 shows the RMSEE, in logarithmic scale, of the three path delays obtained
with SAGE, in the three considered scenarios. We can notice that the RMSEE of the
delays for all the paths in all scenarios is always below 20 ns. In particular, when the
distance in angle domain between paths exceeds 5°, the RMSEE for all the paths in
all scenarios is below 1 ns, i.e., it is below one meter accuracy. The results obtained
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Fig. 6.1 RMSEE of the three path delays considering the full band, simulated ping and
real ping scenarios, using SAGE with 3D initial conditions.

in this case are much better that the results obtained in Chapter 5, because in this
case we are performing a joint estimation in three domains (delay, angle, and Doppler).
Indeed, if two paths are not separable in two domains, they can be separable in the
third, and the additional information can be exploited by SAGE in order to separate
and properly estimate the two paths.

Figure 6.2 shows the RMSEE of the Doppler relative to all the three paths in
logarithmic scale obtained with SAGE, in the three considered scenarios. We can notice
that the RMSEE of the Doppler for all the paths in all scenarios is always below 20
Hz. In particular, when the angle separation between paths exceeds 11° approximately,
the RMSEE for all the paths in all scenarios is below 1 Hz. Also in this case, the high
accuracy can be attributed to the addition of a further dimension.

Figure 6.3 shows the RMSEE of the three paths angle of arrival in logarithmic
scale obtained with SAGE and IAA-APES, in the full band scenario. Considering first
the results for IAA-APES, we do not show the first path angle RMSEE between 1°
and 6° because the error is zero. This is due to the fact that the first path angle (ϕ1)
is equal to zero, and zero is also a point of the grid used in the algorithm. Between
1° and 13°, only one path is estimated and the error increases with ∆ϕ. For greater
∆ϕ, IAA-APES starts to estimate a second path and the error stabilize. Starting at
∆ϕ = 26°, also the third path could be estimated. Around this point, the second path
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Fig. 6.2 RMSEE of the three path Doppler considering the full band, simulated ping
and real ping scenarios, using SAGE with 3D initial conditions.

RMSEE decreases while the third path RMSEE has a relatively higher value. Note
that, when the third path starts to be detected, it is not always estimated in all the
100 different channel realizations. When we calculate the RMSEE for the third path,
we do not consider the realizations where the third path is not estimated. Furthermore,
the error is higher because in this scenario (∆ϕ = 26°) represent the point where
the algorithm sometimes is able to distinguish three paths and sometimes is able to
distinguish only two paths. Above an angle separation of 28°, the three paths are
always estimated and the error is consistently below 0.3°. While the RMSEE obtained
with IAA-APES is between 0.01° and 0.1°, we can see that with SAGE the error is
always below 0.001° for all the three paths, which is a very precise estimation.

Figure 6.4 shows the RMSEE of the three paths angle of arrival in logarithmic scale
obtained with SAGE and IAA-APES, in the simulated ping scenario. Considering the
IAA-APES results, we can notice that the curves have a behavior similar to the one
seen in the full band scenario (Figure 6.3), and that the behaviour obtained around
∆ϕ = 21°, is due to the same reasons explained before. In this scenario, the IAA-APES
angle RMSEE is always contained below 1° for all the paths and for the entire ∆ϕ

range. SAGE in this case presents a slightly higher RMSEE compared to the full band
scenario, and the RMSEE is always below 0.01° when ∆ϕ is low, and reaches values
below 0.001° when ∆ϕ is greater than approximately 23°.
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Fig. 6.3 RMSEE of the angle. Comparison between SAGE and IAA-APES in the full
band scenario.

Fig. 6.4 RMSEE of the angle. Comparison between SAGE and IAA-APES in the
simulated ping scenario
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Fig. 6.5 RMSEE of the angle. Comparison between SAGE and IAA-APES in the real
ping scenario

Figure 6.5 shows the RMSEE of the three paths AOA in logarithmic scale obtained
with SAGE and IAA-APES, in the real ping scenario. The behaviour of the IAA-APES
curves can be explained as before. We obtain an RMSEEs always below 1°, while with
SAGE the error is approximately below 0.01° for low values of ∆ϕ and below 0.001°
when ∆ϕ exceeds 23°.

The results obtained in this simulations are interesting because they show that the
angle estimation is in general very precise, with a weak dependence on the particular
scenario used. This probably can be explained considering Equation 4.89. Indeed, we
can notice that the estimation of the angle ϕ does not depend on either the bandwidth
or the time window considered. The CRLB relative to the angle estimation has a
dependence on the AOA and on the number of antenna elements M , which are equal
in all the scenarios. Moreover, the CRLB depends also on the number of observations
available, due to its dependence from γ0 = NtNscMγm. So, in AOA estimation, the
full band scenario represent a performance lower bound, only because the number
of observations is higher compared to the other scenarios, and not because there is
a higher occupation of the bandwidth. This explains why in this scenario the angle
RMSEE is just slightly better compared with the RMSEE of the other scenarios.

Based on these observations, if we consider a downlink AOA estimation (based
for example on the CRS, which occupies the overall bandwidth), we can expect an
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estimation performance similar to that obtainable with an uplink AOA transmission
based on DM-RS.

In the following section, due to our set-up, we will describe the experimental results
obtained inside the anechoic chamber and using downlink transmission. We can expect
that the following downlink AOA estimation performance can also be obtained in
uplink exploiting the DM-RS.
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6.4 Experimental set up for the Anechoic Chamber

In this section, we present the set up used during the experiments made in the anechoic
chamber of the University of Udine. Experimental results are obtained by measuring
the TOA and AOA exploiting the downlink CRS (see Section 3.5.1). In particular,
using the available equipment, we try to simulate some real multipath inside the
anechoic chamber. The idea is to use an LTE downlink signal generator connected to
different antennas through a splitter and cables with different length. In this way, the
different lengths of the cables produce different delays for the signals transmitted by
the different antennas. Moreover, the different cable length and the splitter provide
different transmission power at the antennas. Finally, the different antenna positions
inside the anechoic chamber correspond to different angles of arrival. This set-up can
be seen as a multipath scenario with different τl, ϕl and complex gains αl.

In the experiment, we use a ULA consisting of four antennas (M = 4), with the
distance between antenna elements set to λ/2. Before starting the experiments, we
align the first antenna perpendicularly to the antenna array, i.e., with an AOA equal
to 0°. This antenna corresponds to the first path. We do not add a delay to this
antenna, using cables, so it can be considered as a reference antenna that corresponds
to the LOS component. In the following, we refer to the angle between the reference
antenna and the ULA as ϕ1 and as τ1 to the TOA. Then we evaluate three different
scenarios with different number of antennas. Figure 6.6 shows a sketch of the first
scenario, where two antennas are used and the second antenna is connected to a
cable having length 50 m. Measuring the distances a, b, and c in the figure using a
laser distance-meter, with simple trigonometric formulas we can calculate the relative
angle ϕ2. Since we previously aligned the first antenna at 0°, the angle ϕ2 represents
also the angle of arrival of the second path that the ULA sees. Figure 6.7 shows a
sketch of the second scenario, where three antennas are used. In this case the antenna
representing the second path is connected to a cable having length 50 m, while the
antenna representing the third path is connected to a cable with length 100 m. Using
the same procedure explained for the first scenario, we can calculate the angles that the
ULA sees, measuring the sides of the two triangles formed by the two antennas with the
reference antenna. In the third scenario, showed in Figure 6.7, we used four antennas.
In particular, the antennas named in the figure as Tx3 and Tx4 were connected to
a cable with length 50 m, while the antenna named Tx2 was connected to a cable
with length 100 m. In this scenario, we wanted to simulate a situation where two
paths arriving at the ULA are close in the delay domain but can be separated in angle
domain because they arrive at the ULA with different AOAs. Since we know from the
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Parameters ϕ1 [°] ∆τ1,2 [ns] ϕ2 [°] ∆τ1,3 [ns] ϕ3 [°] ∆τ1,4 [ns] ϕ4 [°]
First Scenario 0 193 -33 / / / /

Second Scenario 0 193 -33 387 44 / /
Third Scenario 0 388 -43 191 44 195 -12

Table 6.2 Table of the parameters used in the anechoic chamber scenarios.

Fig. 6.6 Sketch representing the set up of the first scenario in the anechoic chamber

data-sheet of the cables [55] the introduced delays, we can calculate the difference in
delay between the reference antenna and the other antennas. All the parameters used
in the three scenarios are summarized in Table 6.2, where ∆τi,j is the difference in
TOA calculated as τj − τi (we also have considered the propagation time in the air to
calculate this difference).

To acquire the signal, the ULA was connected to a USRP with four receiving
channels. We use an external rubidium clock in order to have a better time reference.
Then, the local oscillator of one channel is shared with the other channels. In this way,
the phase between channels remains constant during the measurements. In order to
know the phase misalignment among the channels, we did some calibration. The LTE
downlink signal generator was set to transmit a radio frame, i.e., 10 subframes of 1
ms duration. This radio frame (10 ms) was repeated in loop and the USRP used to
acquire 100 ms of the downlink transmission. as part of the downlink transmission, the
generator transmits also the CRS. Knowing the CRS specifications, we can perform the
estimation of the CFR bins, which follow the pattern showed in Figure 3.6. Then, the
estimated CFR is used as input of the SAGE and IAA-APES algorithms. In particular,
the LTE signal generator used a carrier frequency fc = 1.85 GHz and was set to use
a bandwidth of Nsc = 1200 subcarriers with two antenna ports. This means that for
each CRS symbol, 400 bins of the CFR with a spacing of 45 kHz were available. This
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Fig. 6.7 Sketch representing the set up of the second scenario in the anechoic chamber

Fig. 6.8 Sketch representing the set up of the third scenario in the anechoic chamber
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Fig. 6.9 Picture representing the set up of the second scenario in the Anechoic chamber

is because we can exploit the two antenna ports CRSs, which are shifted by 45 kHz in
frequency.

Figure 6.9 shows the actual measurement set up used in the anechoic chamber in
the second scenario.
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6.5 Results for the Anechoic Chamber Experiments

In this section we present the results obtained in real experiments made in the anechoic
chamber. In particular, the ULA was placed on the top of a rotating platform. This
allows to evaluate the performance for different angles of arrival in each scenario. The
platform was rotated with angles ϑ between -45° to 45° with step ∆ϑ = 15°. With this
choice, all paths in the experiments have an AOA inside the [−90° +90° ] range.

For each scenario and for each value of ϑ, we performed two 100 ms acquisitions
and we calculate the CFR estimates. In this way, we obtain a time-frequency grid
with Nsc = 1200 subcarriers and Nt = 1400 snapshots. This is because the CRS is
repeated at the first and fifth symbol of each slot (Figure 3.6), so we construct a
regular grid filled with zeros where no information about the CFR is available. Then,
we subdivide the 100 ms duration in subsets of 5 ms duration and we perform the
parameter estimation for each subset using SAGE and IAA-APES. In other words, we
had in total 40 estimates for each value of ϑ in each scenario. The RMSEE of the AOA
is calculated as a function of the rotation of the platform, considering the reference
values in Table 6.2.

Since SAGE was set to estimate also the delay and the Doppler, we also show
the SAGE RMSEE of the difference in delays between paths, using as reference the
values in Table 6.2. Since we do not have any reference for the Doppler (the values νl

include also the frequency offset between transmitter and receiver) we omit the results.
Furthermore, since we know the number of antennas inside the anechoic chamber and
we can assume that inside the chamber there is no external interference, we assume
to know the number of path L in order to perform the estimation. This means that
each antenna inside the chamber represents a path. Figure 6.10 shows the RMSEE
of the two paths angle of arrival obtained with SAGE and IAA-APES, in the first
scenario. The RMSEE of the AOAs considering IAA-APES is always below 5°. In
particular, when the platform is rotated up to -45°, IAA-APES is not able to recognise
the second AOA. This is because the value of ϕ2 is -78° in this case and, as explained
in Section 4.3.3, when the angle approaches -90° or 90°, the beam pattern becomes
larger: this probably causes IAA-APES not to resolve the second path. SAGE has an
RMSEE always below 2.2° and in most of the cases the RMSEE is about 1°.

Figure 6.11 shows the RMSEE of the delay difference obtained with SAGE, in the
first scenario. In this case, the RMSEE of the difference of the two paths is between
8.6 ns and 10 ns, which corresponds to an error in pseudorange of about 3 m.

Figure 6.12 and Figure 6.13 show the RMSEE of the three paths angle of arrival
obtained with SAGE and IAA-APES, in the second scenario. In particular Figure 6.13
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Fig. 6.10 RMSEE of the angle of arrival. Comparison of the results obtained with
SAGE and IAA-APES in the first scenario used in the anechoic chamber.

Fig. 6.11 RMSEE of the delays difference. Results obtained with SAGE in the first
scenario used in the anechoic chamber.
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Fig. 6.12 RMSEE of the angle of arrival. Comparison of the results obtained with
SAGE and IAA-APES in the second scenario used in the anechoic chamber.

shows a detail of Figure 6.12. The RMSEE of IAA-APES for the first AOA is similar
to the AOA RMSEE obtained in the first scenario. The RMSEE is also similar for the
second AOA estimation, with an error of about 8° only for a 15° rotation ϑ. IAA-APES
is able to distinguish the third AOA only when ϑ is between -15° and 15°. The first
thing one notices watching the SAGE performance is the extremely large RMSEE
obtained for the third AOA. The large error at 45° is due to the fact that for this ϑ

the third AOA is ϕ3 = 89°. This error is due by the combination of two factors, the
symmetry of the beam pattern (Section 4.3.3) and the high variance of AOA estimation
when the angle approaches -90° or 90° (Equation (4.89). In the other cases SAGE
shows RMSEE always below 2.5° for the three AOA.

Figure 6.14 shows the RMSEE of the delays differences obtained with SAGE, in the
second scenario. In this case two delays differences can be calculated and, similarly to
the first scenario, the error is always below 10 ns. In particular the difference between
the second and the first delay is about 9 ns, while the delay difference between the
third and first delay starts approximately at 2 ns for ϑ = −45°, approaches 5 ns for
ϑ = 0° and falls below 1 ns for ϑ = 45°. Generally the error in pseudorange for the first
difference is around 2.7 m and for the second difference is on average around 1 m.

Figure 6.15 and Figure 6.16 show the RMSEE of the four paths angle of arrival
obtained with SAGE and IAA-APES, in the third scenario. In particular Figure 6.13 is
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Fig. 6.13 RMSEE of the angle of arrival. Inset of the comparison between SAGE and
IAA-APES in the second scenario used in the anechoic chamber.

Fig. 6.14 RMSEE of the delays difference. Results obtained with SAGE in the second
scenario used in the anechoic chamber.

164



6.5 Results for the Anechoic Chamber Experiments

Fig. 6.15 RMSEE of the angle of arrival. Comparison of the results obtained with
SAGE and IAA-APES in the third scenario used in the anechoic chamber.

an inset of Figure 6.12. The RMSEE of IAA-APES for the first AOA is approximately
between 2° and 7.5°. This relatively high error is probably due to the proximity
with the fourth AOA (the difference in angle is only 12°), which is never estimated.
Furthermore, with IAA-APES the second AOA has an RMSEE always below 2°, while
the third AOA is estimated only for ϑ greater than 0°. The RMSEE of ϕ3 reaches 14°
when ϕ3 approaches 90°. SAGE shows a high RMSEE when ϕ3 approaches 90°, but in
this scenario also the RMSEE of ϕ2 is influenced by ϕ3, when it approaches 90°. This
is probably due to the incorrect cancellation that SAGE performs during the E-step,
which influences the estimation of the second path (this phenomenon was explained
also in Section 5.4). In general, the RMSEE of the first AOA obtained with SAGE is
always below 2°, while the other three AOAs (apart from the previous particular case)
are always below 9°. In general, the relatively high RMSEE in this scenario can be
explained by the fact that with only four antennas the beam pattern presents relatively
large main lobes and sidelobes. The effect is particularly enhanced when the lobes
relative to AOA with higher power approaches the values -90° or 90°.

Figure 6.17 shows the RMSEE of the delays differences obtained with SAGE, in
the third scenario. In this case three delays differences can be calculates and the error
is always below 20 ns. In particular, the RMSEE of the difference between the second
and the first delay is about 12 ns for ϑ between -45° and 30°, while for ϑ = 45° the
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Fig. 6.16 RMSEE of the angle of arrival. Inset of the comparison between SAGE and
IAA-APES in the second scenario used in the anechoic chamber.

RMSEE is about 20 ns. Therefore, the first delay difference has a maximum RMSEE
in pseudorange of about 6 m. The RMSEE of the difference between the third and
the first delay is approximately 2 ns for ϑ = −45°, it approaches 10 ns for ϑ around
15°-30° and falls around 8 ns for ϑ = 45°. This delay difference shows a maximum
RMSEE of about 3 m in pseudorange. The RMSEE of the difference between the
fourth and the first delay start is below 2.5 ns for all values of ϑ, apart when ϑ = 45
where the RMSEE is about 6 ns. The corresponding maximum RMSEE is around 1.8
m in pseudorange.
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Fig. 6.17 RMSEE of the delays difference. Results obtained with SAGE in the second
scenario used in the anechoic chamber.
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6.6 Conclusion

In the first part of the chapter we demonstrate by means of simulations that the AOA
estimation does not depend on the particular transmission used, whatever it is downlink
or uplink. Indeed, we saw that missing data in the time frequency pattern do not have
a real impact on the AOA estimation. Note that this is not true when TOA estimation
is considered, as showed in Chapter 5.

In the simulations, we considered one scenario that can be seen similar to a downlink
scenario and two scenarios that simulate uplink transmissions. The RMSEE obtained
in the simulation is very low, IAA-APES shows a RMSEE of the AOA always below
1°, while SAGE has RMSEE values always below 0.01°. For SAGE, we evaluate also
the delay and the Doppler estimates and we obtain respectively an RMSEE below 1 ns
and an RMSEE below 1 Hz, when the paths was well separated in angle domain. From
these results we can conclude that the AOA estimation does not depend on uplink
or downlink transmission. Thus, for simplicity of implementation we have considered
downlink transmission in a real experiment in the anechoic chamber.

In the anechoic chamber experiment, we use a method similar to the one proposed
in Chapter 5 for uplink transmission to perform some estimations of the parameters.
This method consists in using the CRS to estimate the CFR and subsequently use the
CFR bins as input for the SAGE and IAA-APES algorithms. In particular, SAGE was
set to estimate also the delay.

The experimental results show good performance in TOA estimations with SAGE,
and indeed the error in pseudorange is always below 6 m in all the experimental
scenarios, and in most cases it is around 2-3 m. The IAA-APES AOA estimations
show a general difficulty with three or four paths but, in general the error in the
estimated paths is always below 10°, apart in one case with four paths where the error
is about 12°. This inability of IAA-APES to distinguish more paths is mainly due to
the relatively small number of antennas used in the experiment. Note that the number
of sources is indeed comparable with the number of antenna elements. The SAGE AOA
estimation shows good performance in the two scenarios with two and three paths and
the estimation error is always below 2.5°, apart when the AOAs approach 90°. In the
four paths scenario, the AOA RMSEE of the first path is always below 2°, while the
other three paths have in general errors always below 9°, apart when AOAs approach
90°.

The higher error obtained in the experimental results compared with the simulation
results can be due to different reasons. The effect of AOA that are close to -90° or 90°
is a known effect, see Section 5.1. Other sources of errors can be due to our equipment,
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and in particular the ULA, which is actually a "homemade" antenna array, constructed
with some commercial cheap omnidirectional antennas. Moreover, the distance between
antennas, λ/2, was determined approximately. Therefore, there may be some mismatch
between the model used in the algorithms and the real world situation.

We can conclude that the results are encouraging. In particular using SAGE we
can perform a joint AOA, TOA estimation that can be used with hybrid positioning
algorithms in order estimate the position of the UE.
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Chapter 7

Conclusion

This thesis describes my research work on the estimation of the time of arrival (TOA)
and of the angle of arrival (AOA) using 3GPP LTE signals, for both downlink and uplink
transmissions, with more focus on uplink signals. The main original contributions are
presented in the following.

A new method for the estimation of TOA using the uplink DM-RS instead of the
SRS is proposed. In particular, the idea is to use a simple ping uplink transmission to
estimate the TOA, since this occupies a small portion of the bandwidth. This method
can be easily extended to any data transmission in uplink, giving the opportunity to
estimate the UE position each time some data is transmitted. To demonstrate the
feasibility of the method, we compared different algorithms for TOA estimation. In
order to perform uplink TOA estimation with SAGE, we propose a novel initialization
method for the algorithm. We demonstrate by means of extensive simulations that
the proposed initialization method provides better performance compared to the non-
coherent accumulation method proposed in [7]. Moreover, we performed extensive
simulations with more sophisticated channel models in order to prove that the uplink
DM-RS can indeed be used for TOA estimation purposes. From the simulations results,
we conclude that SAGE outperforms the other algorithms for TOA estimation and
uplink transmissions, while it gives similar results in simulations mimicking downlink
transmissions. In particular, we observed that SAGE performance is less influenced
by the bandwidth occupation of the signals. Then, we demonstrated by means of
experimental results that, using a simple “ping” uplink transmission, it is possible
to obtain a reasonable TOA estimate, with average errors between 1 m and 2 m in
different experiments. The benefit of the proposed method is that position can be
estimated each time any data is transmitted, without relying on the SRS signal, which
in most cases is never transmitted or is transmitted rarely. The conclusion is that
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a reliable positioning opportunistic system, can be implemented using the DM-RS
instead of the SRS.

Our second contribution consists of a method to evaluate the AOA of uplink and
downlink transmissions. By means of simulations, we demonstrate that the AOA
estimate quality is not much influenced by the type of transmission, uplink or downlink.
In simulations, we see that SAGE performance is much better than that of IAA-APES.
This is because SAGE can jointly exploit different domains, i.e., delay and Doppler.

In the final part of the thesis, we performed some real-world experiments in an
anechoic chamber. The results reveal that SAGE provides better performance than
IAA-APES for AOA estimation. Moreover, SAGE also provides good TOA estimates.
Based on this, we conclude that the proposed SAGE implementation makes it suitable
for AOA estimation in uplink and downlink transmissions, and that it can provide
joint AOA, TOA estimates to exploit hybrid positioning techniques.

Future work requires, at least, an intensive campaign of measurements in a real-
world environment, in order to evaluate all the possible limitations of the proposed
approach. A further future topic should be the implementation of an actual position
tracking system, based on the estimates provided by the proposed method.
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